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Abstract: In this article, Euler’s technique was employed to solve the novel post-pandemic sector-
based investment mathematical model. The solution was established within the framework of
the new generalized Caputo-type fractional derivative for the system under consideration that
serves as an example of the investment model. The mathematical investment model consists of a
system of four fractional-order nonlinear differential equations of the generalized Liouville–Caputo
type. Moreover, the existence and uniqueness of solutions for the above fractional order model
under pandemic situations were investigated using the well-known Schauder and Banach fixed-
point theorem technique. The stability analysis in the context of Ulam—Hyers and generalized
Ulam—Hyers criteria was also discussed. Using the investment model under consideration, a new
analysis was conducted. Figures that depict the behavior of the classes of the projected model
were used to discuss the obtained results. The demonstrated results of the employed technique are
extremely emphatic and simple to apply to the system of non-linear equations. When a generalized
Liouville–Caputo fractional derivative parameter (ρ) is changed, the results are asymmetric. The
current work can attest to the novel generalized Caputo-type fractional operator’s suitability for use
in mathematical epidemiology and real-world problems towards the future pandemic circumstances.

Keywords: investment mathematical model; pandemic circumstances; Euler technique; generalized
Liouville-Caputo; existence; Ulam—Hyers stability
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1. Introduction

Investments from stock markets and international companies are very important to
the growth and strength of an economy. Leading countries around the world make many
offers to show what startups can do for investors. Multi-dimensional sector investments
are famous around the world due to the minimal sectional downturn of particular sectors.
Pandemic situations such as severe acute respiratory syndrome (SARS CoV-1), Middle
Eastern respiratory syndrome (MERS), and the ongoing SARS CoV-2 (COVID-19), followed
by influenza viruses causing vnfluenza AH1N1 pdm 2009 significantly affected normal
situations and made them worse. Currently, the world is in a post-pandemic era. Re-
covering from the downturned situation with new strategies and adaptations makes it
happen. The intention of this work is to study the fractional investment model with regards
to the future pandemic situation and attempt to derive some helpful clues that can be
strategically used in the future. Saudi Arabia holds the 34th place in average development,
with a rate of 6.29% [1]. Saudi Arabia holds a wide range of investment opportunities in
numerous companies and industries under various sectors [2]. Recently, Javid et al. [3]
investigated the determinants of short- and long-run private investment behaviour in
Saudi Arabia for eight non-oil sectors. A moderating structural equation modeling-based
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model was studied on Saudi Arabia by Mohamed Ali Shabeeb Ali et al. [4]. This could
be the first attempt in using fractional derivatives in an investing model according to
the author’s knowledge. Researchers are familiar with the limitations of integer order
calculus, particularly when used to analyse phenomena related to diffusion, hereditary
traits, long-range waves, history-based phenomena, etc. The theory of fractional calculus
has been around for more than 300 years, but it is still relevant today for solving problems
in the real world. In research on fractional calculus, many fractional derivatives have been
found. Caputo, Caputo–Fabrizio, and Atangana–Baleanu are the fractional derivatives that
are used most often in many different fields. Generalized Caputo derivatives, a recently
proposed derivative with properties resembling those of Caputo derivatives, are being used
to analyze the findings in the current work [5]. Several investigations have used fractional
order derivatives, and at the moment, mathematics-based epidemiology is one of their
main fields of application. Numerous domains, including engineering, physics, signal and
image processing, mechanics and dynamical systems, biology, control theory, and environ-
mental sciences, have presented a number of non-integer order derivative models where
non-locality plays a significant role [6–20]. Because the Caputo derivative is appropriate
for initial value problems (IVPs) and shares many traits with integer-order derivatives, it
has been used in applications of fractional calculus to mobilize a large number of physical
issues. Feng et al. [21] presented a study on the general behaviour of the Maxwell mechani-
cal model using the combined Caputo fractional derivative. The generalized Caputo-type
fractional derivative’s nature shares several characteristics with the Caputo derivative.
The projected model is solved in the current work using the Euler scheme. The value of the
parameters has a significant impact on the behaviour of the generalized fractional integral
operator, making it a useful tool for manipulating and creating mathematical models in
applications of fractional calculus. The novel generalized Caputo-type fractional derivative
includes additional qualities when compared to existing fractional derivatives such as the
Caputo, Caputo–Fabrizio, and Atangana–Baleanu fractional derivatives. There is another
parameter ρ in addition to the fractional order parameter that is notably helpful in graphical
simulations with regard to real data. By changing the parameter value ρ, we can see more
types of graphs. In other words, when classical derivatives are used, the classical deriva-
tives are local. A fractional derivative is nonlocal. Because of this property, these derivatives
are suitable for modeling more physical phenomena, such as earthquake vibrations and
polymers, among many others. The structure of this document is as follows. Preliminary
definitions are provided in Section 2. The generalised Liouville–Caputo interpretation of the
fractional order model for sector-based investment is developed in Section 3. The model’s
existence and uniqueness of solutions are established in Section 4. The stability analysis of
the model’s solution in the Ulam–Hyers and generalised Ulam–Hyers segments is provided
in Section 5. The numerical approach and numerical simulations that demonstrate the
theoretical results are presented in Section 6. Lastly, Section 7 provides a conclusion.

