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Abstract: We propose a new, data-driven model for the prediction of the outcomes of NBA and
possibly other basketball league games by using machine learning methods. The paper starts with a
strict mathematical formulation of the basketball statistical quantities and the performance indicators
derived from them. The backbone of our model is the extended team efficiency index, which consists of
two asymmetric parts: (i) the team efficiency index, generally based on some individual efficiency
index—in our case, the NBA player efficiency index, and (ii) the comparing part, in which the observed
team is rewarded for every selected feature in which it outperforms its rival. Based on the average
of the past extended indices, the predicted extended indices are calculated symmetrically for both
teams competing in the observed future game. The relative value of those indices defines the win
function, which predicts the game outcome. The prediction model includes the concept of the optimal
time window (OTW) for the training data. The training datasets were extracted from maximally
four and the testing datasets from maximally two of the five consecutive observed NBA seasons
(2013/2014–2017/2018). The model uses basic, derived, advanced, and league-wise basketball game
elements as its features, whose preparation and extraction were briefly discussed. The proposed
model was tested for several choices of the training and testing sets’ seasons, without and with OTWs.
The average obtained prediction accuracy is around 66%, and the maximal obtained accuracy is
around 78%. This is satisfactory and in the range of better results in the works of other authors.

Keywords: machine learning; basketball; outcome prediction; team efficiency index; relative score;
win function

1. Introduction

Over the past few decades, the prediction of sports results based on artificial intelli-
gence (AI) methods has become increasingly popular among sports professionals and fans
alike. Apart from those engaged in sports betting—who are obviously vitally interested in
this matter(!)—the objective forecasts of sporting events are important for team coaches
and other sports experts for several reasons, such as foreseeing the development of players
and teams, preventing their overloads and injuries, as well as making all kinds of decisions
on a daily, monthly, or yearly basis.

In this paper, we present a machine-learning model for predicting the outcome of NBA
games. The NBA (National Basketball Association) is the North American professional
basketball league composed of 30 teams. In simple terms, machine learning (ML) is a
subfield of artificial intelligence that uses known history in the form of sample data or
previous experience to develop optimal inference methods for deducing unknown future
data and information of the same class (see, e.g., [1]). For sports outcome and score
prediction, the most common supervised ML methods involve manually labeling the test
input data consisting of the statistics of players and teams, with the corresponding output
values, i.e., the results of the games they played. If we choose an appropriate ML model
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and the corresponding learning criteria and optimization methods, we can expect that
applying this model to the test data or previously unseen statistical data will lead to a
prediction of the results that is (significantly) better than random guessing.

This particular problem is most often considered as a supervised binary classification
problem [2]. The conclusion follows the results in [3–5], which showed that of the two major
ML categories: classification and regression, the former is better for predicting the outcomes
of team sports games. The data-driven model for predicting NBA game outcomes that
we present here also uses a supervised ML model. In addition to the basic NBA statistics
known as the score box, we will also use the advanced and team-specific league statistics
as input data for our model. One of the novelties in the proposed model will be the
introduction of a specially tailored team efficiency index and investigation of the use of the
so-called optimal time window for the training data.

1.1. Outline of the Paper

In the next subsection of this introduction, we first briefly review previous similar
research on this topic. Section 2 focuses on the NBA player and team efficiency indices,
which are the basis for our evaluation of the player and team performances. Section 3
describes the input data and features of our model, as well as the procedure used to
compute the optimal time window. In Section 4, we outline and discuss our ML model for
predicting basketball game outcomes, and in Section 5, we present the obtained outcome
prediction accuracy. Section 6 concludes the paper and suggests some guidelines for
possible improvements to the proposed model.

1.2. Review of the Related Works

A broader review of the use of machine learning in predicting match outcomes for
a few team sports is provided in [6], while here, we concentrate on basketball. Since the
results of such analysis highly depend on the type and especially on the amount of input
data, we focus primarily on the results of predicting the outcome of the NBA games.

The authors in [7] used three types of neural networks and achieved the best accuracy
(74.3%) with a feed-forward network. In [8], the authors used Naïve Bayes for outcome pre-
diction and achieved 67% accuracy. For the outcome dispersion (the difference in outcomes
between the two competing teams, by default expressed in absolute numbers), they used
the multivariate linear regression and achieved an accuracy of only 10%. However, this
result cannot be considered bad because this kind of prediction is rather difficult.

The authors in [9] achieved the top accuracy of 72.8% by using dozens of algorithms
from the Weka AI and ML tool [10]. In [11], the author used several ML algorithms and
two different datasets and achieved an accuracy of 70.0% by using backward elimination
methods for feature selection on four different feature sets and two ML methods for game
outcome prediction. Support Vector Machine (SVM) achieved 70.0% accuracy with the
first feature set, while logistic regression achieved 69.7% accuracy with the best relative
feature set. The author in [12] used a multilayer perceptron, linear regression, and the
maximum likelihood classifier and achieved maximum accuracy of 68.4%, 68.0%, and 66.8%,
respectively. In [13], the authors used several ML algorithms and concluded that the
winning record of past games plays a crucial role in predicting the outcome of basketball
games. They achieved the best accuracy of 65.2% using the random forest method.

The author in [14] proposed a model based on matrix factorization and achieved
the top accuracy of 71.0% using a single training season. In [15], the authors proposed a
maximum entropy model and obtained the best accuracy of 74.4%. In [16], the authors
used different classification and regression ML methods to predict the game results and
obtained an accuracy of 65.5% with Gaussian discriminant analysis. The authors in [17]
used the SVM prediction model and the feature selection algorithm to achieve prediction
correctness of 85.2%. In [18], the authors proposed an ML model based on stacked Bayesian
regressions and achieved a maximum accuracy of 85.3%. In [19], the authors used four
different feature sets and obtained the best accuracy of 88.1%.
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There is a large number of other research on this topic that—although not related
to the NBA league games—provide valuable results in predicting the basketball game
outcomes [20–23].

Most of the above studies used features based on some kind of team performance and
standing within the observed league or competition. In general, it is not easy to transfer the
methods from one league to another and prescribe a universal framework that would meet
all requirements for an observed sport. For this reason, the presented prediction results
depend largely on the amount of data used and the competitiveness of the league analyzed.

