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Abstract: The discrete system serves an important role in mimicking collective dynamics found in
continuous dynamical systems, which are relevant to many realistic natural and artificial systems.
To investigate the dynamical transition of a discrete system, we employ three-dimensional sinusoidal
discrete maps with an additional self feedback factor. Specifically, we focus on dynamical transitions
with respect to the bifurcation parameter, sine function amplitude, and intensity of self feedback
factors. We demonstrate the presence of symmetry in relation to parametric variation using two
parameter diagrams. The study is then expanded to the network of sine maps in the presence
of self-feedback factor. We discover that negative feedback exhibits the transition from cluster
state to synchronization while raising the coupling strength for small-world network interactions.
Furthermore, increasing feedback from negative to positive causes the transition from synchronization
to desynchronization via chimera state for various complex network connectivities.

Keywords: sine maps; bifurcation; chimera; synchronization

1. Introduction

In realistic situations, many natural and artificial systems can exhibit a wide range of
complex behaviors such as chaos, hyperchaos, strange nonchaos, and so on [1–5]. Each
of the dynamical behaviors has numerous applications in the fields of computer science
and technology, engineering, and telecommunications, among others. To comprehend
such complex behavior, distinct discrete and continuous systems have been modeled so
far. For instance, Edward Lorenz originally proposed the chaotic continuous-time system
to understand chaotic dynamics [6]. Following that, various chaotic and hyperchaotic
continuous-time systems such as Rössler, Sprott, and many others have been developed [7–9].
Chaotic circuits based on memristor-memcapacitors and their fractional order circuit have
been implemented to demonstrate the complex behaviours [10,11]. These dynamics are not
restricted to continuous systems; they can occur in discrete-time systems as well.

Moreover, the discrete system can be found in many research fields, including image
encryption [12,13], neural networks [14], viscoelastic materials [15], random signal genera-
tor [16], biological mechanism [17], system control [18], and so on. Robert May introduced
the Logistic map in 1976 to demonstrate the chaotic dynamics in a discrete system [19]. Following
that, several discrete systems were developed to study the chaotic and hyperchaotic dynamics.
In particular, the existence of chaos and discrete chaos have been reported through the Henon
map, Chebyshev Hyperchaotic Map and its fractional form [20–22]. Using the generalized
Henon maps, the existence of higher dimensional chaotic and hyperchaotic dynamics have
been delineated in [23]. Chen proposed the 3D chaotic cat maps to encrypt the image by
implementing confusion between the cipher-image and the plain-image application with
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real-time image encryption via internet and transmission applications [24]. The transition
from periodic to chaotic dynamics has been identified in a 1D piecewise linear as well as
nonlinear chaotic maps [25,26]. Pseudo-random number generation has been achieved
by utililzing adaptive Zaslavsky map under multi-parametric bifurcation analysis [27].
The existence of many hidden attractors has been illustrated using fractional hyper chaotic
maps [28]. In a stochastic discrete ecosystem, control analysis and equilibrium points
with symmetry are defined [29]. It has been discovered that the discrete memristor-based
coupling model may enhance the complexity of discrete systems such as the Logistic map
and a Sine map (MCLS), which have applications in information encryption [30]. It has
also been noted that the change in system symmetry is seen during the transition from
continuous to discrete system [31].

Sinusoidal or sine maps, on the other hand, are intriguing in mathematics, physics,
and biology since they are typically used to represent the many oscillatory processes that
occur in such systems. It may also be used to describe the recurring patterns seen in natural
systems such as ocean waves, light waves, and sound waves, among others. The occurrence
of chaotic resonance has been delineated using sine circle maps [32]. Then the random bit
generation has been demonstrated by considering chaotic two-dimensional sine discrete
maps [33]. The prediction of bifurcation points that occur via period-doubling phenomena
has been illustrated through two different chaotic maps namely the symmetric sine map
and Gaussian map [34]. Through fractional order, chaotic maps with trigonometric sine
functions can exhibit multi-fold strange attractors to chaos through a period-doubling
bifurcation [35]. The existence of complex and chaotic dynamics of logistic sine square
maps have been discussed in [36]. In addition, using delayed sine map which is developed
by using a linear-delay-modulation method for developing the encryption algorithm to
develop confusion-diffusion architecture [37]. Application with the secure communications,
2D infinite collapse sine model has been implemented to show the existence of complex
hyperchaotic dynamics [38]. The impact of discrete memristive chaotic sine maps are
implemented and identified such discrete memristor can enhance the characteristics of
chaotic dynamics and its security is higher than other chaotic maps [39].

