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Abstract: This article provides a review of the approaches to the construction of prediction intervals.
To increase the reliability of prediction, point prediction methods are replaced by intervals for many
aims. The interval prediction generates a pair as future values, including the upper and lower
bounds for each prediction point. That is, according to historical data, which include a graph of
a continuous and discrete function, two functions will be obtained as a prediction, i.e., the upper
and lower bounds of estimation. In this case, the prediction boundaries should provide guaranteed
probability of the location of the true values inside the boundaries found. The task of building a
model from a time series is, by its very nature, incorrect. This means that there is an infinite set of
equations whose solution is close to the time series for machine learning. In the case of interval use,
the inverse problem of dynamics allows us to choose from the entire range of modeling methods,
using confidence intervals as solutions, or intervals of a given width, or those chosen as a solution
to the problems of multi-criteria optimization of the criteria for evaluating interval solutions. This
article considers a geometric view of the prediction intervals and a new approach is given.

Keywords: prediction interval; confidence interval; inverse problem of dynamics; LUPE; interval
solutions; time series

1. Introduction

A dynamic system is defined as a model of the evolution of a process, the state of which
is determined based on the initial state and the equations of dynamics. The tasks involved
in predicting or obtaining numerical estimates of the future values of the observed process
based on historical data include the process of determining a discrete dynamic system
whose behavior would correspond to real data (perhaps obtaining a continuous model, a
decision that is decreed in time intervals that correspond to the relevant changes—the real
process). From the point of view of geometry, the graph that corresponds to the solution
should differ as little as possible from the graph that corresponds to the observed process,
that is, there is a transformation close to unity, under conditions of an insignificant change
in symmetry.

Modern methods for building predictive models [1,2], based on machine learning,
including artificial intelligence methods [3,4], aim to find the most suitable systems that
minimize the deviation of the observed time series from the model graph (solution of the
equation of evolution of a dynamic system), which requires achieving a given accuracy
or qualitative adequacy of the phase trajectories. From the point of view of geometry, we
must eliminate the violation of symmetry.

For a dynamic system, the concepts of robust models stand in opposition to sensitiv-
ity [5], while, as a rule, a robust model is defined as insensitive in its dynamic behavior
and dynamic and frequency characteristics when the model parameters change (which can
be called parametric robustness). As opposed to interval parameter assignments, one can
introduce dynamic output robustness, i.e., the solution determined by a dynamic system
with fixed parameters has an interval form, known as prediction intervals (PI).
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Predictions that are not in point form, but in the form of ranges of values, are called
forecast intervals (PI). However, this involves not only forecasting, but also interval extrap-
olation from point historical data. It seems appropriate to call such a model a robust model,
with robust output. Thus, in the problem of building a model according to a time series,
i.e., an ill-posed problem (the inverse problem of dynamics), robust interval models can be
understood as dynamic systems, the solution of which is given by values at intervals, while
the interval is reliable and adequately includes the original time series and gives a reliable
prediction. Under these conditions, several (completely different) models can determine
the initial interval around the observed states of the system.

In other words, for the time series {X(t), (t = 0, 1, 2, . . .)}, the following functions are
defined fi(x(t)) = y(t + 1) ∈ [y−; y+]i, where fi represents various analytic functions, or
functional expansions; t represents discrete time (point number); x(t) is the value of the
state of the system at the moment t; y is the computed value; y−, y+ are the lower and upper
limits of the interval, respectively; I is the function number. The interval can be defined as
a confidence interval in a stochastic model and it can be based on interval estimates with
measurement errors, or it can be fixed and set based on the conditions of the problem, and
the value of the interval can be the result of solving a variational or optimization issue of
the given criteria presented in intervals.

Thus, it is possible to define a new class of systems dynamic models (stochastic
or deterministic), the parameters of which are functions without uncertainties, and the
solution is an interval form. Here, we also consider the transformation of a plot of a
function into an interval. In addition, the operation of the idempotent addition of intervals
is introduced, which transforms the set of graphs into a semiring. One can recall that if
we consider particular solutions of (evolutionary) differential equations, they form Lie
groups (a symmetry group). This paper considers PI from geometric positions. When using
PI for a group of interconnected series, for example, a portfolio of financial instruments,
forecasting the energy consumption of a group or other structurally complex dynamic
objects [6] allows us to reduce the requirements for the width of forecasts, paying attention
to any other characteristics, for example, absenteeism forecast values beyond the lower
limit of the forecast.

