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Abstract: We studied a superbounce scenario in a set up of the Brans–Dicke (BD) theory. The BD
parameter was considered to be time-dependent and was assumed to evolve with the Brans–Dicke
scalar field. In the superbounce scenario, the model bounced at an epoch corresponding to a Big
Crunch provided the ekpyrotic phase continued until that time. Within the given superbounce
scenario, we investigated the evolution of the BD parameter for different equations of state. We chose
an axially symmetric metric that has an axial symmetry along the x-axis. The metric was assumed to
incorporate an anisotropic expansion effect. The effect of asymmetric expansion and the anisotropic
parameter on the evolving and non-evolving parts of the BD parameter was investigated.

Keywords: generalized Brans–Dicke theory; superbounce scenario; BD parameter

1. Introduction

The standard cosmological model is quite successful in describing the evolution
of the Universe at different phases of time. The standard cosmology provides useful
information at the early evolutionary epochs in particular. However, it suffers from issues
such as the flatness, horizon, and initial singularity problems. The inflationary model,
described through a scalar field, solved some of these problems, including the flatness and
cosmological horizon problems, and provided a causal theory of structure formation [1,2].
However, the long-standing issue of initial singularity remains unsolved.

In modern cosmology, there remains a fundamental question: whether our Universe
had a beginning, perhaps in the form of an initial singularity leading to a breakdown of
the space–time description, or whether the presently expanding phase of the Universe was
preceded by a contraction phase. This may also be conceived of as the Universe undergoing
phases of alternate contraction and expansion, suggesting a cyclic cosmology. The proposal
of matter bounce scenarios came as a possible solution to the initial singularity issue [3–5].
Novello and Perez Bergliaffa emphasized the significance of a singularity-free Universe [6].
As possible alternatives to the standard cosmology, Battefeld et al. discussed some bouncing
cosmological models [7]. The consequences of initial singularity issues and matter bounce
scenarios as possible explanations were reviewed in [8,9]. Within the purview of scalar
field cosmology, the Universe starts to contract with an increase in the kinetic energy of the
scalar field. As it dominates, the Universe collapses, leading to a classical singular event.
This situation may be avoided if an expansion occurs prior to the sudden collapse. This is
what is assumed in a bouncing scenario, wherein the Universe undergoes a contraction
phase primarily dominated by its matter content, followed by a non-singular bounce.

In a flat Universe, the cosmic matter content needs to violate the null energy condition
(NEC) in order to experience a bouncing phase. In other words, the sum of pressure p
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and energy density ρ has to be negative during the matter bounce, i.e., ρ + p < 0. With a
cosmic fluid violating the NEC, it is possible for the Universe to switch from contraction to
expansion, avoiding the singularity at the bouncing point. However, currently, no known
matter forms violate the NEC, which suggests the presence of exotic matter forms. In
general relativity theory (GR), singularity is unavoidable, but one may go beyond GR with
the assumption of a new type of matter field that violates the key energy condition, raising
obvious questions about the occurrence of non-singular bounces in nature. The violation
of the null energy condition is seen in generalized Galileon theories, where non-singular
cosmology may be witnessed [10–12].

An interesting aspect of non-singular bouncing cosmologies is that, in most cases, the
models are unstable. However, it is possible to construct a stable bouncing cosmology
beyond the Horndeski theory and effective field theory [13–18]. In recent times, many
bouncing cosmological models have been presented either in modified gravity theories
or scalar-field-mediated gravity theories. Some bouncing cosmological models have been
presented by Bamba et al. [19], Chakraborty [20], and Amani [21] in the f (R) theory of
gravity. Mishra et al. [22], Tripathy et al. [23–26], and Singh et al. [27] constructed some
stable bouncing models in the f (R, T) theory. Agrawal et al. investigated the prospects of
some bouncing models in the f (Q, T) gravity theory [28]. The telleparallel f (T) gravity
theory provides a model that avoids the phenomenal Big Bang singularity and achieves a
non-singular bouncing scenario [29]. In the setup of the f (T, TG) gravity theory, de la Cruz-
Dombriz et al. reconstructed several bouncing scenarios [30]. Within general relativistic
hydrodynamics, Saikh et al. obtained a class of bouncing cosmological models [31]. Tripathy
et al. discussed the possibility of a bouncing scenario for an anisotropic and homogeneous
Universe in the generalized Brans–Dicke theory [32]. The BD theory has been successful in
dealing with many cosmological and astrophysical issues. Within the BD theory, Maurya
et al. presented a charged anisotropic strange star model and showed that an increase in
the BD parameter resulted in an enhancement in the superposition of the electric and scalar
fields [33]. Zhang et al. obtained some bounds on the BD theory using the gravitational
waves from inspiraling compact binaries [34]. Tirandri and Saaidi studied anisotropic
inflation within BD gravity [35]. BD theory may be conceived as a unified model for
dark matter and dark energy [36]. Durk and Clifton constructed discrete cosmological
models within the BD theory [37]. The investigation of bouncing cosmologies has become
interesting in the context of recent research trends. Additionally, bouncing cosmology is
believed to emerge naturally in many early Universe scenarios [38,39].

