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Abstract: The most crucial component of any smart city traffic management system is traffic flow
prediction. It can assist a driver in selecting the most efficient route to their destination. The
digitalization of closed-circuit television (CCTV) systems has resulted in more effective and capable
surveillance imaging systems for security applications. The number of automobiles on the world’s
highways has steadily increased in recent decades. However, road capacity has not developed
at the same rate, resulting in significantly increasing congestion. The model learning mechanism
cannot be guided or improved by prior domain knowledge of real-world problems. In reality,
symmetrical features are common in many real-world research objects. To mitigate this severe
situation, the researchers chose adaptive traffic management to make intelligent and efficient use
of the current infrastructure. Data grow exponentially and become a complex item that must be
managed. Unstructured data are a subset of big data that are difficult to process and have volatile
properties. CCTV cameras are used in traffic management to monitor a specific point on the roadway.
CCTV generates unstructured data in the form of images and videos. Because of the data’s intricacy,
these data are challenging to process. This study proposes using big data analytics to transform
real-time unstructured data from CCTV into information that can be shown on a web dashboard. As
a Hadoop-based architectural stack that can serve as the ICT backbone for managing unstructured
data efficiently, the Hadoop Distributed File System (HDFS) stores several sorts of data using the
Hadoop file storage system, a high-performance integrated virtual environment (HIVE) tables, and
non-relational storage. Traditional computer vision algorithms are incapable of processing such
massive amounts of visual data collected in real-time. However, the inferiority of traffic data and
the quality of unit information are always symmetrical phenomena. As a result, there is a need for
big data analytics with machine learning, which entails processing and analyzing vast amounts of
visual data, such as photographs or videos, to uncover semantic patterns that may be interpreted. As
a result, smart cities require a more accurate traffic flow prediction system. In comparison to other
recent methods applied to the dataset, the proposed method achieved the highest accuracy of 98.21%.
In this study, we look at the construction of a secure CCTV strategy that predicts traffic from CCTV
surveillance using real-time traffic prediction analysis with generative adversarial networks (GAN)
and HDFS.

Keywords: Intelligent Transportation System (ITS); image synthesis; generative adversarial networks
(GAN); traffic management system; Hadoop Distributed File System (HDFS)

1. Introduction

Deep learning networks have proven to be effective tools in a variety of difficult fields,
including computer vision, healthcare, business, and finance, among others. For example,
machine learning technologies are being employed in a growing number of Internet of
Things (IoT) devices for botnet detection and network traffic analysis (28.1 billion devices in
2020; trillions in 2025) [1]. Modern society is characterized fundamentally by urbanization
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and an increase in building density. This way of living not only benefits the economy
but also offers new difficulties for local government. Effective traffic management and
analysis are some of these problems. Numerous personal cars, an increase in the number
of freight vehicles used to transport products and commodities, and clogged pedestrian
traffic are all effects of high population density. Suboptimal algorithms cannot be employed
to address transportation issues based on scant manually obtained statistics. To make
effective judgments, forecast their effects, and evaluate their outcomes, authorities need an
automated system for analyzing citywide traffic flow.

The rate of data growth is accelerating due to the expansion of computers, smart-
phones, the internet, and sensory devices. Big information is generally understood to refer
to data collections that are too massive or complicated for conventional relational databases
to efficiently acquire, maintain, and handle. Symmetric IoT applications will eventually
become a significant new data source with the aid of machine learning (ML) techniques.
The five Vs are used to summarize the characteristics of big data [2]. These five Vs are
volume, velocity, variety, veracity, and value. A lot of data are gathered by mobile devices,
social media, the Internet of Things (IoT), and other sources.

The most common problems when evaluating real-time data from city cameras are
low counting accuracy, classifying a small number of vehicle types, and following an object
while recognizing the speed and driving direction in all sections entering the functional
zone of the crossroads. Little research has been done to gather and analyze traffic flow speed
and movement patterns utilizing survey street cameras, despite the obvious compensations
of building such organizations [3]. Large volumes of video data have been successfully
gathered, interpreted, and analyzed using artificial neural networks [4].

Many deep learning-based techniques that analyze time-series traffic data have been
created recently to forecast traffic volume [5]. Since there is no evident order dependence
for traffic predictions, it is crucial to consider all the data of a period identically to create a
series of upcoming trip times using modeling of the dispersion of previous periods, which
time-series techniques cannot manage. The basis of deep learning is therefore thought
to be generative adversarial networks (GANs). Because they offer segments based on
the predicted probability density function of a challenging dataset, they are potential
picture-generating algorithms.

Many devices today create data anywhere and at any time. Data grow exponentially
and becomes a complex item that must be managed. Unstructured data are a subset of
big data that are difficult to process and have volatile properties. CCTV cameras are
used in traffic management to monitor a specific point on the roadway. CCTV generates
unstructured data in the form of images and videos. However, the inferiority of traffic
data and the quality of unit information are always symmetrical phenomena. Unlabeled
data are widely available and easy to obtain, so their number is enormous. However,
because there is a lack of subjective evaluation information, evaluation results based on
unlabeled data frequently differ to reflect public opinion. Because of the data’s intricacy,
these data are challenging to process. The generative adversarial network (GAN) is one
such efficient technology that has piqued the curiosity of the scientific community. This
study describes the creation of a traffic congestion dataset that has been enhanced via
GAN-based augmentation. The GAN-enhanced traffic congestion dataset is then utilized
to train artificial intelligence (AI)-based algorithms [6].