2. Preliminaries

For our investigation, we recollect some rough definitions of generalized fractional
derivatives and fractional integrals.

The space of all complex-valued Lebesgue measurable functions ψ on (a, b) equipped
with the norm is denoted by X z

c (a, b):

‖ψ‖X z
c =

(∫ b

a
|xcψ(x)|z dx

x

) 1
z

< ∞, c ∈ R, 1 ≤ z ≤ ∞.

Let L1(a, b) represent the space of all Lebesgue measurable functions $ on (a, b)
endowed with the norm:

‖$‖L1 =
∫ b

a
|$(x)|dx < ∞.
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We further recall thatACn(H,R) = {x : H → R : x, x
′
, . . . , x(n−1) ∈ C(H,R) and x(n−1)}

is absolutely continuous. For 0 ≤ ε < 1, we define Cε,ρ(H,R) = {g : H → R :
(tρ − aρ)εg(t) ∈ C(H,R) endowed with the norm ‖g‖Cε,ρ = ‖(tρ − aρ)εg(t)‖C . Moreover,
we define the class of functions g that have an absolute continuous γn−1 derivative, denoted
by ACn

γ(H,R), as follows: ACn
γ(H,R) = {g : H → R : γn−1g ∈ AC(H,R), γ = t1−ρ d

dt},
which is equipped with the norm ‖g‖Cn

γ,ε = ∑n−1
k=0 ‖γ

kg‖C + ‖γng‖Cε,ρ and is defined by

Cn
γ,ε(H,R) =

{
g : H → R : γn−1g ∈ C(H,R), γng ∈ Cε,ρ(H,R), γ = t1−ρ d

dt

}
.

Notice that Cn
γ,0 = Cn

γ .

Definition 1 ([22]). The generalized fractional integrals of g ∈ X p
d (a, b) of order υ > 0 and ρ > 0

for −∞ < a < t < b < ∞ are defined as follows:

(ρIυ
a+ g)(t) =

ρ1−υ

Γ(υ)

∫ t

a

σρ−1

(tρ − σρ)1−υ
g(σ)dσ, (1)

(ρIυ
b−g)(t) =

ρ1−υ

Γ(υ)

∫ b

t

σρ−1

(tρ − σρ)1−υ
g(σ)dσ, (2)

Definition 2 ([23]). The generalized fractional derivatives (GFDs) that are associated with GFIs (1)
and (2) for 0 ≤ a < t < b < ∞ are defined as follows:

(ρDυ
a+ g)(t) =

(
t1−ρ d

dt

)n
(ρIn−υ

a+ g)(t)

=
ρυ−n+1

Γ(n− υ)

(
t1−ρ d

dt

)n ∫ t

a

σρ−1

(tρ − σρ)υ−n+1 g(σ)dσ, (3)

(ρDυ
b−g)(t) =

(
t1−ρ d

dt

)n
(ρIn−υ

b− g)(t)

=
ρυ−n+1

Γ(n− υ)

(
t1−ρ d

dt

)n ∫ b

t

σρ−1

(tρ − σρ)υ−n+1 g(σ)dσ, (4)

if the integrals exist.