Furthermore, the analysis has been expanded to incorporate the coupled version
of maps. The control of bistability has been reported by developing the parametrically
coupled network of sine maps [40]. The simultaneous presence of chaotic synchronization
and chaotic antisynchronization has been noticed in coupled sine maps and spatial syn-
chronization with temporal periodic solution has been delineated in coupled sine circle
maps [41,42]. Through a system of coupled maps, routes to the crisis, bifurcation transi-
tions, and dimension variability are also detailed, followed by, spatial and spatio-temporal
intermittency has been revealed in [43]. Further, suppression of chaos has been noticed
by nonlinearly coupled sine square maps [44]. The transition from unsynchronization to
synchronization was observed when the coupling scheme of the lattice of sine-circle maps
was changed from global to local, and the transition between dynamical states has been
recognized by plateau size [45]. The existence of various spiral wave patterns including
quasi-periodic, periodic, and banded spiral waves with polygonal shapes was reported in
a 2D lattice of sine circle maps [46]. Motivated by the preceding analysis on discrete sys-
tems, particularly sine maps, we consider the three-dimensional sine maps with additional
self-feedback. We examine the impact of various parameters including the bifurcation pa-
rameter, amplitude of sinusoidal function as well as the strength of self-feedback since it is
not well explored in the literature. In particular, we show the existence of hyperchaos when
increasing the feedback parameter from negative to positive magnitudes. Eventually, we
show the existence of symmetric patterns in the dynamical transitions among the periodic,
quasiperiodic, and chaotic dynamics when varying bifurcation parameter or amplitude of
sinusoidal force. Additionally, the transition from desynchronization to synchronisation via
the cluster state are revealed in a network of sine maps when changing coupling strength.
The dynamical transition of the proposed network under consideration is also investigated



Symmetry 2023, 15, 780 3 of 10

using a variety of connecting topologies and an increasing feedback parameter for a fixed
coupling strength.

The remaining sections of the article are as follows: 3D discrete-time sinusoidal
map is introduced in Section 2. The corresponding dynamical transitions with respect to
distinct parameters including the bifurcation parameter, the amplitude of sine maps, and
self-feedback factors are discussed in Section 3. Furthermore, the symmetric patterns in
parameter spaces are detailed in Section 4. The network behavior of coupled sine maps is
further illustrated in Section 5. Finally, the observed results are summarized in Section 6.

2. Model of 3D Sinusoidal Discrete Maps

Mammery used 3D sine maps [47], to investigate the existence of chaos and its tran-
sition mechanism. We considered 3D sine maps with two nonlinear sinusoidal functions,
similar to the map used previously. In addition, we introduced the self-feedback parameter
to investigate its impact on previously observed complex behaviors. The expression for a
3-dimensional sinusoidal discrete map with the self-feedback term can be written as,

xj+1 = yj,

yj+1 = sin(zj),

zj+1 = α + βxj + γyj − δsin(zj) + µzj. (1)

where α, β, and γ, are the bifurcation parameters. δ is the amplitude of the sine function. xj,
yj and zj are the state variables. µ is the feedback strength. The parameter values are fixed
as α = −3.76, β = 0.9, γ = 0.9, δ = 1 and µ = 0.01, unless otherwise specified.