The contribution of this article is presented in the following list:

- A geometric approach for interval forecasts is proposed;
- A review of PI methods based on a geometric view was carried out;
- A new approach to the construction of robust output models is proposed.

In this article, we review and construct new types of models. The structure of the article
is as follows: Section 2, a review of PIs is carried out, in Section 3, a selection of criteria for
evaluating interval solutions is presented, in Section 4, a new theory of interval models is
proposed, and an example of construction is given. Section 5 contains the conclusion.

2. Prediction Intervals: Review

The task of prediction is the task of finding the values of the observed process in the
future for the number of reports (for discrete systems and time series) or a time interval
(for continuous systems) called the forecast horizon. In terms of geometry, it is required to
extend or extrapolate the graph (continuous or discrete) by a given value. Traditional time
series methods look for the next point at the next point in time, provided the current and
historical data are known. Unlike the point prediction, the prediction interval (PI) provides
the numerical value of the range in which the system will be at the next point in time. At
the same time, the graph itself (initial data) is the same as for the point prediction. In other
words, for a function graph (time series), the prediction will be an interval characterized by
upper and lower boundaries. It is often argued that the PI is the most probable interval
of values, but this is not entirely true, as it all depends on the conditions for the width of
the interval.

With the use of PIs, there is a blurring of the accuracy of the prediction, but at the same
time, the degree of uncertainty is reduced, and ensures the robustness of the model in terms



Symmetry 2023, 15, 781 3 of 13

of output. A guaranteed hit in each prediction interval is a reduction in the error, with a
sufficiently wide interval and a complete elimination of the error. Based on historical data
(time interval) in the form of a graph, the prediction includes two non-intersecting graphs
for a given forecast interval; the first graph is the upper limit, while the lower graph is the
lower forecast limit. We are looking for two transformations—the original chart into the
chart of the upper boundary and the chart of the lower boundary. In the resulting range, an
infinite number of functions can be included, including those corresponding to real data.

Currently, PIs, as the most intuitive approach, have attracted a significant amount
of attention [7–10]. This approach is intuitive, since a weather forecast is usually a range
of predicted temperatures for each moment of time or each day. The methods are widely
used both for weather data, wind forecasting [7], in energy [8] and in other applied ar-
eas [9,10]. The generality of application can be characterized as follows: (1) the problem
has pronounced trends and seasonal components; (2) there are portfolios of several signals;
(3) for forecasts, there are requirements for reliable upper or lower bounds.

In recent years, probabilistic prediction methods have been extensively studied to
effectively quantify uncertainties. A probabilistic prediction generates probability density
functions [11], quantiles [12], or intervals [13] in applied prediction problems. Traditional
interval prediction methods include fuzzy inference [14], beta distribution function [15]
and Gaussian processes, autoregressive integrated moving average models and log-normal
processes for obtaining probabilistic predictions [16–18]. The features of such solutions
are the assumptions about the type of distribution, while Gaussian processes require
significant computational resources to estimate the covariance matrices [19]. Numerical
methods for obtaining quasi-Gaussian noise can obtain negative values of the interval,
which is inconsistent with the physical meaning of the problem. For short-term prediction,
the following were proposed: a combination of a kernel-based support vector quantile
regression model and Copula theory [20]; the use of Yeo–Johnson transformation quantile
regression and Gaussian kernel function [21]; machine learning methods, which are now
widely used [22,23]. In these papers, the results were evaluated based on the PI coverage
probability and the normalized mean PI width. The features of the methods are high
mathematical computational complexity, with the need to identify seasonal components.

As a non-parametric method, the proposed lower and upper bound estimation
(LUBE) [24,25] can effectively solve the above problem by constructing the PI directly
from the input data, without any additional assumptions about the distribution of the data.
The LUBE method was proposed in [26] and is aimed at constructing narrow PIs with a
high probability. In general, LUBE can be solved in single-purpose and multi-purpose
frameworks. For example, in [27], a single-target structure for LUBE is proposed in which
the average PI width is minimized with restrictions. In [28], it was proposed to decompose
and group the series into different components using the empirical mode and sample de-
composition methods. In a multi-criteria framework [29], the coverage probability and the
average PI width are simultaneously optimized to obtain a set of Pareto-optimal solutions.
Here, partial decomposition and smoothing of fluctuations in wind power series were
used to correctly preprocess data for the forecast model. As a rule, multicriteria involve
building a compromise between the maximum probability of real values falling into the
found interval and obtaining a compression of the average PI width, which is successfully
solved based on evolutionary algorithms [29]. To adjust the parameters of the PI model,
heuristic algorithms were used, including the genetic algorithm for quick sorting with non-
dominance (NSGA-II) [30], differential evolution (DE) [31], particle swarm optimization
(PSO) [32] and the dragonfly algorithm (DA) [33].