Definition 3 ([24]). The above GFDs define the left- and right-sided generalized Liouville–Caputo-
type fractional derivatives of g ∈ ACn

δ [a, b] of order υ ≥ 0

ρ
CD

υ
a+ g(x) =ρ Dυ

a+

[
g(t)−

n−1

∑
j=0

δjg(a)
j!

(
tρ − aρ

ρ

)j
]
(x), δ = x1−ρ d

dx
, (5)

ρ
CD

υ
b−g(x) =ρ Dυ

b−

[
g(t)−

n−1

∑
j=0

(−1)jδjg(b)
j!

(
bρ − tρ

ρ

)j
]
(x), δ = x1−ρ d

dx
, (6)

when n = [υ] + 1.

Lemma 1 ([24]). Let g ∈ ACn
δ [a, b] or Cn

δ [a, b] and υ ∈ R. Then,

ρIυ
a+

ρ
CD

υ
a+ g(x) = g(x)−

n−1

∑
j=0

δjg(a)
j!

(
xρ − aρ

ρ

)j
,
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ρIυ
b−

ρ
CD

υ
b−g(x) = g(x)−

n−1

∑
j=0

(−1)jδjg(b)
j!

(
bρ − xρ

ρ

)j
.

In particular, for 0 < υ ≤ 1, we have

ρIυ
a+

ρ
CD

υ
a+g(x) = g(x)− g(a), ρIυ

b−
ρ
CD

υ
b−g(x) = g(x)− g(b).

3. Formulation of the Model

Let an entire sector’s populace be S(t), which may be listed under one of three
categories. SN(t), or sectors that were not affected, were not directly connected to the
pandemic and were thus not affected during the pandemic. Even the chosen alternative
options to sustain these sectors proved to be more beneficial than before the pandemic for
this category of sectors, which includes IT, social media, and online education. SD(t), or
downturned sectors, were classified based on the serious impact of pandemic on these
sectors, which made their situation fundamentally more difficult. Examples such as tourism,
real estate, manufacturing, stock exchange, self-employment, etc. fall into this group.
SND(t), or not-downturned sectors, were vigorously influenced by the pandemic, but this
influence worked in a positive way and led to significant growth. Examples of this include
hospitals, pharmaceutical companies, and telecommunications companies. A diagram
of the dynamics of the sector-based investment model is shown in Figure 1. This model
was made for the generalized Liouville–Caputo type. The classical Caputo type has been
utilized for many physical interpretations in mathematical modeling problems. Considering
this, in order to justify our model, comparison graphs (Figures 2–5) have been included
in the classical Caputo sense (υ = 0.95, ρ = 1) and the generalized Liouville—Caputo
sense υ = 0.95, ρ = 0.92, 0.93, 0.94, 0.95) for S(t), SD(t), SND(t), and SN(t), which exhibit
excellent correlation and give us confidence to proceed with this model. This was a fresh
attempt towards creating an investment model in fractional perspectives; the proposed
investment model consists of a system of fractional order differential equations, which were
inspired and improvised from the SEIR epidemic model for COVID-19 transmission by the
Caputo derivative of fractional order [25]. The detailed correlations of factors influencing
sector-based investments are explained in the form of a flow chart.

Figure 1. The diagram for the proposed model of sector-based investment.

The dynamics of the sectors were represented through the system of fractional order
differential equations.

ρ
cDυ

0+S(t) = Φ− (η1SND(t) + η2SD(t))S(t)− ζ̂S(t),
ρ
cDυ

0+SD(t) = λSD(t) + (η2SD(t))S(t) + ζ̂SND(t)− ζ̂SD(t)− χSD(t),
ρ
cDυ

0+SND(t) = λSND(t) + (η1SND(t))S(t) + ζ̂SD(t)− ζ̂SND(t),
ρ
cDυ

0+SN(t) = χSD(t)− ζ̂SN(t),

(7)
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where the initial conditions are S(0) = S0 > 0, SD(0) = SD0 > 0, SND(0) = SND0 > 0,
and SN(0) = SN0 > 0.

Descriptions of Constraints

• Φ (n× N)—enrollment rate;
• N—total number of sectors and enrollment rate, where n is the sector-introducing rate;
• ζ̂—usual loss rate of the sector;
• η1—rate of transfer of affected sectors not down turned;
• η2—rate of transfer of affected and sectors down turned;
• χ—rate of recovery from the pandemic;
• λ—rate of transfer of the sector.