In the present work, we considered a generalized Brans–Dicke (GBD) theory with a
dynamically varying BD parameter and investigated a superbounce scenario. Assuming
that a superbounce scenario occurs for a violation of the NEC, the time evolution of the
dynamical BD parameter was studied. The article is organized as follows. In Section 2, for
a homogeneous and anisotropic LRS Bianchi I (LRSBI) metric, the basic field equations for
the GBD theory are obtained. In Section 3, a superbounce scenario is assumed, wherein
the bounce occurs at an epoch corresponding to a Big Crunch. For different equations of
state (EoS) between pressure and energy density, we investigate the evolution of the BD
parameter in Section 4. We summarize our results in Section 5. The units chosen for this
work are: 8πG0 = c = 1, with c being the light speed in a vacuum and G0 representing the
Newtonian gravitational constant at the present time.

2. Basic Equations

In the Jordan frame, the action of the generalized Brans–Dicke theory with an evolving
BD parameter ω(ϕ) is given by [40,41]:

S =
∫

d4x
√
−g
[

ϕR− ω(ϕ)

ϕ
ϕ,µ ϕ,µ + Lm

]
. (1)

Here, R is the Ricci scalar, and Lm denotes the matter Lagrangian. In string theory,
supergravity theory, and Kaluza–Klein theory, the GBD theory naturally involves a dy-
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namical BD parameter [42,43]. The literature includes several interesting investigations
on different cosmological and astrophysical issues in GBD theory [32,44–49]. Variations in
action in the GBD theory lead to the following field equations [50,51]:

Gµν −
ω(ϕ)

ϕ2

[
ϕ,µ ϕ,ν −

1
2

gµν ϕ,α ϕ,α
]
− 1

ϕ

[
ϕ,µ;ν − gµν�ϕ

]
=

Tµν

ϕ
. (2)

The Klein–Gordon equation illustrates the evolution of the BD scalar field ϕ and is
written as follows:

�φ =
T

2ω(ϕ) + 3
−

∂ω(ϕ)
∂ϕ ϕ,µ ϕ,µ

2ω(ϕ) + 3
, (3)

where T is the trace of the energy–momentum tensor Tµν = (ρ + p)uµuν + pgµν.
For an LRSBI Universe [44]

ds2 = −dt2 + a2
1dx2 + a2

2(dy2 + dz2), (4)

the GBD field equations become [32,44]

3(2− ξ)ξH2 − ω(ϕ)

2

(
ϕ̇

ϕ

)2
+ 3H

(
ϕ̇

ϕ

)
=

ρ

ϕ
, (5)

2ξḢ + 3ξ2H2 +
ω(ϕ)

2

(
ϕ̇

ϕ

)2
+ 2ξH

(
ϕ̇

ϕ

)
+

ϕ̈

ϕ
= − p

ϕ
, (6)

(3− ξ)Ḣ + 3(ξ2 − 3ξ + 3)H2 +
ω(ϕ)

2

(
ϕ̇

ϕ

)2
+ (3− ξ)H

(
ϕ̇

ϕ

)
+

ϕ̈

ϕ
= − p

ϕ
. (7)

Here, a1 and a2 are the time-dependent directional scale factors. We define ξ = 3
k+2 as

an anisotropic parameter, where k fixes the anisotropic relationship between the directional
expansion rates: ȧ1

a1
= k ȧ2

a2
. The Hubble parameter for the LRSBI Universe is defined as

H = 1
3

(
ȧ1
a1
+ 2 ȧ2

a2

)
. Within this assumption, the Hubble rate becomes H = 1

ξ
ȧ2
a2

. One may
note that, for a constant scalar field ϕ and ξ = 1, the above field equations reduce to the
usual GR field equations with isotropic behavior.