Moreover, the nuances in the feature selection and extraction methods often varied and
depended on the particular research approach and the game aspects that were considered
crucial for the game outcomes. On the other hand, this phase forms the basis of the whole
ML procedure and highly influences prediction results. In this paper, we will emphasize the
importance of selecting the right features depicted by the data obtained from the optimal
time frames and show how that influences the prediction results.

2. Player’s and Team’s Efficiencies and the Game Outcomes

Nowadays, the performance of players and teams is objectively evaluated using
various efficiency indices. A simple and commonly used indicator of player performance
in the NBA league is the NBA player efficiency index [24]. Its original form refers to the
efficiency of a single player per one game, but can also be averaged over several games or
calculated for an entire team.

2.1. NBA Player Efficiency Index

The NBA player efficiency index takes into account thirteen basic elements of the basket-
ball game that are captured in the standard tables of NBA basketball statistics called box
scores. These elements are listed in Table 1. The abbreviations that we use are somewhat
different from the usual ones used in basketball and especially the NBA jargon. The ra-
tionale behind that change was to have a more consistent notation that would also better
suit mathematical expressions. The abbreviations refer to the properties of the elements
following—whenever appropriate—the principle of naming from the general to the spe-
cific, and are more suitable to appear in the subscripts of the corresponding integer or
rational quantity.

That is, regarding the basic game elements, we say that each element (or feature) e of
the basketball game from Table 1 is associated with a non-negative integer, Ne. For example,
Ngmd2F is the number of goals scored in the 2-field, and Ngat2F is the number of goals
attempted in the 2-field, etc. All the basic game elements represent the positive game
outcomes. Similarly, for the ratios that are non-negative rational numbers, we will use the
labels of the form re2/e1 , where re2/e1 = Ne2 /Ne1 .

Table 1. Thirteen basic basketball game elements: 8 positive (+), 3 neutral (0), and 2 negative (−).

Element (Type) Abbreviation Description

Basic (+) gmd2F(3F)(FT) Goals made 2-field (3-field) (free throws)
asts Assists

blcks Blocks
rbd, rbo Rebounds defensive, offensive

stls Steals

Basic (0) gat2F(3F)(FT) Goals attempted 2-fld. (3-fld.) (free throws)

Basic (−) fls Personal fouls
tos Turnovers

The standard game elements give rise to several additional useful game elements,
which we call derived elements and list in Table 2. The first two of them, i.e., the elements
representing the total number of points scored and the total number of rebounds, respec-
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tively, are the positive game results (marked “+” in the first column), and the remaining
four elements have a negative character, marked with ‘−’ in the first column.

Table 2. Eight derived basketball game elements: 3 positive (+), 1 neutral (0), and 4 negative (−).

Element (Type) Abbreviation Description

Derived (+) pts Total points scored
gmdFld Goals made from (both 2- and 3-) field.

rbs Rebounds total

Derived (0) gatFld Goals attempted from (2- and 3-) field.

Derived (−) ms2(3)F Goals missed from 2(3)-field
msFld(FT) Goals missed from 2- and 3-field (free throws)

The values of the derived elements follow from their description:

Npts = 2× Ngmd2F + 3× Ngmd3F + NgmdFT, (1a)

Nrbs = Nrbd + Nrbo, (1b)

Nms2F = Ngat2F − Ngmd2F, (1c)

Nms3F = Ngat3F − Ngmd3F, (1d)

NmsFld = Nms2F + Nms3F, (1e)

NmsFT = NgatFT − NgmdFT. (1f)

Now the NBA efficiency index of an individual player, INBA, is defined as a cumulative
quantity that adds the numbers of the positive game elements and subtracts from them the
numbers of the negative game elements, according to the following formula:

INBA = Npts + Nrbs + Nasts + Nstls + Nblcks − (NmsFld + NmsFT + Ntos). (2)

It should be stressed that the NBA player efficiency index is a per game and not a per
minute efficiency index. That is, it does not represent a player’s “performance power” but
his or her “game contribution”. In physical terms, it is the total “work” he or she does
during a game, while the coach decides whether one (good) player stays in the game for a
longer time and another (bad) player for a shorter time [in a tough game], or vice versa [in
an easy game]. In other words, this index combines the player’s power and his or her total
playing time into an overall contribution that depends not only on the player’s quality but
also on the coach’s decision on how to use that quality.

In conclusion, INBA is an absolute indicator of the player’s efficiency in a game G
and—as mentioned above—it can also be calculated for an entire team by simply adding
the efficiency indices of all of its players. We formalize this further and introduce the correct
notation in the next subsection.

2.2. Notation of the Games, Teams, and Players

For the sake of generality, in the rest of this section, we observe some general efficiency
index I, and denote its value for a player p from a team Tm in a game G as ITmG,p or IGTm,p
whichever is preferable in the given context. By denoting the set of all games by Gall , the set
of (all) teams by T m, and the set of players on the observed team by PTm, we define the
indices as G ∈ Gall , Tm ∈ T m and p ∈ PTm.

We also establish the chronological order in the set of games,

Gall =
{

Gall,1, Gall,2, . . . , Gall,i, . . . , Gall,nall

}
, (3a)

by requesting that the game Gi is played in a discrete time ti, i = 1, 2, . . . , n, that comes
after the game Gi−1, i.e., that ti−1 < ti .
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In a particular game G, an ordered pair TmPairG = (Tm1, Tm2) of opponent teams
compete, Tm1, Tm2 ∈ T m. The first member of a pair is normally the home team.

We restrict the set of all games from Equation (3a) to the set of games played only by
an observed team Tm, with the chronological order preserved,

GTm =
{

GTm,1, GTm,2, . . . , GTm,i, . . . , GTm,nRm

}
. (3b)

In the theoretical deliberation of this section, we will deal with the quantities of a
single observed team Tm [Tm1 or Tm2 from the pair (Tm1, Tm2)], so we abbreviate the
quantities in the previous equation by omitting the subscript Tm and writing:

GTm = G = {G1, G2, . . . , Gi, . . . , Gn}. (3c)

In the same manner, we abbreviate the set of the team’s players simply as as

PTm = P . (4)

2.3. Team Efficiency Indices—Absolute and Relative

After having sorted out our basic notation, here we define the team (NBA) efficiency
index, which measures the performance of the Tm team in a game G. It is the sum of the
players’ efficiency indices in that game, and we can write it as either ITmG or IGTm :

ITmG = IGTm = ∑
p∈P

IGTm,p , G ∈ G, Tm ∈ T m. (5)

Whenever IGTm,p is a linear function of the constituent game elements—as is the NBA
efficiency index—this same result can be obtained by summing directly all the players’
positive and subtracting their negative contributions.