Consequently, the proposed model has the following structure:{
ρ
cDυ

0+ψ(t) = G(t, ψ(t)), t ∈ H := [0, T], 0 < υ ≤ 1, ρ > 0,
ψ(0) = ψ0 ≥ 0,

(8)

on the condition that
ψ(t) = (S ,SD,SND,SN)

T ,
ψ(0) = (S0,SD0,SND0,SN0)

T ,
G(t, ψ(t)) = (Λi(S ,SD,SND,SN))

T , i = 1, · · ·, 5,

(9)

where (·)T represents the transpose operation. Given Lemma 1, the integral form of the
problem (8), which is identical to the model (7), is provided byψ(t) = ψ0 +

ρ Iυ
0+G(t, ψ(t))

= ψ0 +
ρ1−υ

Γ(υ)

∫ t
0

σρ−1

(tρ−σρ)1−υ G(σ, ψ(σ))dσ.
(10)

4. Existence and Uniqueness Results

Let K = C([0, T],R) denote the Banach space of all continuous functions from [0, T] to
R endowed with the norm defined by

‖ψ‖ = sup
t∈H
|ψ(t)|,

where
|ψ(t)| = |S(t)|, |SD(t)|, |SND(t)|, |SN(t)|,

and S ,SD,SND,SN ∈ C([0, T],R).

Theorem 1. Suppose that the function G ∈ C(H,R) maps a bounded subset of H × R4 into
relatively compact subsets of R. In addition, there exists a constantMG > 0 such that
(F1) |G(t, ψ1(t)) − G(t, ψ2(t))| ≤ MG |ψ1(t) − ψ2(t)| for all t ∈ H and each ψ1, ψ2 ∈
C(H,R). Then, Problem (8) has a unique solution provided that ΨMG < 1, where

Ψ =
Tρυ

ρυγ(υ + 1)
.

Proof. Consider the operator Q : K → K defined by

(Qψ)(t)) = ψ0 +
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
G(σ, ψ(σ))dσ. (11)
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Obviously, the operator Q is well defined, and the unique solution of model (7) is just
the fixed point ofQ. Indeed, let us take supt∈H ‖G(t, 0)‖ = P1 and ω ≥ ‖ψ0‖+ ΨP1. Thus,
it is enough to show that QBω ⊂ Bω, where the set Bω = {ψ ∈ K : ‖ψ‖ ≤ ω} is closed
and convex. Now, for any ψ ∈ Bω, it yields

(Qψ)(t) ≤ ψ0 +
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
|G(σ, ψ(σ))|dσ

≤ ψ0 +
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
|G(σ, ψ(σ))− G(σ, 0)− G(σ, 0)|dσ

≤ ψ0 +
(MGω + P1)ρ

1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
dσ

≤ ψ0 + Ψ(MGω + P1) ≤ ω.

Hence, the results follow. Additionally, given any ψ1, ψ2, we obtain

|(Qψ1)(t)− (Qψ2)(t)| ≤
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
|G(σ, ψ1(σ))− G(σ, ψ2(σ))|dσ

≤ MGρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
|ψ1(σ)− ψ2(σ)|dσ

≤ ΨMG |ψ1(σ)− ψ2(σ)|,

which implies that |(Qψ1)− (Qψ2)| ≤ ΨMG‖ψ1 − ψ2‖. As a result of the Banach fixed-
point theorem [26], the proposed model (7) possesses a unique solution. Using the concept
of Schauder’s fixed-point theorem [26], we then demonstrate the existence of solutions for
Problem (8) that are equivalent to the suggested model (7). Hence, the following premise
is required.

(F2) Suppose that there exist κ1, κ2 ∈ K such that

|G(t, ψ(t))| ≤ κ1(t) + κ2|ψ(t)|, for any ψ ∈ K, t ∈ H,

such that κ̂1 = supt∈H |κ1(t)|, κ̂2 = supt∈H |κ2(t)| < 1.

Lemma 2. The operator Q defined in (11) is completely continuous.