The Klein–Gordon wave equation becomes

ϕ̈

ϕ
+ 3H

ϕ̇

ϕ
=

ρ− 3p
2ω(ϕ) + 3

−
∂ω(ϕ)

∂ϕ ϕ̇2

2ω(ϕ) + 3
. (8)

From Equations (6) and (7), it may be reasoned that

φ̇

φ
+

Ḣ + 3H2

H
= 0, (9)

which may be expressed as
ϕ̇

ϕ
+ (2− q)H = 0, (10)

where q = −1− Ḣ
H2 is the deceleration parameter. Equation (10) ensures a power law

relation between the scalar field and the scale factor a for a constant deceleration parameter.

3. Superbounce Scenario

We considered a superbounce scenario within the GBD formalism evolving through
the following scale factor [52,53]:

a(t) '
(

ts − t
t0

)2/n2

, (11)
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where n >
√

6 is a constant parameter; t0 > 0 is an arbitrary time; and ts is the time frame
in which the model bounces, and it may correspond to the time of the Big Crunch if the
ekpyrotic phase were to continue until that time. One may note that the scale factor has a
unitary value at t = ts + t0.

The Hubble parameter for this scenario may be expressed as

H = − 2
n2 (ts − t)−1. (12)

The variation in the scale factor a(t) for the superbounce scenario is shown in Figure 1.
We considered the parameter space of the scale factor to be ts = 1, t0 = 1, and n2 = 6.0491.
The scale factor a(t) was observed to decrease from a higher positive value up to t = 1; the
bounce occurred at t = 1; and, beyond the epoch t = 1, the scale factor started increasing
from a lower positive value to a higher positive value. As is apparent from the figure, the
decrement in the scale factor prior to the bounce and the increment in the scale factor after
the bounce were almost linear for the parameter space used in the present work. In Figure 2,
the Hubble parameter is shown for the given superbounce scenario. The Hubble parameter
had a singularity at t = ts and, while it became positive for t > ts, it was negative for the
time zone t < ts.

We could obtain the slope and curvature of the Hubble parameter as

Ḣ = − 2
n2 (ts − t)−2 = −n2

2
H2, (13)

Ḧ = − 4
n2 (ts − t)−3 =

n4

2
H3. (14)

One should note that the superbounce scenario included a singular Hubble parameter
at the bounce that reversed the sign in the pre- and post-bounce epoch. Additionally, it
satisfied the bouncing conditions.

- 3 - 2 - 1 0 1 2 3

0

1

2

3

a

t
Figure 1. The scale factor in the superbounce scenario. We considered the parameter space for the
scale factor to be ts = 1, t0 = 1, and n2 = 6.0491.
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- 3 - 2 - 1 0 1 2 3
- 2 0

- 1 0

0

1 0

2 0

H

t
Figure 2. Hubble parameter in the superbounce scenario.

For the given superbounce scenario, the deceleration parameter becomes

q =
n2

2
− 1, (15)

which is a constant quantity that depends only on the parameter n.
With this value of q, Equation (10) reduces to

ϕ̇

ϕ
=

(
n2

2
− 3
)

H, (16)

which on integration gives the BD scalar field

ϕ = ϕ0

(
H
H0

) 6
n2−1

, (17)

where ϕ0 and H0 are the present epoch values of the scalar field and Hubble parameter,
respectively.

Since a
a0

=

(
H
H0

)− 2
n2

, the BD scalar field may be expressed as

ϕ

ϕ0
=

(
a
a0

)( n2
2 −3)

, (18)

where a0 represents the present epoch value of the scale factor. As usual, the scalar field
depends on the scalar factor, increasing correspondingly. The time variation of the Brans–
Dicke scalar field is shown in Figure 3. In the pre-bounce epoch, the BD scalar field decayed
slowly with time up to the bounce. At the bounce, t = 1, the BD scalar field suddenly
presented a sharp dip and then bounced with the growth in cosmic time.
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- 3 - 2 - 1 0 1 2 3
0 . 6

0 . 8

1 . 0

1 . 2

φ 
/φ

0

t
Figure 3. Evolution of the Brans–Dicke scalar field in the superbounce scenario.