Such a simple, unweighted sum is justified as a team efficiency index whenever a
per-game player efficiency index is used, such as the NBA efficiency index. We have already
explained the rationale for using it as a team efficiency index in the discussion at the end of
Subsection 2.1. On the other hand, if a per-minute index is used, the times spent on the
court must appear as the weighting factors in the sum of Equation (5).

The fact that the best player(s) can additionally influence the performance of the
other players is not explicitly added but is reflected in the better efficiency indices of those
players. The possibility of quantification of such a statistically unmeasurable contribution
is included in our CPE (Comprehensive Player Efficiency) index via the so-called X-factor.
A positive or negative X value can be assigned to the player at a discretion of a basketball
coach or analyst. The CPE index will be presented elsewhere.

With known efficiency indices IGTm1
and IGTm2

for both of the teams in the game G, we
observe the ratio of these indices and define the relative team efficiency indices as

iGTm1/Tm2
=

IGTm1

IGTm2

, iGTm2/Tm1
=

IGTm2

IGTm1

. (6)

2.4. Relative Score and the Game Real and Estimated Win Functions

Let the total scores of the teams Tm1 and Tm2 in a game G be Npts, GTm1
and Npts, GTm2

,
respectively, then we define the relative score, rpts, GTm1/Tm2

, of that game, normalized to the
total score of the team Tm2,

rpts, GTm1/Tm2
=

Npts, GTm1

Npts, GTm2

. (7a)
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“Symmetrically”, one can also observe the reciprocal rpts, GTm2/Tm1
relative score, normalized

to the team Tm1 score:

rpts, GTm2/Tm1
=

Npts, GTm2

Npts, GTm1

. (7b)

For the general choice of the non-negative numbers Npts, GTm1
and Npts, GTm2

, Equation (7)
give the ratio in the range from zero to infinity, and when both of them are zero, also an
indefinite value. In the NBA league and most other leagues, a basketball game cannot finish
in a tie, meaning that rpts,GTm1/Tm2

6= 1. Also, due to the usual high game scores, although pos-
sible, the values of rpts,GTm1/Tm2

= 0 and rpts,GTm1/Tm2
= ∞ are highly improbable.

The above values determine the outcome of the game G with a pair TMPairG =
(Tm1, Tm2) of opponent teams. We formalize this by introducing a discrete ωG win function,

ωG = ωG(Tm1,Tm2)
=


+1, rpts,GTm1/Tm2

> 1, Tm1 wins;

0, rpts,GTm1/Tm2
= 1, a tie;

−1, rpts,GTm1/Tm2
< 1, Tm2 wins.

(8a)

If a tie is not allowed and must be resolved by playing overtime, then

rpts,GTm1/Tm2
6= 1 and ωG(Tm1,Tm2)

6= 0 . (8b)

In addition to the real ωG win function, calculated on the basis of the real game score,
we also introduce the estimated win function, ω′G derived from the relative iGTm1/Tm2

team
efficiency index (Equation (6)) of the two teams for that particular game. Although rarely,
a tie can occur here. We resolve it in favor of the home team (the first one). The justification
for this will be given in Subsection 4.2. Now the estimated win function is:

ω′G = ω′G(Tm1,Tm2)
=

{
+1, iGTm1/Tm2

≥ 1, Tm1 wins;

−1, iGTm1/Tm2
< 1, Tm2 wins.

(9)

2.5. Predicted Team Efficiency Index, Absolute and Relative

Having determined a posteriori values based on the collected statistics, we can define
the corresponding predicted efficiency indices for players and teams. Since only the latter is
important in our case, we proceed immediately to the definition of predicted team efficiency
index, ÎGn+k,Tm of a team Tm with known n games Gi, i = 1, 2, . . . , n, for its future game
Gn+k, k = 1, 2, . . .. It is the mean value of the team efficiency indices in the previous
n games:

ÎGn+k,Tm =
1
n

n

∑
i=1

IGi,Tm , k ≥ 1, G ∈ G, Tm ∈ T m . (10a)

Of course, the predictions will be better for small k values. In practical use, we will perform
predictions for the very next game, that is, for k = 1.

The general predicted team efficiency index can be restricted to the games played by
team Tm against a given opponent team, TmOpp ∈ T m, which we write as follows:

ÎGn+k,Tm↔TmOpp =
1
n

n

∑
i=1

IGi,Tm↔TmOpp , G ∈ G, Tm&TmOpp ∈ TmPairG . (10b)

This index is more specific than the former one, but the number of previous games played
against the given opponent is usually much smaller than the total number of games played
by the observed team. Thus, both indices have their advantages and disadvantages.
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Now, from (either kind of) the above indices, ÎGn+k,Tm1
and ÎGm+k,Tm2

, of the opponents
in a “future” game Gn+k = Gm+k = G, we define the predicted relative team efficiency index,

îGTm1/Tm2
=

ÎGTm1

ÎGTm2

. (11)

2.6. Predicted Game Outcome

By using ωG function from Equation (8a), one can determine the outcome of the game
G only if it is finished and its final score is known. On the other hand, from the predicted
relative team efficiency indices, we can determine the predicted outcome, ω̂G, for a future
game G analogously to the estimated ω′G outcome defined in (9):

ω̂G = ω̂G(Tm1,Tm2)
=

{
+1, îGTm1/Tm2

≥ 1, Tm1 wins;

−1, îGTm1/Tm2
< 1, Tm2 wins.

(12)

Additionally, by assuming a linear correlation between the predicted relative team
efficiency index (Equation (11)) and the relative score (Equation (7)), one can also derive
the predicted relative score, r̂pts, GTm1/Tm2

, and from it even estimate the absolute score of the
game. However, we will leave the elaboration of these values for the paper dealing with
the already mentioned CPE index (see the comment before the end of Subsection 2.3).

3. Data Collection and Preparation

A well-prepared input dataset helps data mining and machine learning algorithms to
be more efficient and faster [25–27]. In this section, we briefly describe data collection and
preparation performed in this paper and discuss the procedure of feature extraction and
selection. After that, we give an overview of the Optimal Time Window.