Proof. The continuity of the function G gives the continuity of the operator Q. Therefore,
for any ψ ∈ Bω, where Bω is defined above, we obtain

|(Qψ)(t)| ≤
∣∣∣∣∣ψ0 +

ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
G(σ, ψ(σ))dσ

∣∣∣∣∣
≤ ‖ψ0‖+

ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
|G(σ, ψ(σ))|dσ

≤ ‖ψ0‖+
(κ̂1 + κ̂2‖ψ‖)ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
dσ

≤ ψ0 + Ψ(κ̂1 + κ̂2‖ψ‖) < +∞.
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Therefore, the operator Q is uniformly bounded. Next, we prove the equicontinuity
of Q. To do so, we let sup(t,ψ)∈H×Bω

|G(t, ψ(t))| = G∗. Then, for any t1, t2 ∈ H such that
t2 ≥ t1, it gives

|(Qψ1)(t)− (Qψ2)(t)| =
ρ1−(υ)G∗
Γ(υ + 1)

∣∣∣∣∣
∫ t1

0

[
σρ−1

(tρ
2 − σρ)1−υ

− σρ−1

(tρ
1 − σρ)1−υ

]
dθ

+
∫ t2

t1

σρ−1

(tρ
2 − σρ)1−υ

dθ

∣∣∣∣∣
≤ G∗

ρυΓ(υ + 1)

[
2(tρ

2 − tρ
1)

υ − (tρυ
2 − tρυ

1 )]

→ 0 as t2 → t1.

Hence, the operator Q is equicontinuous and is thus relatively compact on Bω . There-
fore, as a consequence of the Arzela–Ascoli theorem [26], Q is completely continuous.

Theorem 2. Suppose that the function G : H×R4 → R is continuous and satisfies the assumption
(F2). Then, Problem (8). which is equivalent to the proposed Model (7), has at least one solution.

Proof. We define a set V = {ψ ∈ K : ψ = ξ(Qψ)(t), 0 < ξ < 1}. Clearly, in view of
Lemma 2, the operator Q : V → K as defined in (11) is completely continuous. Now,
for any assumption (F2), it yields

|(ψ)(t)| = |ξ(Qψ)(t)|

≤ |ψ0|+
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
|G(σ, ψ(σ))|dσ

≤ ‖ψ0‖+
(κ̂1 + κ̂2‖ψ‖)ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
dσ

≤ ‖ψ0‖+ Ψ(κ̂1 + κ̂2‖ψ‖) < +∞.

Thus, the set V is bounded. Thus, the operator Q has at least one fixed point, which is
the proposed model’s solution (7).

Asymmetric Result

Remark 1. The generalized Caputo-type investment model reduces to a Caputo sense when ρ = 1.
cDυ

0+S(t) = Φ− (η1SND(t) + η2SD(t))S(t)− ζ̂S(t),

cDυ
0+SD(t) = λSD(t) + (η2SD(t))S(t) + ζ̂SND(t)− ζ̂SD(t)− χSD(t),

cDυ
0+SND(t) = λSND(t) + (η1SND(t))S(t) + ζ̂SD(t)− ζ̂SND(t),

cDυ
0+SN(t) = χSD(t)− ζ̂SN(t).

(12)

where the initial conditions are S(0) = S0 > 0, SD(0) = SD0 > 0, SND(0) = SND0 > 0, and
SN(0) = SN0 > 0.

Consequently, the proposed model has the following structure:{
cDυ

0+ψ(t) = G(t, ψ(t)), t ∈ H := [0, T], 0 < υ ≤ 1,
ψ(0) = ψ0 ≥ 0,

(13)

on the condition that
ψ(t) = (S ,SD,SND,SN)

T ,
ψ(0) = (S0,SD0,SND0,SN0)

T ,
G(t, ψ(t)) = (Λi(S ,SD,SND,SN))

T , i = 1, · · ·, 5,

(14)
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where (·)T represents the transpose operation. Given Lemma 1, the integral form of Problem (13),
which is identical to Model (12), is provided by{

ψ(t) = ψ0 + Iυ
0+G(t, ψ(t))

= ψ0 +
1

Γ(υ)

∫ t
0 (t− σ)υ−1G(σ, ψ(σ))dσ.