4. Evolution of the Brans–Dicke Parameter

The dynamic aspect of the BD parameter as function of the BD scalar field may be
obtained from the GBD field Equations (5) and (6) as follows:

ω(ϕ) =

(
ϕ̇

ϕ

)−2[
−ρ + p

ϕ
− ϕ̈

ϕ
+ (3− 2ξ)H

ϕ̇

ϕ
− 2ξḢ + 6(1− ξ)ξH2

]
. (19)

However, from Equations (5)–(7), we obtain

ω(ϕ) =

(
ϕ̇

ϕ

)−2[
−ρ + p

ϕ
− ϕ̈

ϕ
+ ξH

ϕ̇

ϕ
− (3− ξ)Ḣ + 3(5ξ − 2ξ2 − 3)ξH2

]
. (20)

Obviously, the above two expressions (19) and (20) are consistent for ξ = 1. However,
for ξ 6= 1, we could infer from these two expressions a consistency condition for the BD
scalar field, as given in (9).

For a given superbounce scenario and a given cosmic anisotropy, the evolution of
the BD parameter could be obtained once we knew the equation of state (EoS) parameter,
defined as the ratio of the pressure to energy density, i.e., ωD = p

ρ . In this work, two
different cases of the EoS parameter were chosen. In the first case, we considered a constant
EoS parameter, and in the second case, a unified dark fluid simulating a dynamic EoS
parameter was chosen.

We considered ϕ̇
ϕ =

(
n2

2 − 3
)

H, which on differentiation provided

ϕ̈

ϕ
= −3

2
(n2 − 6)H2. (21)

Using Equations (16) and (21), the BD parameter could be reduced to

ω(ϕ) = ω1(ϕ) + ω0, (22)
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where

ω0 =
12

(n2 − 3)2

[(
n2 − 6

)
+ 2(2− ξ)ξ

]
, (23)

is the non-evolving part of ω(ϕ), which depends on the anisotropic parameter ξ and the
parameter n.

ω1(ϕ) = −
(

ρ + p
ϕ

)
1(

n2

2 − 3
)2

H2
(24)

represents the evolutionary aspect of ω(ϕ) and could be expressed in terms of the EoS
parameter ωD as

ω1(ϕ) = − (1 + ωD)

ϕ

ρ(
n2

2 − 3
)2

H2
. (25)

The above expression implies that the evolutionary aspect of the BD parameter de-
pends on the evolutionary aspect of the EoS parameter, besides being a function of the
scalar field.

For the given superbounce scenario, one may note that the BD parameter splits into
two parts. There is a non-evolving part ω0 that only depends on the choice of the anisotropic
parameter ξ and is independent of the choice of the scale factor parameters ts, t0. The other
part of the BD parameter, i.e., ω1(ϕ), depends on the equation of state p = p(ρ) and the
evolutionary behavior of the BD scalar field derived from the superbounce scenario. ω1(ϕ)
is the evolving part of the BD parameter ω(ϕ) and decides its evolution. In the following,
we considered some specific equations of state p = p(ρ) and investigated the evolution of
the BD parameter (focusing on ω1(ϕ)) within the given superbounce scenario.

4.1. Case 1

Let us now consider the EoS as

p = ωDρ, (26)

with the EoS parameter ωD being a constant.
The energy–momentum conservation equation is given by ρ̇ + 3H(ρ + p) = 0, which

reduces to
ρ̇

ρ
= −3H(1 + ωD). (27)

Equation (27) could be integrated to obtain the energy density as

ρ

ρ0
=

(
a
a0

)−3(1+ωD)

, (28)

where ρ0 is the energy density at the present epoch. For a given superbounce scenario,

a
a0

=
(

H0
H

)2/n2

and ϕ
ϕ0

=
(

H
H0

) 5
n2 . Consequently, the energy density becomes

ρ = ρ0

(
H0

H

)− 6(1+ωD)

n2
, (29)

so that

ρ + p = (1 + ωD)ρ = (1 + ωD)ρ0

(
H0

H

)− 6(1+ωD)

n2
. (30)

The evolving part of the BD parameter now becomes
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ω1 =
ρ0

ϕ0
(1 + ωD)

(
H
H0

) 6(1+ωD)+5
n2

. (31)