3.1. Data Collection

For this study, we have analyzed a total of 6567 basketball games from five consecutive
NBA seasons, starting with the season 2013/2014 and ending with the season 2017/2018
(this number can be obtained by summing all the games from Table 7). For this purpose,
we programmed a web-scraping script that examines the NBA statistics website [28].
The collected data were stored in and processed with the aid of our Basketball Coach
Assistant (BCA) information system, which we presented in [29–31].

In [30], we have shown that the best results in predicting the outcomes of basketball
games can be expected by using data from one to three training seasons and a single testing
season, and by applying the data segmentation validation method [32]. In order to confirm
this, we have used slightly larger datasets: three or at most four seasons for the training
dataset and up to two seasons for the testing dataset. Both the training and testing data
were chronologically ordered, according to the deliberation in Subsection 2.2.

3.2. Data Preparation and Feature Extraction

Data preparation in ML includes proper feature extraction, which consists of feature
engineering, feature selection, and if needed, dimensionality reduction. As for the feature
engineering, we addressed it in Section 2, where we discussed the basic and advanced bas-
ketball elements and derived other indicators from them, such as the NBA team efficiency
index. In the context of ML, all these indicators can be treated as features. From them, we
manually select those features that will contribute most to the particular goal of the data
analysis. In general, feature extraction is a process of reducing the dimensionality of the
original, raw dataset into one that is more manageable for processing [33].

In this work, we pursued two main goals and, thus, two types of feature extraction.
First, we wanted to determine how accurately the NBA team efficiency index reflects the
outcome of a game on average. To accomplish that, we used the first set of features, consist-
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ing of thirteen basic game-specific elements listed in Table 1. These features were collected
separately for each game so that we could verify how well the estimated ω′G outcomes
based on the INBA matched the actual ωG outcomes of those games. The same is then
repeated with the reduced set of basic features, obtained by the feature selection based on
the information gain calculated for those features with respect to the estimated outcome
of all games Gi played by both teams from the observed pair (Tm1, Tm2). In this feature
selection process, only the features that had information gain greater than the average
information gain of all the features in the starting set remained in the reduced set. The final
feature set was the union of the reduced feature sets for both teams. However, such a reduc-
tion spoiled the prediction accuracy significantly and turned out to be counterproductive.
This is elaborated in Subsection 5.1 and can be inspected in Table 8. Because of that, we kept
the integral set of basic features without applying dimensionality reduction. The statistical
presentation of those features, collected from the observed NBA games belonging to the
whole training set, are shown in the form of a box plot in Figure 1.

The second purpose of the data preparation was to determine the average team
performance indicators from the training season dataset or the optimal time window and
the league rating characteristics based on the entire training dataset. To do that, the features
from the four sets of basketball game elements or data features were used in this work,
in whole or partly: (1) the set of thirteen basic game elements, listed in Table 1; (2) the set
containing eight derived game elements, given in Table 2; (3) the set of thirteen advanced
game elements, suggested mostly by the NBA analyst and statistician Dean Oliver [34]
presented here, in Table 3; and (4) the set consisting of eight league-wise team game
elements, listed in Table 4. In this approach, we simply considered all the stated features.

Figure 1. Data of the thirteen basic basketball elements from Table 1, presented in the box plot
diagram with the whiskers based on the 1.5 IQR (interquartile range) value. For each presented
feature, the lower (upper) line of the rectangular box presents the first (third) quartile, denoted as
Q1(Q3). Q1 and Q3 define the IQR, rIQ = Q3 −Q1, which is the height of the box. The lighter line
within the box presents the second Q2 quartile, or median. The lower (upper) whisker is 1.5× rIQ

below (above) Q1(Q3) or coincides with the minimal (maximal) value, whichever is greater (smaller).
The values below and above whiskers are denoted by circles: the lowest (highest) of them being the
minimal (maximal) feature value. We did not treat these values as outliers.



Symmetry 2023, 15, 798 9 of 18

Table 3. Thirteen advanced basketball game elements that constitute the advanced feature set.

Game el. / Feature
Abbrev.

Description Calculation Formula

gScsFld, gScsFT Field goal, and free throw success ratio rgScsFld =
NgmdFld
NgatFld

, rgScsFT =
NgmdFT
NgatFT

gEffFld Effective field goals (usually in %) rgEffFld =
2×Ngmd2F+3×Ngmd3F

2×NgatFld
=

NgmdFld+0.5×Ngmd3F
NgatFld

ScsTruSht True shooting success ratio (usually in %). rScsTruSht =
Npts

2×(NgatFld+0.44×NgatFT)

gatFT/gatFld Free throw attempt to field goal attempt
ratio (free throw rate).

rgatFT/gatFld =
NgatFT
NgatFld

rbd/rbs, rbo/rbs Defensive and offensive rebound ratio rrbd/rbs =
Nrbd
Nrbs

, rrbo/rbs =
Nrbo
Nrbs

asts/Pts Ratio of the numbers of assists and total
points

rasts/pts =
Nasts
Npts

blcks/OppGatFld Ratio showing the number of blocks per
one opponent-team field goal attempt

rblcks/OppGatFld = Nblcks
NOppGatFld

poss Number of ball possessions. Nposs = 0.96× (NgatFld + 0.44NgatFT + Ntos − Nrbo)

Offens% Offensive rating (percentage) rOffens% =
Npts
Nposs

/× 100%

tos/poss% Turnover to possessions percentage rtos/poss% = Ntos
Nposs
× 100%

GmScr Hollinger’s Game Score NGmScr = Npts + 0.4NgmdFld − 0.7NgatFld
− 0.4(NgatFT − NgmdFT) + Nfls] + 0.7[Nrbo + Nasts +

Nblcks] + 0.3Nrbd + Nstls + Ntos

Table 4. Eight league-wise basketball game elements that constitute the league-standing feature set.

Game el. / Feature Abbrev. Description Label and Formula

WLR10LstGms Win-loss record, i.e., the ratio (percentage)
of the games won in the last 10 games.

rWLR10LstGms = NgmsWn,10LstGms/10

WLR10LG, HTHG Win-loss record for a home team (HT) in
(the last 10) home games (HG).

rWLR10LG,HTHG = NgmsWn10LG,HTHG/10

WLR10LG, GTGG Win-loss record for a guest team (GT) in
(the last 10) guest games (GG).

rWLR10LG,GTGG = NgmsWn10LG,GTGG/10

WLR10LG, HTMG Win-loss record for a home team (HT) in
(the last 10) mutual games (MG) with an

opponent.

rWLR10LG,HTGG = NgmsWn10,GTGG

WLR, TstPer Win-loss record in the testing period rWLR,TstPer = NgmsWn,TstPer/NgmsTot,TstPer

WnStrk Winning streak = the number of games
won in a row.