(15)

5. Stability Results

This section derives the stability of the suggested model (7) in terms of Ulam—Hyers
stability and generalised Ulam—Hyers stability. Ulam introduced the concept of Ulam
stability in [27,28]. The aforementioned stability was then explored in various research
publications on classical fractional derivatives, for example, [29–32]. Additionally, as the
generalised stability of the suggested model (7) is essential for an approximate solution,
we work to employ nonlinear functional analysis on Ulam–Hyer stability. As a result,
the following definitions are required. Consider the following inequality if θ > 0:

|ρcDυ
0+ ψ̂(t)− G(t, ψ̂(t))| ≤ θ, t ∈ H, (16)

where θ = max(θj)
T , j = 1, · · ·, 5.

Definition 4. The proposed problem (8), which is equivalent to Model (7), is Ulam—Hyers stable if
there exists EG > 0 such that, for every θ > 0 and for each solution ψ̂ ∈ K satisfying Inequality (16),
there exists a solution ψ ∈ K of Problem (8), with

|ψ̂(t)− ψ(t)| ≤ EGθ, t ∈ H, where EG = max(EGj)
T .

Definition 5. Problem (8), which is equivalent to Model (7), is referred to as being generalized
Ulam-–Hyers stable if there exists a continuous function δG : R+ → R+, with δG(0) = 0 such that,
for each solution ψ̂ ∈ K of Inequality (16), there exists a solution ψ ∈ K of Problem (8) such that

|ψ̂(t)− ψ(t)| ≤ δGθ, t ∈ H, where δG = max(δGj)
T .

Remark 2. A function ψ̂ ∈ K is a solution of Inequality (16) if and only if there exists a function
g ∈ K with the following property:

• (i) |g(t)| ≤ θ, g = max(gj)
T , t ∈ H;

• (ii) |ρcDυ
0+ ψ̂(t) = G(t, ψ̂(t))|+ g(t), t ∈ H.

Lemma 3. Assume that ψ̂ ∈ K satisfies Inequality (16); then, ψ̂ satisfies the integral inequality
described by ∣∣∣∣∣ψ̂(t)− ψ̂0 −

ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
G(σ, ψ̂(σ))dσ

∣∣∣∣∣ ≤ Ψθ.

Proof. With the help of Remark 1, |ρcDυ
0+ ψ̂(t) = G(t, ψ̂(t))|+ g(t), and Lemma 1 gives

ψ̂(t) = ψ̂0 +
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
G(σ, ψ̂(σ))dσ +

ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
g(σ)dσ.

Using (i) of Remark 1, we obtain∣∣∣∣∣ψ̂(t)− ψ̂0 −
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
G(σ, ψ̂(σ))dσ

∣∣∣∣∣ ≤ ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
g(σ)dσ

≤ Ψθ.

The proof is completed.
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Theorem 3. Suppose that G : H×R4 → R is continuous for every ψ ∈ K and assumption (F1)
holds with 1−ΨMG > 0. Thus, Problem (8), which is equivalent to Model (7) is Ulam—Hyers
and, consequently, generalized Ulam-–Hyers stable.

Proof. Suppose that ψ̂ ∈ K satisfies Inequality (16) and ψ ∈ K is a unique solution of
Problem (8). Thus, for any θ > 0, t ∈ H, and Lemma 3, it gives

|ψ̂(t)− ψ(t)| = max
t∈H

∣∣∣∣∣ψ̂(t)− ψ0 −
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
G(σ, ψ(σ))dσ

∣∣∣∣∣
≤

∣∣∣∣∣ψ̂(t)− ψ̂0 −
ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
G(σ, ψ̂(σ))dσ

∣∣∣∣∣
+max

t∈H

ρ1−υ

Γ(υ)

∫ t

0

σρ−1

(tρ − σρ)1−υ
|G(σ, ψ̂(σ))− G(σ, ψ(σ))|dσ

≤ Ψθ + ΨMG |ψ̂(t)− ψ(t)|.

Therefore,

‖ψ̂− ψ‖ ≤ EGθ,

where

EG =
Ψ

1−ΨMG
.

Setting δG(θ) = EGθ such that δG(0) = 0, we conclude that the proposed Problem (8)
is both Ulam—Hyers and generalized Ulam—Hyers stable.