It is obvious that the evolution of ω1 and ω for a given anisotropic parameter k depends
on the evolution of the Hubble parameter. In the pre-bounce period, the Hubble parameter
is a negative quantity, and it decreases further with an increase in cosmic time up until the
bounce occurs, where the Hubble parameter has a large value. However, after the bounce,
the Hubble parameter becomes a positive quantity. We may assume the the EoS parameter
ωD is a negative quantity with values close to −1. Such an assumption is in accordance
with the observation of the late cosmic acceleration phenomena. Some recent estimates for
ωD are ωD < −1 [54], ωD = −1.073+0.090

−0.089 [55], and ωD = −1.084± 0.063 [55]. Constraints
from the Supernova cosmology project provided ωD = −1.035+0.055

−0.059 [56], from Planck 2018
results ωD = −1.03± 0.03 [57], and from Pantheon data ωD = −1.006± 0.04 [58]. In view
of these estimates, the behavior of ω1 could be assessed. In the pre-bounce epochs, the
magnitude of ω1 decreases with time.

4.1.1. Case I

If we considered the ΛCDM model envisaging an accelerating Universe with a cosmo-
logical constant, the EoS could be set as

p = −ρ, (32)

so that ρ + p = 0 and, consequently, the evolving part of the BD parameter ω1(ϕ) vanishes.
The BD parameter for this cosmological constant case turned out to be non-evolving with a
value of ω = ω0. However, the BD parameter depends on the anisotropic parameter ξ. In
fact, in this case, the NEC is not violated, and we should not expect a superbounce scenario.
In principle, for this case, a cosmic bounce cannot occur, as the curvatures may build up to
a large extent to initiate the gravitational collapse.

4.1.2. Case II

For a Zeldovich stiff fluid,
p = ρ, (33)

so that ωD = 1, and the evolving part of the BD parameter is

ω1(ϕ) = − (1 + ωD)(
n2

2 − 3
)2

ϕ0

ρ0H
−( 6

n2 ωD+1)
0 H( 6

n2 ωD−1). (34)

For the Zeldovich fluid case, the BD parameter could be obtained as

ω(ϕ) =
−2ρ0(

n2

2 − 3
)2

ϕ0

H
6

n2−1H
−( 6

n2 +1)
0 + ω0(ϕ), (35)

which evolves with cosmic time. One should note that, for the Zeldovich fluid case,
p + ρ > 0, for which the bouncing scenario may not be viable. In Figure 4, we show the
evolution of the BD parameter for the two different cosmic fluid cases with a constant
anisotropy parameter k = 1.1. In addition to these cases, we also considered a cosmic fluid
filled with dark energy and represented by an EoS parameter ωD = −1.03. One may note
that, for the dark energy and the cosmological constant cases, the BD parameter remained
almost constant throughout the cosmic period considered in this work. However, for the
Zeldovich fluid case, the BD parameter remained almost constant but evolved near the
bouncing epoch, showing a sort of singularity at the bounce. In Figure 5, considering a
given constant EoS parameter ωD = −1.03 and three representative anisotropy parameters
k = 0.9, 1.1, and 1.3, we show that the cosmic anisotropy only affected the non-evolving
part of the BD parameter.
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- 3 - 2 - 1 0 1 2 3
5 0 0 0

6 0 0 0
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ω
 (φ

)

t

  ωD  =  - 1 . 0 3
  ωD  =  - 1 . 0
  ωD  =  1 . 0

k = 1 . 1

Figure 4. Evolution of the Brans–Dicke parameter in the superbounce scenario for constant EoS
parameter.

- 3 - 2 - 1 0 1 2 3
1 0 1 0 0

1 0 1 2 0

1 0 1 4 0

1 0 1 6 0

1 0 1 8 0

1 0 2 0 0

ω
0

t

  k  =  0 . 9
  k  =  1 . 1
  k  =  1 . 3

ωD  =  - 1 . 0 3

Figure 5. Variation in the non-evolving part of the Brans–Dicke scalar parameter in the superbounce
scenario for ωD = −1.03.

4.2. Case 2

In this section, we consider a unified dark fluid EoS represented by [44]

p = α(ρ− ρud), (36)
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where α and ρud are constants, and α may be identified with the adiabatic velocity of sound
propagating within the cosmic fluid through the relation C2

s = α. In view of this, the
mechanical stability of the cosmic system requires a positive value of α.