The existing methods for constructing a prediction can be divided into two main
types—direct modeling methods and inverse modeling methods. Prediction tools can
be classified as follows: direct, reverse and separate interval methods. Direct methods
involve the use of engineering physical models built based on physical laws (white boxes or
internal models). Inverse methods consist of building models in the form of a “black box”,
that is, a known process that transforms input characteristics into output or observable
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processes. The purpose of the inverse methods is to solve the inverse problem of dynamics
by finding the type of system that can generate the same signal. This problem is an ill-posed
problem because it has an infinite number of solutions. In addition, this kind of model can
be called an external model. When modeling, we are not trying to penetrate the physics of
the occurring phenomena, but are trying to find any type of transformation that transforms
the input process into an output process. The prediction of PI is an extension of any of the
methods used for finding upper and lower bounds. This can be represented as a search for
two transformations—input data to the upper boundary of the output and input data to
the lower boundary of the output.

Direct physical methods [34] are based not only on the initial data, but also on the
knowledge of the physical phenomena that occur in the simulated process. This includes,
for example, control methods of technical systems. The advantages of these methods
are their high prediction accuracy and high interpretability [35] The disadvantage is that
sometimes, it is impossible to represent the system as a white box. These models require a
significant number of calculations and a detailed, often redundant description.

Inverse methods, in turn, can be divided into the use of series, statistical and stochastic
methods, and machine learning methods. The series are based on known function ex-
pansions such as Fourier series. Statistical methods are data-driven using historical time
series data to predict future values based on autoregressive dependencies, such as the
moving average model (ARMA) [36,37] and the autoregressive integrated moving average
model (ARIMA) [38]. In recent years, many machine learning technologies have been ap-
plied. Among them, the artificial neural network (ANN) has become a common prediction
method because it can capture the non-linear relationship between historical data [39].
Many studies use shallow ANNs and some use deep learning (DL) to capture complex
non-linear features [40,41]. In different applied areas, special methods are being developed
that are oriented to considering the rate of change in parameters. Thus, for prediction in the
electric power industry, where the reaction of processes to disturbances occurs very quickly,
data preprocessing includes noise filtering using artificial intelligence [42–44]. Modern
neural networks are effective at identifying trends; in neural networks with periodic charac-
ters, a sinusoidal activation function [45] is used to replace the sigmoid activation function.
Some studies combine ANNs with statistical methods to capture both linear and non-linear
characteristics [46]. However, there are some shortcomings in direct and inverse methods
of point prediction, including errors in the prediction accuracy, since, as a rule, the real
value differs from the predicted value [47–49].

Thus, the development of prediction tools based on interval prediction forms a sep-
arate, essentially important group, combining both direct and inverse methods, and the
need to build a solution in the form of a range. The PI can assess the potential uncertainty
and risk level more reasonably and provide better planning information. From the point of
view of geometry and differential geometry [50–53], the prediction is an area limited by
two graphs (upper and lower boundaries) and in this area, there is an unlimited number of
graphs that fit into the given boundaries, and the autocorrelation between any two points
can be different. Both a graph with a large correlation (slow and monotonous) and a graph
with a small correlation (quickly changing) can be inscribed in the boundaries. The only
requirements for these graphs (solutions of finite difference or differential equations, or
decomposition in the form of neural networks or any series) include their limitation to a
given interval. This fact allows us to solve the inverse problem—obtaining an interval as
an approximation built based on machine learning from the historical data of a time series
of several completely different models.

Table 1 shows the classification of predictive modeling methods with an analysis of
the advantages and disadvantages.
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Table 1. Classification of series prediction methods.

Class Model Type Advantages Disadvantages

Direct modeling
methods

1.1. Engineering physical models - Can model any
physical system

They are complex and require
detailed knowledge of the
physical properties of the
simulated process or device.
Often unjustified high complexity

2.2. Parametric identification of
dynamical systems [53]

- Model parameters can be
calculated from the initial data

- For non-linear systems,
knowledge of non-linearities is
required. High sensitivity to
variations in variables

Robust models - Insensitivity to
small changes Ambiguity of decisions

Inverse methods
(time series
modeling)

Series or expansions
(Fourier series [54], Taylor series [55],
Bessel series [56], Volterra functional
expansion [57], etc.)