3. Dynamical Transitions: Bifurcation Analysis and Lyapunov Exponents

Initially, the dynamical transitions of the system (1) are investigated using a bifurcation
diagram by finding the local maxima of the z-variable. We discover that the occurrence
of regular recurring symmetric patterns with the transition from periodic to chaotic and
vice versa can occur as a function of the bifurcation parameter α, as shown in Figure 1a.
The magnitude of α, in particular, enhances the amplitude of the attractors in the patterns.
The repeating chaotic and periodic regions are visible in the LEs, with the periodic region
having all negative LEs and the chaotic region having one LE or two positive LEs, implying
the presence of chaotic or hyperchaotic attractors.

(a) (b)

(c) (d)

Figure 1. (a) Bifurcation diagram of the system (1) as a function of α, for ranges between −50 to +50,
and (b) the corresponding Lyapunov exponents (LEs). (c,d) are a zoomed-in view of a portion of the
bifurcation diagram and the associated LEs.
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To gain a better understanding of the attractor transitions, we plotted a zoomed-in
view of a small part of the bifurcation transition from Figure 1a in Figure 1c. By comparing
the bifurcation transition shown in Figure 1c with the LE shown in Figure 1d, we discov-
ered that the presence of periodic (P) attractors at lower values of α ∈ [0, 1.455] where
all the LE are negative. We discovered the transition to a quasi-periodic (QP) attractor in
the range α ∈ [1.456, 1.990] by increasing the magnitude of α. In this region, we discov-
ered that one LE has a value of zero, while the other two have negative values. When
the bifurcation parameter α ∈ [1.991, 2.461] is increased, hyperchaos (HC) occurs, with
two LE being positive. Furthermore, the swing of periodic attractors via chaotic (CH)
attractors is observed as varying the magnitude of α. The range of bifurcation parameters
takes the values α ∈ [2.462, 2.61] for periodic, α ∈ [2.62, 2.711] for chaotic attractor and
α ∈ [2.712, 3.493] for periodic attractors, respectively. The presence of a chaotic attractor in
the above-mentioned range of α is confirmed by LE, with one LE displaying positive values
and the other showing negative values. As the value of α increases, the reflection symmetry
in the dynamical transition becomes visible. The following are the parameter ranges for
each region: α ∈ [2.712, 3.492] for P→ α ∈ [3.493, 3.607] for CH→ α ∈ [3.608, 3.747] for
P→ α ∈ [3.748, 4.163] for HC→ α ∈ [4.164, 4.763] for QP→ α ∈ [4.764, 5.0] for P. From the
aforementioned findings, it is noticeable that the existence of reflection symmetry among
the dynamical transitions and the observed transitions reoccur over a wide set of α.

(a) (b)

(c) (d)

Figure 2. (a) Bifurcation diagram as a function of δ, which ranges from 0 to +50, and (b) the
corresponding Lyapunov exponents (LEs). (c,d) show a zoomed-in view of a portion of the bifurcation
diagram and the associated LEs.

In addition, the local maxima of the z variable are obtained by varying the amplitude
of sine function δ in Figure 2. As seen in Figure 2a, increasing the range of δ raises the
amplitude of the attractors. We observed that chaotic attractors are interspersed with
periodic attractors. To exemplify this, the Lyapunov exponents are depicted in Figure 2b.
It is significant to note that chaotic regions show one of the LE takes positive values, but
interspersed periodic attractors in the chaotic regions acquire negative LE. For a clearer
understanding of the transition, we focused on a small portion of the region near the
bifurcation and presented the zoomed-in image in Figure 2c,d. When the bifurcation
transition is compared to LE, it is obvious that at smaller values of δ, quasi-periodic
attractors exist. Increasing δ leads to the transition from periodic to chaotic attractors via
the period doubling route. Further raising the value of δ illustrates alternate manifestations
of periodic and chaotic attractors.
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In order to examine the impact of feedback strength the bifurcation diagram with the
associated LEs are presented in Figure 3a,b by varying µ from negative to positive values.
When the feedback strength is negative, we found periodic attractors. We discovered that
period doubling facilitates the shift to hyperchaotic attractor with adequate strength positive
feedback. The observed periodic to chaotic transitions are validated further through the
LEs. Importantly, the existence of a hyperchaotic attractor is supported by the presence of
two positive LEs Figure 3b.