NWnStrk ≥ 0

GmsIn10LstDys Number of games in the last 10 days. NGmsIn10LstDys
RstDys Number of the rest days (the whole days

without playing any game) before some
observed game.

NGmsIn10LstDys ≥ 0

In general, the problem of missing or sparse values should be addressed before
performing feature extraction. Since we worked with a relatively small and complete
dataset, with about 6000 rows, this problem did not arise. If the problem does occur,
one should fill in the missing data with generated replacement values, e.g., by using the
k-nearest neighbors method. In a similar manner, we only crudely checked the full sets
of exact data for possible outliers. Since there were no significant deviations in the data
values, we did not perform any outlier elimination. Finally, for an efficient ML model, all
input data must be normalized, by default to the fixed interval of 0 to 1.

3.3. Optimal Time Window

In the proposed prediction model, we introduced the concept of optimal time window
(OTW). It is the time window within the time span of the training data set, Dtr.. The
(training) data from the OTW form the OTW dataset, DOTW, which is a subset of Dtr.
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(DOTW ⊆ Dtr.). Of course, Dtr., and thus also DOTW, are prior to Dtst.. Now we define
DOTW as the subset of a training dataset that gives the highest correlation between the
relative NBA team efficiency index (Equation (6) using the Equation (2) index) and the
relative game score (Equation (7)) for the observed team. The OTW is the time range of
data from DOTW.

In other words, DOTW is the dataset from the past—determined by the OTW—that
best describes the current state of the observed team regarding the achieved relative scores
in the (near) future.

Each team has its own characteristics that can vary in the form of ups and downs,
so it is crucial to find out that window. The OTW will be organized as a time period
with a certain number of games, for which this number is divisible into equal or similar
smaller numbers.

By defining the input feature sets, we will create the necessary conditions for our
model, and by finding the OTW, we will ensure its optimal performance. At each new
iteration of the model—i.e., at each new game of the observed team(s)—we update and
extend the training dataset with a previous testing dataset and simultaneously define the
new testing dataset from the most recent games. In this procedure, we keep the training
and testing datasets mutually disjoint while ensuring the optimal history of system events.

Figure 2 illustrates the method for calculating the OTW based on the training and test-
ing datasets. It is performed separately for each team at the time of prediction. The training
dataset is divided into three subsets, all the potential OTWs: the entire training dataset,
the second half of the training dataset, and the second half of the latter, i.e., the quarter of
the training dataset. The entire training data set spans up to before the first game in the
testing dataset for which the outcome is to be predicted. In each iteration, among the three
data subsets, the optimal one is selected according to the above definition, that is, as the
one that has the best correlation between the relative NBA team efficiency index and the
relative score. Its time span is chosen as the current OTW. In each subsequent iteration,
the previous OTW is used as the reference period for each analyzed team, and two other
periods are defined: one half its size (if possible) and another double its size. When having
N test games in a series, G1, G2, . . . , GN , after finding the OTW for the game G1, this game
is transferred from the testing to the training dataset so that the OTW can be determined
for G2, etc., always keeping its size a constant number of games.

Figure 2. Illustration of the OTWs (Optimal Time Windows, in green) and their relation to the time
intervals of the training data sets (in light blue), for N games of the observed team. For the first game,
all previous (training) games are from the training set only. For the later, Gi games, with i = 2, 3, . . . , N,
besides the games from the training set, the games from the testing set up to Gi−1 form the OTW.
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4. Prediction Model

In this section, we first briefly list the standard supervised learning algorithms that
we have used for the prediction of the basketball game outcomes and present the results
obtained by them (Subsection 4.1). Then, in the next subsection (Subsection 4.2), we outline
our prediction model based on the usage of the predicted team efficiency index introduced
in Subsection 2.5.

4.1. Predictions by the Standard Supervised Learning Algorithms

Here we outline the results of the game outcome predictions obtained by using the
standard supervised learning algorithms, applied to the input data set that consists of the
elements of the basic basketball game statistics (Table 1). The analysis was performed by
using the Weka ML tool ([10], cf. also Subsection 1.2). One to three seasons of the training
set and one to two seasons of the test set were used. For each ML algorithm stated, Table 5
shows the representative results after combining the best-performing training and testing
datasets from several seasons. Further details on the implementation and the results of this
prediction go beyond the scope and volume of this paper.

To briefly conclude, the very low prediction accuracy—not much higher than pure
guessing or flipping a coin—clearly shows that using either of the listed ML classifiers on
the raw basketball statistics did not provide a good model for this purpose. This fact was a
clear motivation to investigate different approaches and search for a better model.

Table 5. The use of standard ML classifiers and their prediction accuracy.

ML Classifier Accuracy

Logistic Regression 56.1%
Naive Bayes 55.8%

Decision trees 53.5%
Multilayer perceptron 56.1%
K-nearest neighbours 57.9%

Random forest 56.3%
LogitBoost 54.5%

Average 55.8%

4.2. The Proposed Prediction Model

Our prediction model uses all three different feature sets described in Subsection 3.2,
summarized in Tables 1–4. The prediction discrimination function in this model re-
lies on the idea of the predicted team efficiency index and the quantities derived from
it in Subsections 2.3–2.6. Mathematically speaking, our “measure” on the space of n-
dimensional vectors, whose coordinates correspond to the observed team features of the
basketball game, will be a simple linear combination of those coordinate values for each
point (game) in that space, calculated as the NBA team efficiency index (Equation (5) with
the NBA player efficiency index, from Equation (2)). Furthermore, since our goal is to
predict the game outcomes, we will adapt the team efficiency index to not only record the
achievements of the observed team but to additionally reward whenever it outperforms its
rival in chosen game elements.