Fast calculations and ease
of use

There are no criteria for how
many members of the series must
be used. Demonstrates sensitivity
to the types of non-linearities
in dynamics

Regression methods
Linear regression, exponential
regression [58], Box Jenkins
(autoregressive moving average
(ARMA) [59], autoregressive
integrated moving average (ARIMA)
[60]; Holt and Winters

Fast calculations

Poor prediction due to multiple
seasonality of data. The art of
choosing the right type of model
is required

Stochastic models (Bayesian models,
Gaussian models; beta distribution) Ease of use Tied to a distribution type

Machine learning [61–64]
Neural networks, deep learning,
evolutionary algorithms [65], etc.

High precision and
adaptability

High dependence on the amount
of training data

Combined deterministic and
non-deterministic models

A good criterion in choosing
models improves predictions.
They support physical
interpretations without the
need for a very detailed or
complex mathematical model

An expert is required to select the
parameters of
non-deterministic models.
Implementation can be difficult

Prediction interval

Combined methods, integral
equations [66], histogram arithmetic
[67]; methods for constructing
intervals [68]

Can use any of the
above models

One is required to solve the
problem of choosing the width of
the interval

3. Criteria for Evaluating and Choosing the Optimal Width of the Prediction Intervals

The LUBE method generates a PI in one step, resulting in a lower and an upper bound.
Thus, the LUBE model can be viewed as a type of direct mapping of the input data to the
PI without any assumptions about the distribution of the data. In addition, the efficiency
of LUBE is determined by the following two conflicting criteria: on the one hand, it is
necessary to ensure that the predicted values fall within the predicted interval and on the
other hand, the interval cannot be extended to infinity, so the estimates must be finite and
rather narrow. Thus, evaluating the accuracy and efficiency of the PI is a major challenge in
LUBE. This section introduces some PI score indexes.
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PICP is a critical appraisal index for PI that indicates the likelihood that future values
will be covered by lower and upper bounds. It is evident that a larger PICP means that the
PIs built can more accurately reflect future uncertainties. PICP is defined as follows [69]:

PICP =
1
N

N

∑
i=1

ai, (1)

where N is the size of the data sample, and ai is a binary variable defined by the follow-
ing formula:

ai =

{
1, yi ∈ [yi_, yi+]
0, y /∈ [yi_, yi+]

(2)

In Equation (2), the values yi_,yi+ are the estimated lower and upper bounds. To
ensure the accuracy of the PI, it is usually required that the PICP exceeds a predetermined
level of confidence (1− α).

In general, PICP is considered as a very important indicator of PIs, which represents
the accuracy of the PI, that is, the probability that the target value overlaps the upper and
lower bounds of the PI.

Although PICP is a key indicator of PI accuracy, the effectiveness of PICP is offset
by interval widening because a large PICP (even approaching 100%) can easily be ob-
tained with an extremely wide prediction interval. However, wide intervals may not
provide meaningful information or provide effective management or monitoring of system
performance.

PINAW is introduced to measure the effectiveness of PIs [70].

PINAW =
1

N ·W
N

∑
i=1

(yi+ − yi−) (3)

where W is the width range. The purpose of normalization is to achieve the objective
assessment of the PI width from absolute values.

Typically, PICP and PINAW are two conflicting goals when building a PI. Increasing
the coverage probability inevitably increases the width, and narrowing the width results in
a low coverage probability.

To evaluate the overall performance of the PI, CWC [71] is proposed by combining
PICP and PINAW together, as shown in the following formula:

CWC = PINAW(1 + γ(PIPC)e−η(PIPC−µ)), (4)

where is a binary value defined as follows:

γ =

{
0, i f PICP ≥ µ
1, i f PICP ≤ µ

(5)

Equation (5) also has two control parameters, γ, µ, which for CWC reflect the PI
coverage probability requirement and can be calculated from a predetermined confidence
level (1− α). η is a penalty factor when the resulting PI fails to meet the coverage probability
requirement. In a unified optimization framework, CWC helps to find a trade-off between
accuracy and PI efficiency.