The integration of the conservation equation for the unified dark fluid equation of
state yielded [44]

ρ = ρX + ρα

(
a
a0

)−3(1+α)

, (37)

p = −ρX + αρα

(
a
a0

)−3(1+α)

, (38)

where ρX = αρud
1+α , ρα = ρ0 − ρX . For the unified dark fluid,

ρ + p = (1 + α)ρα

(
a
a0

)−3(1+α)

. (39)

In the superbounce scenario,
(

a
a0

)
=
(

H0
H

) 2
n2 . Consequently,

ρ + p = (1 + α)ρα

[
H
H0

] 6
n2 (1+α)

. (40)

The EoS parameter for the unified dark fluid could be obtained as

ωD = −1 +
1 + α

1 +
(

ρX
ρα

)
( a

a0
)3(1+α)

, (41)

which could be expressed in terms of the redshift as

ωD = −1 +
1 + α

1 +
(

ρX
ρα

)
(1 + z)−3(1+α)

, (42)

where 1 + z = a0
a . One may note that, near the bouncing epoch, for a given value of the

ratio
ρX
ρα

within a mechanically stable cosmic fluid (α > 0), the EoS parameter becomes

ωD ' α. In the pre- and post-bounce regimes, it evolves smoothly to coincide with the
concordance ΛCDM value ωD = −1 at an infinite future epoch, where the scale factor
becomes infinite.

The evolving part of the BD parameter for the unified dark fluid within the given
superbounce scenario is obtained as

ω1(ϕ) = −(α + 1)
H
−6α
n2 −1

0

ϕ0(q− 2)2 H
6α
n2−1. (43)

In this case, the evolving part of the BD parameter is dependent on the parameter α,
and its evolutionary aspect is mostly decided by the evolution of the Hubble parameter. As
usual, the non-evolving part depends on the anisotropy parameter and the exponent n.

5. Summary and Conclusions

The evolution of the BD parameter within a superbounce scenario was studied using
a generalized Brans–Dicke theory. We considered an LRSBI Universe and thereby incorpo-
rated directional anisotropy in the expansion rates, which provided us with a more general
approach compared to the FRW model. It is possible to recast the GBD theory coupled to
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a cosmological constant as a GR theory with an effective exotic dark-energy-dominated
cosmic fluid. An effective theory for such a dark-energy-dominated cosmic fluid displays
either phantom-like or quintessence-like behavior.

The superbounce scenario considered here bounced at an epoch corresponding to
the time of the Big Crunch provided the ekpyrotic phase continued until that time. As
expected, the Hubble parameter evolved in the pre-bounce phase with negative values
and in the post-bounce regime with positive values. However, the evolution of the Hubble
parameter was not continuous, and it suffered from a kind of singularity at the bounce.
Such a scenario provided a constant deceleration parameter in the pre-bounce and post-
bounce regimes. We obtained the evolutionary behavior of the BD scalar field for the
superbounce scenario. In the pre-bounce phase, it decayed slowly with an increase in
time up to the bouncing epoch. The BD field presented a sudden dip at the bounce and
then increased with the growth in cosmic time. In the given superbounce scenario, the
scale factor and the deceleration parameter were continuous through the bounce region.
Additionally, the BD scalar field appeared to be continuous for the time zone spanning from
the pre-bounce to the post-bounce phase and crossing through the bouncing epoch. Only
the Hubble parameter presented discontinuity at the bounce, which was characteristics of
the superbounce phenomenon. Our prime objective in the present study was to investigate
the evolution of the dynamic BD parameter, which obviously depended on the Hubble
parameter. Therefore, we observed the singular behavior of the BD parameter at the
bounce epoch (Figure 4). In this context, we did not try to connect the solutions in terms
of the Hubble parameter from the negative time zone to the positive time zone through
the bounce. However it may be possible to extend the superbounce scale factor to the whole
cosmological era, such that it gives a smooth unification from bounce to dark energy era.
Such extension is also crucial to understand the generation era of perturbation [59–61].

In the present work, the BD parameter was assumed to vary with time and the scalar
field. However, its time evolution was mostly model-dependent and depended on the
choice of the equation of state. Within the given superbounce scenario, we considered
different equations of state to investigate their effect on the evolution of the BD parameter.
We also studied the effect of the anisotropic parameter on the evolution of the BD parameter.
It was shown that, for the given scenario, only the non-evolving part of the BD parameter
was affected by the anisotropic parameter. The superbounce scenario may be viable within
the GBD theory, provided one has a dynamic EoS and the null energy condition is violated.
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