With the above idea in mind, we extend the basic team efficiency index—calculated,
as in Equation (5), from only the contributions of the team players—with the part that
compares the performances of the observed team to its opponent team in a game, for a set of
chosen features. That is, in a game G, played by the pair of teams (Tm1, Tm2), we introduce
the extended IEXT,Gm,Tm1→Tm2 team efficiency index as follows:

IEXT, GTm1→Tm2
= IBASIC, GTm1

+ ICMPR, GTm1→Tm2
. (13a)
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IBASIC,Gm,Tm1 can be calculated from the set of basic features (Table 1), treating them
separately or combining them in some kind of efficiency index. In our case, we have
normally used the latter choice and used the NBA team efficiency index, so that

IBASIC, GTm1
= INBA, GTm1

. (13b)

The comparative part, ICMPR,Gm,Tm1→Tm2 , is increased whenever Tm1 outperforms Tm2
in a positive game feature, and is decreased whenever it “outperforms”, i.e., has a greater
number than the opponent, for a negative feature. These changes are defined by expressions
in the last column of Table 6. There is just one negative feature there: GmsIn10LstDys,
in the league standing set, and only for this feature, ICMPR is decremented. If both teams
have equal contributions, ICMPR does not change.

Summarily, the preponderance of the observed team to its opponent is checked for
the following: (i) two basic game elements, from Table 1, (ii) two derived game elements,
from Table 2, (iii) all thirteen advanced game elements, from Table 3, and (iv) all eight
league-wise game elements, from Table 4. A careful reader will note that the features from
basic (asts, blcks) and derived (pts, rbs) sets of elements all appear as the corresponding
numbers (Nasts, Nasts, Npts, Nrbs) in the NBA team efficiency index (Equations (2) and (5)),
which constitutes the IBASIC part of the extended team efficiency index.

The overall choice of the features that are compared in ICMPR, is based on many probes
made in this and in our previous works. It is also—similarly to the other steps in this
model—based on the basketball experience and expertise of the first author of this paper.

After the above definitions, we can calculate the predicted extended team efficiency index
by inserting the above IEXT index into Equation (10a), wherefrom we obtain:

ÎEXT, Gn+k,Tm1
=

1
n

n

∑
i=1

IEXT, Gi,Tm1→Tmj
, k ≥ 1,

G ∈ G, Tm1, Tmj ∈ T m , Tmj 6= Tm1.

(14)

As stated in Subsection 2.5, most often we choose k = 1, to calculate the score of the
very next game of the observed Tm = Tm1 team against its opponent, which we assume
to be Tm2. For this team, we also calculate ÎEXT,Gn+1,Tm2 following Equation (14).

Table 6. Calculation of ICMPR for the set of selected basketball game elements (features). The last
column specifies how ICMPR changes when, in a certain game, the observed team outperforms its
rival in each feature (cf. Tables 1–4). In the case of a tie, ICMPR stays unchanged. ‘−||−’ = the same
as above.

Feature Set (Type) Feature Abbrev. Change of ICMPR

Basic (+) asts, blcks ICMPR ← ICMPR + 1
Derived (+) pts, rbs –||–

Advanced (+) gScsFld, gScsFT, gEffFld ICMPR ← ICMPR + 1
ScsTruSht, gatFT/gatFld –||–

rbd/rbs, rbo/rbs –||–
asts/Pts, blcks/OppGatFld –||–

poss –||–
Offens%, tos/poss% –||–

GmScr –||–

League standing (+) WLR10LstGms ICMPR ← ICMPR + 1
WLR10LG, HTMG –||–
WLR10LG, HTHG –||–

RstDys –||–
WLR, TstPer –||–

WnStrk ICMPR ← ICMPR + NWnStrk
League standing (−) GmsIn10LstDys ICMPR ← ICMPR − NGmsIn10LstDys
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Having calculated the above indices for both teams, we can evaluate their predicted
relative extended team efficiency index, îEXT,Gn+1,Tm1/Tm2 , according to Equation (11), and then
predict the outcome of their Gn+1 game by using the following, specialized version of
Equation (12):

ω̂G(Tm1,Tm2)
=

{
+1, îEXT,Gn+1,Tm1/Tm2

≥ 1, Tm1 wins;

−1, îEXT,Gn+1,Tm1/Tm2
< 1, Tm2 wins.

(15)

Now, from the ÎEXT,Gn+k indices for both teams in the game Gn+k, one can determine
the probabilities of winning for each team from the pair (Tm1, Tm2). For Tm1 (the home
team), this probability is:

Pr(Tm1 wins in Gn+k, (Tm1,Tm2)
) = Pr(îEXT, Gn+1 ≥ 1)

=
ÎEXT,Gn+k,Tm1

ÎEXT,Gn+k,Tm1
+ ÎEXT,Gn+k,Tm2

. (16)

For the rival (guest) team, the probability is the opposite. We did not analyze these
probabilities here, leaving this for some possible future work.

When calculating the above indices, the IBASIC part was determined from data in
the OTW. The same is valid for the ICMPR part with the basic, derived, and advanced
features, while the remaining contributions, of the league-standing features, were always
determined from the whole training set.

To justify favoring the home team in Equations (12) and (15), we have analyzed the
win/lose record of the home teams in the observed seasons. Table 7 shows that home teams
win in the prevailing number of games. This conclusion can also be applied to the special
case of the games in which both teams have the same predicted extended team efficiency
indices, i.e., with îEXT,Gn+1,Tm1/Tm2 = 1. As expected, the number of such games is relatively
small—in our case, less than 0.3%— so we observed the win/lose record for all observed
games. Alternatively, this could also be performed for only the games with equalized ÎEXT.

Table 7. Home team win/lose record for the five analyzed seasons.

Season (s) Games Won / Games Lost Percentage of Games Won

2013/2014 764/555 57.9%
2014/2015 755/556 57.6%
2015/2016 782/534 59.4%
2016/2017 763/546 58.3%
2017/2018 770/542 58.7%

All five seasons 3834/2733 58.4%

5. Results

After describing our prediction model in the previous subsection (Subsection 4.2), here
we first confirm the relevance of using the NBA team efficiency index as the foundation of
that model and then present its accuracy in predicting the NBA game outcomes.