(b)(a)

Figure 3. (a) Bifurcation diagram as a function of the feedback strength µ, and (b) the associated
Lyapunov exponents (LEs).

4. Symmetric Patterns in Two Parameter Spaces

To illustrate the global dynamical transitions in the parametric space, we portrayed
two parameter diagram in (α, µ) parametric space in Figure 4a. The maximal LE is used to
distinguish the dynamical regions, and the color bar indicates the range of LE. For each
value of µ, there exists a different symmetric repeating pattern as a function of α. Mainly,
we observed two types of transitions in each patch in Figure 4a, which depend on the
strength of feedback, which varies from negative to positive. To show this clearly, we
plotted the zoomed-in view of the isolated patch from Figure 4a in Figure 4b. At lower
feedback values, that is, during negative feedback strength, the transition from periodic→
chaotic→ periodic→ chaotic→ periodic attractor is observed. A transition from periodic
→ chaotic→ periodic attractors is observed in the positive feedback region. Certain range
of parameters α and µ show the periodic attractors in the middle of the chaotic region.

(a) (b)

Figure 4. (a) The dynamical transitions in (α, µ) parametric space, and (b) zoomed-in view of the
part of parametric transitions.

Analogously, the dynamical transitions of the system (1) are inspected in (α, δ) para-
metric space in Figure 5. We can note that the different patches of symmetric pattern with
respect to the parameters α and δ (see Figure 5a). To clearly visualize the patterns, the
zoomed view of small part is depicted in Figure 5b. It is to be observed the reflection
symmetry in the zoomed view left (α ≥ 0 or δ ≥ 0) and right (α ≤ 0 or δ ≤ 0) sides.
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(a) (b)

Figure 5. (a) The dynamical transitions in (α, δ) parametric space, and (b) zoomed-in view of the part
of parametric transitions.

5. Dynamical Transitions in Network of Sine Maps

The network dynamics are typically useful in understanding the realistic phenomena
observed in many complex systems present in realistic situations. To demonstrate the
occurrence of such collective dynamics, we considered a network of sine maps that interact
via different complex network connectivities. The expression for a network of sine maps
can be written as

xk
j+1 = yk

j , k, l = 1, 2..., N,

yk
j+1 = sin(zk

j ), (2)

zk
j+1 = α + βxk

j + γyk
j − δsin(zk

j ) + µzk
j + σH(xk

j , xl
j),

where, H(xk
j , xl

j) = 1
N ∑N

l=1 Akl(xk
j , xl

j) is the coupling function and σ is the coupling

strength. Akl is the connectivity matrix, if the kth map is connected with lth map or vice
versa, then Akl = 1, otherwise Akl = 0. Primarily the dynamical transitions of the system (2)
are investigated for small-world network interactions with the probability ρ = 0.5 by fixing
the feedback strength as µ = −0.05 and setting different coupling strengths. For coupling
strength σ = 0.001, there exists a two-cluster state as shown in Figure 6(ai). The nodes in
the maps are distributed in the two different values is evident from Figure 6(aii). When
increasing the strength of coupling, we observed a few of the nodes in the upper cluster
shift to the lower clusters as shown in Figure 6(bi,bii) for σ = 0.02. From Figure 6(ci,cii)
and Figure 6(di,dii), it is clear increasing the coupling strength to σ = 0.03 and σ = 0.04
shifts the remaining oscillators to the lower branch thereby resulting the number of nodes
is decreased in the upper cluster. Finally, all the nodes are settled in one cluster and exhibit
the synchronization Figure 6(ei,eii) when the coupling strength is σ = 0.06.