When accepting an existing PICP index, the test data samples are turned into binary
variables to indicate whether they are within the lower and upper bounds. Because
continuous values can convey more information than binary variables, the data information
provided by the data set is not fully utilized if a PICP is received. In addition, most of the
existing studies focus on the probability of coverage but ignore the risk beyond the obtained
intervals. In our opinion, this is not advisable, since the risk outside the forecasting intervals
can have a significant impact on decision-making processes. In addition, estimation errors
outside of the PI can also have a significant impact on decision-making processes. For
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example, if the real value goes beyond the limits of the interval, it can lead to equipment
failure when the limits correspond to the critical values of technologies. Therefore, to ensure
reliability, when constructing an PI, the estimation error should be considered. In [72], the
Winkler score (WS) was used to estimate the quality of PI, which is calculated as a weighted
sum of the width and the error of the PI estimate.

Usually, at a given confidence level, PIs with a small absolute value of WS are of high
quality. However, WS does not distinguish between the contribution of the mean width
and estimation error. In some real-world applications, decision makers wish to obtain the
PI estimation error to estimate the operational risk. In addition, to reduce the operational
risk, it is necessary to independently minimize the error in PI estimation when training the
interval forecast model. To mitigate the above shortcomings, this study proposes a new
estimation index called the PI estimation error (PIEE) to eliminate PI estimation errors [7].

Ei =


(yi − yi+), i f yi ≥ yi+
0, i f yi− ≤ yi ≤ yi+
(yi− − yi), i f yi− ≤ yi

(6)

In addition, the total PIEE can be calculated as follows: (7)

PIEE =
1

N ·W
N

∑
i=1

Ei (7)

Based on the PIEE index above, the PI estimation error can be measured separately
with the average PI width. In this way, decision makers can assess and mitigate the
operational risk beyond the scope of the PI. While PIEE is proposed to measure PI accuracy,
the PI performance is ignored. For example, a small PIEE (even approaching 0) can easily
be achieved using an extremely wide PI. However, this is meaningless, since no useful
uncertainty information can be given to the operators when the PIs are extremely wide.
Therefore, PI width is also an important factor in LUBE, which is usually estimated by
PINAW. Based on the above, PIEE is optimized together with PINAW to obtain high
quality PIs.

Stochastic sensitivity (SS) is calculated from the average of the output deviations of
the model by a small perturbation of the singularity [73]. If the output of the model is
severely disturbed by small perturbations, then the robustness and stability of the model are
weak, and this usually results in its weak generalization ability regarding future unknown
samples. The model is less likely to successfully predict future invisible patterns. SS is
defined as the average difference of the predicted value of random perturbed samples to
the label, which is formulated as follows:

SS(x, h) =
1
β

β

∑
p=1

∣∣y− h(xp)
∣∣ (8)

where x denotes the given training set, xp, is the perturbed sample around x, y is the number
of perturbed samples, and β the value predicted by the model h, respectively.

Various application works use indexes. The multi-objective particle swarm optimiza-
tion algorithm and least-squares support vector regression are two examples [70–73].

4. New Approach

In this section, we will consider two approximate models, the solution of which is
graphs with interval solutions, which allows us to operate with the following intervals:

- We can add them according to the rules of addition of interval analysis;
- We can build probabilistic models and take probabilistic characteristics at each point

of the time series and can add them according to the rules of histogram arithmetic;
- We can introduce fuzzy logic into the interval and add intervals according to the rules

for adding fuzzy numbers;
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- The use of fixed intervals;
- We can calculate the value of the intervals as a solution to some optimization problems,

and so on.

Therefore, the robust interval model can be described as the union of intervals at each
point of the modeled or predicted time series.

Definition 1. Lets a {X(t)} = {x(0), x(1), . . . , xn, . . . , } be a time series given. Let there be
an evolution function y(n) = f (x(n)), (n–discrete time), wherein x(n + 1) belongs to the interval
x(n + 1) ≈ y, x(n + 1) ∈ [y−; y+]. These y−, y+ is lower and upper limits of the interval. Then
at n→ ∞, if for ∀ε > 0, ∃δ(ε) > 0, such that for any state ∀x(n) from ||x(0)− y(0)||< δ
should ||x(n)− y(n)||< ε .

Here, we require the attraction of phase trajectories into a closed region. The area in
the phase space in the series of dynamics corresponds to a limited range of values. That is,
the definition requires that there is a finite-dimensional interval in the development of the
evolution of the system. Therefore, the definition requires the dissipativity of the system.

We will call such a model a robust interval model.