5.1. Estimating the Relevance of the NBA Team Efficiency Index

When commenting on the possible feature selection in Subsection 3.2, we have stated
that by analyzing data corresponding to the basic feature set, one can calculate the team
IGTm indices for all the team pairs in the observed games. From them, their relative iGTm1/Tm2
or iGTm2/Tm1

team efficiency indices (Equation (6)) and the estimated ω′G outcomes follow
(Equation (9)). The latter can be compared to the actual ωG game outcomes in the following
manner (cf. Equation (8)):
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ω′G(Tm1,Tm2)

{
=

6=

}
ωG(Tm1,Tm2)

, (17)

If the relation between the two outcmes is equality.
Table 8 gives the percentages of accurately estimated game outcomes in the observed

seasons, determined by the estimated ω′G(INBA) win function (Equation (9)) and the
NBA relative team efficiency index (Equation (6)) based on the NBA team efficiency index
(Equations (5) and (2), respectively). In the third column, there are accuracies of these
estimations obtained by using the whole set of basic features (Table 1). One can see that
the INBA-based estimated win function gives correct results in about 92% of the analyzed
cases, which is similar to the accuracy of 92.3% found in [35]. Taking into account the
amount of analyzed data, this justifies the claim that the NBA team efficiency index is a
very relevant indicator of the performance of basketball teams. In the fourth column of
Table 8, the same accuracies are given for the reduced basic feature set, obtained after the
feature selection described in Subsection 3.2. Obviously, the reduction of the feature set
led to the “truncated” NBA team efficiency index, whose estimating ability significantly
decreased compared to the complete version of the index.

Table 8. Accuracy of the estimated ω′G(INBA) win function based on the ratio of the INBA indices
of the opponent teams obtained from data containing: (i) the whole basic feature set (the results
averaged for the stated seasons) and (ii) only the features remained after the feature selection based
on information gain. The basketball seasons are marked by their first years; e.g., 2013–2015 represents
the three seasons: 2013/2014, 2014/2015, 2015/2016.

Dataset Accuracy of INBA-Based Estimated win Funct.

Training (Dtr.) Testing (Dtst.)
(i) Whole Basic ftr.

Set
(ii) Selctd. Featrs.

Only

2013–2015 2016–2017
92.0%

79.5%
2014–2015 2016–2017 79.0%

2015 2016–2017 78.0%

2013–2016 2017

91.8%

78.0%
2014–2016 2017 80.6%
2015–2016 2017 79.1%

2016 2017 78.4%

Regarding the estimated ω′G win function based on the NBA team efficiency index, one
should notice that if the NBA index consisted of only the points scored (Npts, Equation (1a)),
this percentage would increase to 100%. However, the applied feature selection process
never resulted in exactly this case. On the other hand, the idea of an efficiency index is
to include additional game elements that should also make a significant contribution to
the performance of the team as a whole and to the results of the games it plays. If these
additional contributions are balanced and correlate well with a team’s effective performance,
then the correlation between the relative indices (iG) and the relative scores (rG) will
approach one. Moreover, our other work dealing with the construction of a more general
player efficiency index shows that this correlation is also very high for the NBA efficiency
index despite its relative simplicity. We have in preparation a paper with an analysis of
the correlation of our CPE index (cf. the comment in Subsection 2.3) and other basketball
player efficiency indices—including the NBA one—to the relative game score. Of course, it
is the very simplicity of calculating this index that has made it so popular and that it led the
NBA to proclaim it the official metric for player performance evaluation for over 30 years.
All this together was the reason why we chose it to be the basis of our team efficiency index.

5.2. Results of the Game Outcome Predictions

By using our prediction model from Subsection 4.2, summarized in Equation (15), we
have calculated outcomes of more than 2500 NBA games from the observed basketball
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seasons. This is done for all the games from the testing seasons given in Tables 8 and 9.
From the numbers of games given in Table 7, one can find that there were 1309 (1312) games
in the testing season 2016/2017 (2017/2018), which gives the total sum of 2621 games.

The accuracies of those predictions are summarized in Table 9 for the two types of
training data: (A) data taken from the specified (sub)sets of the training set (Dtr.), and (B)
data taken from the (sub)sets of the OTW dataset (DOTW).

For both cases, the training (sub-)datasets were organized in three ways, as described
in the table caption.

As it was already explained in Subsection 3.3, the basic training (sub-)datasets were
continuously updated by the games from the testing set for which the outcomes were
already predicted. For example, for the sub-dataset Dtr.–lst. 10 gms. (the first subcolumn in
case A), when the prediction was made for the first game from the testing Dtr.–lst. 10 gms.
dataset, all previous ten games were taken from the starting, or initial, training dataset.
After the prediction is calculated for this game, it is included in the now appended training
dataset, prolonged for one game. After that, the new prediction is calculated for the second
game from the testing dataset, etc. The analogous procedure is applied to the other two
versions of Dtr. (sub)sets of case A. In the B case, the OTW’s dataset is updated by the
already observed game, but the oldest game is removed from it so that the cardinality of
DOTW stays invariant (cf. Subsection 3.3).

We have also considered the possibility of using data from the (sub-)datasets for only
the previous games of the observed team played against the opponent team in the game
for which the prediction is made. If there are not enough such games, one could combine
the statistics of those games with the statistics of all other games of the observed team. See
also Equation (10b) and the discussion at the end of Subsection 2.5.

From the presented results, we see that the overall accuracy of 66%± 1.5% is signifi-
cantly better than the accuracies that we obtained by using the (separate) game element data
and the standard ML methods (Subsection 4.1, Table 5). Furthermore, method B—which
uses the data from the OTW only—is overall slightly better, ≈3%, than method A, which
uses the whole training set. Analyzing that difference by separate columns, DOTW–lst. 10 gms.
is better than Dtr.–lst. 10 gms., but not significantly. The remaining two columns in B have
their mean values &2std. dev greater than those of the corresponding columns in A,
coming to the edge of significant improvement.

Table 9. Accuracies of the game outcome predictions based on the prediction model from Sub-
section 4.2, using the subsets from: (A) training dataset (Dtr. – X) and (B) optimal time window
(DOTW. – X), each with three options of X: (i) lst. 10 gms. = last 10 games for teams Tm1 and Tm2

before the observed game Gi,(Tm1,Tm2), (ii) 2 nd half = the second half of the given dataset, (iii) whole
= the whole dataset. The games from the testing set for which the prediction is tested move to the
training set. The testing is performed for all games in the observed seasons.