6. Numerical Simulation

We consider System (7) in a compact form as follows:

ρ
cDυ

t z(t) = ϕ(t, z(t)), z(0) = z0, 0 ≤ t ≤ T < ∞, (17)

where z = (S ,SD,SND,SR) ∈ R4
+, z0 = (S0,SD0,SND0,SR0) is the initial vector, and

z(t) ∈ R is a continuous vector function satisfying the Lipschitz condition

‖ϕ(z1(t))− ϕ(z2(t))‖ ≤ γ‖z1(t)− z2(t)‖, γ > 0,

Applying a fractional integral operator corresponding to the generalized Caputo
derivative to Equation (17), we obtain

z(t) = z0 +
ρ Iυ ϕ(z(t)), 0 ≤ T < ∞.

Set h = Tρ

N and tn = nh, where t ∈ [0, T], N is a natural number, and n = 0, 1, 2, · · ·, N.
Let zn be the approximation of z(t) at t = tn. The generalized Liouville–Caputo fractional
derivative operator’s governing model has the following numerical technique:
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Sn+1 =

[
S0 +

hυ

ρυγ(υ + 1)

n

∑
k=0

(
((n + 1− k)υ − (n− k)υ)ϑ1(tk, zk)

)]
,

SDn+1 =

[
SD0 +

hυ

ρυγ(υ + 1)

n

∑
k=0

(
((n + 1− k)υ − (n− k)υ)ϑ2(tk, zk)

)]
,

SNDn+1 =

[
SND0 +

hυ

ρυγ(υ + 1)

n

∑
k=0

(
((n + 1− k)υ − (n− k)υ)ϑ3(tk, zk)

)]
,

SNn+1 =

[
SN0 +

hυ

ρυγ(υ + 1)

n

∑
k=0

(
((n + 1− k)υ − (n− k)υ)ϑ4(tk, zk)

)]
,

where

ϑ1(t, z(t)) = Φ− (η1SND(t) + η2SD(t))S(t)− ζ̂S(t),

ϑ2(t, z(t)) = λSD(t) + (η2SD(t))S(t) + ζ̂SND(t)− ζ̂SD(t)− χSD(t),

ϑ3(t, z(t)) = λSND(t) + (η1SND(t))S(t) + ζ̂SD(t)− ζ̂SND(t),

ϑ4(t, z(t)) = χSD(t)− ζ̂SN(t).

The key factors of this computational work were the choice of parameters. Accord-
ing to a report, in Saudi Arabia, around N = 4358 [33] sector-based companies were
invested in, and this figure is consistently growing at a rate of n = 0.54%, which acts
as the attracting point to future investors. Hence, the enrolment rate for the compu-
tational work was Φ = (4358× 0.54%) = 102,413, and the loss rate was considered as
ζ̂ = 1.823× 10−6 [34], corresponding to the inflation rate of Saudi Arabia. λ = 2.9

365×4358 =

1.8× 10−5 was the sector-affecting rate calculated for one calendar year. Here, values such as
S(0) = 76,810;SD(0) = 49,160; SND(0) = 52,230; and SN(0) = 12,290 were deliberated
for computational convenience. We let η1 = 1.9× 10−6 be the rate of transfer of sectors
that were affected but not downturned because of some advantages that work towards it.
Simultaneously, η2 = 2× 10−7 was the rate of sector transfer for sectors that were affected
by the pandemic and were downturned. χ = 0.032 [35] represents the recovery rate of the
sectors after the pandemic in Saudi Arabia.

Computational Results & Discussion

The fractional investment model was solved using numerical computation, and results
are presented in the form of graphs from Figures 2–5 for various generalized cases.

Pandemic situations such as COVID-19 and SARS CoV-1 in leading countries that
are already in the growing face of attracting investments in various sectors will be crucial,
especially around the first month of the impact. Figure 2 clearly depicts the fact that, after or
at the end of first month of any pandemic impact, the rate of sectors attracting investments
is reduced from the peaking trend, and it becomes saturated thereafter.
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Figure 2. Sectors’ performance during early days of pandemic (S). (υ = 0.95, ρ = 0.92, 0.93, 0.94,
0.95)—generalized Lioville–Caputo type. (υ = 0.95, ρ = 1)—Caputo type.