The dynamical behavior of the system (2) is investigated for regular and small-world
network interactions when fixing the coupling strength σ = 0.1 and varying the strength
of self-feedback from negative to positive values. Figure 7(ai,aii) delineates the existence
of synchronization behavior if the coupling strength σ = 0.1 and the feedback strength
µ = −0.03. If the strength of feedback is increased to µ = −0.01, the partial nodes in the
synchronization state exhibit incoherent behavior while the remaining are in synchroniza-
tion as in Figure 7(bi). Such hybrid coexisting synchronized and desynchronized states are
referred to as chimera states. The desynchronized nodes are distributed randomly while
all other nodes are in coherent behaviors is evident from the snapshot Figure 7(bii). Upon
increasing the feedback to a positive value (µ = 0.01) give rise to the partial coherent nodes
also shifting to the incoherent behavior resulting in entire nodes in the network exhibiting
the desynchronization state as depicted in Figure 7(ci,cii).

Following that, the dynamical transitions of the network of sine maps are investigated
for small world network interactions (ρ = 0.5) in Figure 8. We showed the existence
of synchronization state at lower ranges of feedback strength µ = −0.05, as shown in
Figure 8(ai,aii). Followed by the transition to desynchronization via chimera state is ob-
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served when increasing µ = −0.01 (see Figure 8(bi,bii)), and µ = 0.01 (see Figure 8(ci,cii)).
In this manner, the transition from synchronization (coherent) to desynchronization (inco-
herent) via chimera (coexisting coherent and incoherent) state is identified when raising the
strength of feedback. The random network connectivities exhibit a similar kind of dynami-
cal transition (not illustrated here) as the regular and small-world network connectivities.

Figure 6. Space-time (i) and the snapshot (ii) images of sine maps networks for small world network
ρ = 0.5 and by fixing µ = −0.05, (ai–di,aii–dii) cluster state for σ = 0.001, σ = 0.02, σ = 0.03,
σ = 0.04 and (ei,eii) synchronization state for σ = 0.06.

Figure 7. Space-time (i) and the snapshot (ii) images of sine maps networks for regular network
ρ = 0.0 and by fixing σ = 0.10, (ai,aii) synchronization for µ = −0.03, (bi,bii) chimera for µ = −0.01,
and (ci,cii) desynchronization for µ = 0.01.
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Figure 8. Space-time (i) and the snapshot (ii) images of sine maps networks for small world network
ρ = 0.5 and by fixing σ = 0.10, (ai,aii) synchronization for µ = −0.03, (bi,bii) chimera for µ = −0.01,
and (ci,cii) desynchronization for µ = 0.01.

6. Conclusions

In this study, a 3D sinusoidal map is considered to understand its dynamical transitions.
In addition, we included a self-feedback factor in the considered system to investigate
its impact for the first time in the literature. We show that increasing the bifurcation
parameter of the systems gives rise to symmetric patterns in the dynamical transitions
while shifting between the chaotic and periodic attractors. Then increasing the amplitude
of the sine functions can help to enhance the amplitude of the attractors. The impact of the
self-feedback factor was also investigated and observed that the existence of hyper chaotic
behavior at the sufficient strength of positive self-feedback. The dynamical transitions are
pictured in two parametric diagrams using LEs to show the manifestation of symmetric
patterns. Interestingly, we found the existence of parametric symmetry while varying the
bifurcation parameter with a self-feedback factor or bifurcation parameter with amplitude
of sine function. In addition, the analysis is performed by extending the proposed system
to the network of coupled sine maps by fixing the feedback strength as constant. For the
small-world network, we observed the transition from cluster state to synchronization
state as a function of coupling strength. Instead of fixing the coupling strength, varying
the magnitude feedback from negative to positive values resulting in the transition from
synchronization to desynchronization via chimera state for REG, SW, and RAND network
connectivities. We believe that obtained collective dynamics and symmetric patterns can
be helpful to realize the occurrence of such patterns observed in physical, biological, and
chemical systems.
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