Definition 2. Let there given interval models y1 = f1(x(n)), y2 = f2(x(n)), were y‘1 ≈ y2 ≈
x(n); x(n) ∈ [y1−, y1+], x(n) ∈ [y2−, y2+]; f1, f2 are different models; y1−, y2− are lower
limits of intervals; y1+, y2+ are upper limits of intervals, Then the operation of combining models⊕:
z = y1 ⊕ y2, interval at each point x(n) is defined as x(n) ∈ [min(y1−, y2−), max(y1=, y2+)].

Lemma 1. If f1(x) does not satisfy definition 1, then a function f2(x) may exist, which is a robust
interval model of the original system. If we consider the operation of combining models, then the
resulting model will also be robust.

The proof is obvious, since the union of intervals by Definition 2 includes a robust interval.
In the case of divergent models, the interval increases, but the robustness property

does not disappear for dissipative stationary systems.
As a robust model, it uses the union of confidence intervals of all used models. The

validity and meaning of the proposed operation and definition take place in the case
of stationary processes, as well as for dissipative systems, i.e., the phase portraits of
which, stable or unstable, have limit cycles and do not have bifurcation points. Many
financial series belong to cyclic dissipative systems and this is especially true for aggregated
portfolio financial instruments, which include several tens of thousands of series, both
macro-indicators and rapidly changing micro-series.

Example
We can consider the problem of targeting residuals of the Federal Treasury. The data

that enter the system are divided into the following two types: (1) planned balances time
series with a period of 1 year (current year) and monthly detailing; (2) actual balances time
series with a period from the beginning of the current year to the current day and daily
detailing. The final output summary prediction should be a time series with a period of
1 year (current year) and daily granularity. Accordingly, for its construction, it is relevant to
solve the following problems: splitting monthly totals into daily totals for series of planned
balances and forecasting with a given horizon (until the end of the year) and for series of
actual balances and those converted into daily series of planned balances.

Historical data were taken for the period 2015–2020. Significant series were selected
for analysis (for example, income/expenses of the Social Insurance Fund, Pension Fund,
Federal Compulsory Medical Insurance Fund) and aggregated time series of several in-
significant series (for example, receipts of the municipal level).

To solve the extrapolation problem with a forecast horizon for a year ahead with daily
discretization, the following four models were studied and applied:
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(1) The weighted average;
(2) Triple exponential smoothing (Holt–Winters);
(3) ARIMA (Box–Jenkins);
(4) Linear regression.

To assess the accuracy of the models, the MAPE metric was used, including the average
absolute percentage error, i.e., the average percentage of how often the predictive model
is wrong.

The data on the actual account balances are characterized by significant structural
shifts (see Figure 1) and these are due to many reasons, for example, the client’s decision to
split the balances between several of their accounts or transfer an amount of the balance to
the “reserve”. The DSS [11] is able to take into account the opinion of experts on the choice
of the main model.
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It is possible to construct a robust interval model based on the introduced concepts.
At the entrance to the structurally complex system, we can submit the most aggregated
time series using machine learning models, take simple moving averages that show the
worst results in the studies of individual series and predict monthly data.

Using historical data for the period 2015–2020, we can emulate the behavior of the
system in 2020. By sequentially adding data for the next month to the system, we can
extrapolate increasing series using moving averages, aggregating them into the final forecast
with an interval of 99%. At the output (Figure 2), we can obtain 11 pairs of upper and lower
intervals, respectively, in the form of a set of separate rows with dimensions from 11 points
to 1 point.
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By combining the neighboring first points of the upper and lower rows of the confi-
dence intervals, we can obtain a set of intervals (corridor) in which the actual values of the
final prediction should be located (Figure 3).
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As can be observed from Figure 3, despite the roughness of the model, the actual data
of the residual on the EKC during the experiment extended beyond the lower limit of the
interval once in August 2020.

5. Conclusions

It is possible to define a new class of systems dynamic models, in which the parameters
are functions without uncertainties, and the solution is an interval. In addition, this is the
first time that the prediction interval has been analyzed in this way, but this view is based
on many modern studies, which we showed in this review.

In this review, we also presented a geometric view on the questions surrounding
building an interval prediction. We can use graphs (solutions to evolutionary equations
or solutions obtained in the course of machine learning of artificial neural networks) as
objects that describe the same process in intervals with a given degree of deviation from
the initial data, on the basis of which the model was trained.
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Abbreviations

AI Artificial intelligence
ARIMA Autoregressive integrated moving average model
ARMA Autoregressive moving average model
LSTM Long short-term memory
LUBE Lower upper bound estimation
MAPE Mean absolute percentage error
PICP Prediction interval coverage probability
PINAW Prediction interval normalized average width
PI Prediction interval
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