Initial Dataset Seasons Prediction Accuracy (Overall: 65.9%± 3.0%)
Training Testing (A) With Training Dataset (64.5%± 1.5%) (B) With Dataset from OTW (67.4%± 3.6%)

(Dtr.) (Dtst.) Dtr.–lst. 10 gms. Dtr.–2nd half Dtr.–whole DOTW–lst. 10 gms.DOTW–2nd half DOTW–whole

2013–2015 2016–2017 63.7% 65.1% 64.7% 63.8% 67.3% 67.6%
2014–2015 2016–2017 63.6% 66.1% 65.7% 63.6% 67.4% 68.0%

2015 2016–2017 63.8% 65.4% 67.2% 64.1% 66.3% 70.0%
2013–2016 2017 62.8% 62.8% 62.8% 63.5% 65.2% 65.2%
2014–2016 2017 63.1% 63.8% 63.8% 63.7% 68.7% 68.4%
2015–2016 2017 63.0% 63.9% 64.5% 64.4% 70.2% 70.9%

2016 2017 63.9% 66.3% 68.3% 65.9% 72.4% 77.9%

By columns: 63.4%± 0.4% 64.8%± 1.3% 65.3%± 1.9% 64.1%± 0.8% 68.2%± 2.5% 69.7%± 4.0%

However, their last two rows, for the training datasets from the seasons 2015/2016,
2016/2017, and 2016/2107, and testing datasets from the seasons 2017/2018 in both rows,
show the best individual prediction accuracies, >70%. Among them, the absolute best is
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the accuracy of 77.9%, obtained by using datasets with a single training (2016/2017) and a
single testing (2017/2018) season. This value is significantly higher than other accuracies in
the same column, which all correspond to the larger training datasets from either two or
three earlier basketball seasons. Though this is a plausible result, in agreement with our
previous work [32] discussed in Subsection 3.1, it would be good to confirm it with the
analysis of additional data.

When analyzing the results of differently organized datasets, we noticed that—as
could be expected—the prediction accuracy for a future game Gn+k,(Tm1,Tm2)

of a pair of
teams rises when having a training dataset with more of their earlier mutual games This
was already commented on in the previous paragraph of this section. On the other hand,
the number of these games is often rather small, and these games are often from the far
past. We leave further discussion of this matter for some other possible paper.

6. Conclusions

In applying ML to the prediction of team sports results, it is important to fully com-
prehend the complexity of the system being analyzed and—on the other hand–to find out
the right indicators that will successfully correlate the myriad of collected statistical data to
the future performance of the observed teams. The task is further complicated by the fact
that many basketball games end up with a difference of only a few points out of around
one hundred points scored by each team. Even more, team players and sportspersons in
general are not machines. Knowing their performance yesterday still does not guarantee
that they will perform equally tomorrow. This means that the outcomes of sports events
depend not only on the measurable but also on many unmeasurable factors. The latter
ones are to be considered by human experts who will make (human) decisions based on
them. On the other hand, in an ML approach like this one, one should insist on measurable
factors to obtain as objective predictions as possible. Still, to be successful in that, the use
of heuristics is inevitable. Finally, if such a prognosis is considerably better than pure
guessing, it should help humans improve and strengthen their decisions.

In this work, we have shown that the abundant basketball statistics based on such mea-
surable factors provide sufficient ground for a quantitative estimation of the performance
of a basketball team in the past and a prediction of its performance in the (near) future.
The introduced notion of the general team efficiency index, based on some player efficiency
index—in our case the standard NBA one—proved to be a good foundation for our model
(Section 2). The set of basic game elements from which it is calculated represents the set of
basic features of our ML model. In addition, we have introduced the relative version of this
index, as the ratio of the team efficiency indices of the opponent teams. On the basis of this
ratio, we formalized the estimated win function. In 92% of the investigated games during
the five observed NBA seasons, this function based on the NBA team efficiency index gives
correct outcomes of the games, proving that this index is a relevant indicator in predicting
the game outcomes. If the feature set was reduced, making the NBA efficiency index
incomplete, the accuracy of the estimated win function significantly decreased, showing
that the initial feature set should be kept integral (Subsections 3.2 and 5.1).

In our prediction model, besides the NBA team efficiency index (INBA,GTm1
), which

is calculated from the basic feature contributions of only the observed team (Tm1), we
have also added the comparing part of the index (ICMPR,GTm1→Tm2

), which rewards the
observed team with extra points whenever it outperforms its rival (Tm2) in a given game,
in any of the selected game elements (features) outlined in Table 6. That is, the second
part accounts not for the absolute values of the features—like the first part does—but
accounts for the superiority of the observed team over the opponent team. In that sense, it
brings both a qualitative novelty and a kind of asymmetry into the proposed model. We
have chosen those features and determined the rewarding points heuristically, relying on
our long-standing experience in analyzing basketball statistics and the results obtained
by applying the trial-and-error method. By adding the two components, we formed the
extended team efficiency index (IEXT,GTm1→Tm2

, Equation (13)). From it, its predicted version
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follows ( ÎEXT,Gn+k,Tm1
, Equation (14)). By calculating this also for the opponent team, we

can calculate the relative version of this index and determine the predicted game score
(ω̂G(Tm1,Tm2)

, Equation (15)).
The overall accuracy of the predicted outcomes of 66% is satisfactory. It is significantly

better than the accuracy obtained by using the basic feature set and the standard ML
methods (cf. Tables 5 and 9). The usage of the optimal time window (OTW) contributed
slightly to the accuracies of the predictions, but on average, not much more than a single or
double standard deviation of the obtained results. The exception and, at the same time, our
best result, with prediction accuracy of ≈78%, is achieved with only one training and one
testing season and using the data from the whole OTW.

Comparing these results to those achieved by other authors (Subsection 1.2), we
see that they are satisfactory and that their accuracy competes successfully against the
accuracies of the top results of others, except for a few of the best of them.

Regarding the generality of this work, the principle of the predicting model described
here and applied to the NBA league teams and games is readily applicable to other bas-
ketball leagues, too. Namely, the primary reason for making the predictions for the NBA
game outcomes was the abundance and availability of the statistics for this world’s largest
and most famous league.

Although numerous variations of the predicting model and data organization were
already investigated in this work, there are still many possibilities for improvement. One of
them is to investigate if OTW could be calculated better to contribute more to the prediction
accuracy. The other is to explore what past games should be taken into consideration
and how to treat scarce data in some cases (e.g., if considering only the previous mutual
games of the observed team and its opponent in the given future game). Furthermore,
there is also room for improvement in finding other and more appropriate player efficiency
indices and in adjusting their element coefficients, as well as in finding the optimal re-
warding points in the comparing part of the introduced extensive team efficiency index.
Such qualitative and quantitative upgrades of the proposed data-driven predicting model
should contribute to its enhanced accuracy.
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