Behaviour sectors based on tourism, real estate, manufacturing, stock exchange, and
self-employerment are classified as downturned sectors, (SD), during the pandemic, and
the impact they experienced is showcased in Figure 3. Interestingly, a hike in the graph can
be noted for the first 3 weeks duration, which may be due to factors such as precautionary
measures towards lockdown fear. Later, the impact of the pandemic could hit these kinds
of sectors and downturn them within three to four months. Lockdown plays a key role in
these sectors, which mostly rely on man power and transportation.
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Figure 3. Performance of downturned sectors (SD). (υ = 0.95, ρ = 0.92, 0.93, 0.94, 0.95)—generalized
Liouville–Caputo type. (υ = 0.95, ρ = 1)—Caputo type.

Figure 4 clarifies the fortunate sectors that were not downturned even after the pan-
demic hit, such as medical and pharmaceutical-based sectors. These could initially face
the direct impact of the pandemic through such things as accommodation issues, a lack
of medicine, doctor sufficiency, and the need for early-stage treatment strategies. Such
scenarios were clearly noted in Figure 4 with a slight dip in the curve. However, once this
early chaotic situation was settled, these sectors seemed to be continuously growing better
than other sectors.
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Figure 4. Performance of not-downturned sectors (SND). (υ = 0.95, ρ = 0.92, 0.93, 0.94, 0.95)—
generalized Lioville–Caputo type. (υ = 0.95, ρ = 1)—Caputo type.

Sectors that belong to the not-affected category are quick learners in finding alter-
natives, and these sectors really benefited due to the pandemic. Figure 5 portrays the
growing trend of not-affected sectors such as IT, social media, and online forums. It can
be clearly noted that, without any flaws, these sectors attained growth from even day one
of the pandemic, and they exponentially gained along with the pandemic. This growing
phase could last for the first six months of the pandemic. In the second half, their growth
looks vital.
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Figure 5. Performance of unaffected sectors (SN). (υ = 0.95, ρ = 0.92, 0.93, 0.94, 0.95)—generalized
Lioville–Caputo type. (υ = 0.95, ρ = 1)—Caputo type.

7. Conclusions

We investigated a system of four nonlinear fractional order equations in the gen-
eralized Liouville–Caputo sense to analyze the significance of various sectors in future
pandemics and to identify a good era for executing future strategic working plans. The fixed-
point theorems of Schauder and Banach, respectively, were used to demonstrate the ex-
istence and uniqueness of solutions to the suggested investment model in a pandemic
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situation. Ulam–Hyers and generalized Ulam–Hyers were established for stability analysis.
The fractional form of the model under discussion via the generalized Liouville–Caputo
fractional operator has been numerically simulated using the fractional Euler method,
a first-order convergent numerical methodology. Each variable’s illustration and dynamical
perspective with distinct fractional order values were investigated. We have highlighted
the topic’s asymmetries in the remarks. This study based on a fractional investment model
was analysed in view of exploring the behaviours of various sectors in a future pandemic
situation and suggests a favourable period for executing strategic working plans for the
future. An effective Euler’s computing technique was employed through MATLAB. Based
on the data available along with some logical assumptions for computational convenience,
the results were obtained in the form of graphs, and their factors were analysed to derive
these conclusive notes. This model was performed for the generalized Liouville–Caputo
type. The classical Caputo type has been utilized for many physical interpretations in
mathematical modeling problems. In light of this, to defend our model, comparison graphs
(Figures 2–5) have been included in the classical Caputo sense (υ = 0.95, ρ = 1) and the
generalized Liouville–Caputo sense υ = 0.95, ρ = 0.92, 0.93, 0.94, 0.95) for S(t), SD(t),
SND(t), and SN(t), which exhibit excellent correlation and give confidence to proceed with
this model. During future pandemic situations:

• Any investment plans are suggested to be put on hold for the first few weeks immedi-
ately after the pandemic.

• Investments in unaffected category sectors such as IT, social media, and online forums
look healthier throughout the year.

• Investors in key sectors that are not downturned, such as the pharmaceutical and
medical sectors, are suggested to have precautionary plans for the early dip to explore
back-end benefits.

• Both the above-mentioned sectors are recommendable for investments even during
the pandemic.

• Investors have to wait for the saturation period for sectors such as tourism, real estate,
and self-employment.
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