Numerous studies have relied heavily on in-ground or side induction sensing devices
while utilizing typical traffic sensor infrastructure for traffic prediction [7]. The global
navigation satellite systems (GNSS) integrated into cellphones [8] and those mounted on
taxis [9] are two more ubiquitous traffic sensors. However, traffic control organizations may
find it costly to deploy the sensor infrastructure at various points throughout a city or in
hundreds of cabs. CCTV systems, which are extensively used for traffic surveillance, object
tracking (such as automatic number plate recognition (ANPR) systems [10], tracking, and
event detection applications [11], can replace accessible and affordable sensor infrastructure.
Recent work on prediction utilizing CCTV datasets has received less attention than that
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using loop detectors and GNSS sensors (e.g., in [12]). Only one third of the literature,
according to a recent article in [13], is concentrated on urban arterials, and more research
has been done on highways or motorways than on forecasting urban traffic. Thanks to
initiatives such as the Urban Observation (UO) project in the Northeast of England, run by
York University, CCTV datasets from several local authorities in the UK have lately become
publicly accessible.

The big data ecosystem most widely recognized is Hadoop. After the release of Yet
Additional Resource Negotiator (YARN) [14], processing Hadoop distributed file organi-
zation data using batch-oriented MapReduce is no longer the only option (HDFS). There
are several Hadoop processes and harvests that really can run on Hadoop that support
several computer languages, such as Python, Java, and Scala. Additionally, they provide
simple access to the countless machine-learning algorithms needed for effective smart
city management. Spark is one such tool which also supports Python, Java, and Scala.
Spark supports Python, Java, and Scala. The primary benefit of the Hadoop construction
stack is that it is exposed basis and cost-free to utilize. The biggest drawbacks of this
product are its limited support and the well-known security flaws that affect most NoSQL
databases and products in the Hadoop ecosystem. These problems can be resolved by
using client-to-node encryption, using third-party products like Kerberos, and other tech-
niques. However, it takes highly trained professionals to bring these and the rest of the
infrastructure into operation.

This paper’s primary contributions are as follows:

• This study suggests using big data analytics to transform unstructured real-time CCTV
data into knowledge shown in a web dashboard.

• An architectural framework based on Hadoop that can serve as the ICT backbone for
effectively managing these unstructured data. The Hadoop distributed file scheme
(HDFS) stores a variety of data types using the Hadoop file storage system, HIVE
databases, and non-relational storage.

• Based on current developments in vehicle recognition and tracking tasks, we have
suggested and applied a unique traffic flow prediction organization.

We carefully examined our system and presented empirical proof that the suggested
solution is accurate enough to serve as the basis for further high-level models.

The remainder of this article is structured as surveys: in Section 2, we examine research
on traffic forecasting techniques. After that, in Section 3, the approach for the generative
adversarial connection is explained. It entails the chosen architecture, rolling time-domain
training and testing, a perfect fusion mechanism, and multi-dimensional indicators. The
experimental findings are examined and contrasted with benchmark techniques in Section 4.
The contributions of this study and future work are discussed in Section 5’s conclusion.

2. Literature Survey

A deep overlay unidirectional, bidirectional LSTM neural network topology was
presented by Cui et al. [15]. The network traffic velocity could be predicted thanks to
the time series data’s forward and backward correlation. Since the algorithm makes
predictions based on historical traffic data, it can anticipate traffic speed on motorways
and compound urban traffic networks. Deep learning-based GANs can overcome these
limitations. The complicated and nonlinear interplay of instant traffic flow sequences has
led to the presentation of a more hybrid prediction framework integrating parametric and
non-parametric approaches.

By Du et al. [16], among the UAV applications that require real-time object detection are
substructure inspection, search and rescue, and reconnaissance and investigation. A brand
new method for estimating generative models that Goodfellow et al., have proposed makes
use of adversarial networks. In the proposed approach, they simultaneously train two
models: (a) a reproductive model that collects data distributions; and (b) a judicial model
that calculates the likelihood of the model’s presence using exercise data. This method
does not require any unrolled approximate inference networks or Markov chains during
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training or sample creation. The experimental findings represented a significant advance in
this area and inspired the researchers to apply GAN networks to more relevant issues.

Active generative adversarial networks were described by Kong et al. [17] for picture
categorization. The active learning strategy is recommended because it facilitates the
collection of annotations by choosing samples with a high possibility of performance
improvement. Since labeling information is difficult to obtain exclusively, active learning
is preferred. In this study, GAN networks are combined with only an active learning
technique to develop strong candidates. Each sample receives a unique reward to quantify
the level of ambiguity, which then prompts the CGAN to generate illuminating examples
for a given label.

To predict traffic density shortly, Li et al. [18] proposed a gradient-boosting method in
addition to the hierarchical reconciliation. Three aspects of traffic flow that drew a lot of
attention were the spatial and temporal models, their relationships, and the dynamics of
traffic density across various spatial at aggregate levels. Utilizing three different datasets, a
comparison with SARIMA, a Kalman filter model, and RF approaches, the presentation of
the planned context was assessed. By using the gradient-boosting method, which provides
automated and extremely flexible ways to learn, information in large datasets is educated.
The traffic forecasting accuracy in a large road network will benefit greatly from this
information. No pollution data were included, even though they are projected over a
longer time horizon.

Tang et al. [19] demonstrated that handmade features such as the histogram of directed
gradients and color histograms can be used in the absence of training data. Computing
visual attributes for every tracked object considerably increases the computational work-
load, particularly when there are a lot of monitored objects. The cumulative performance is
rarely close to real-time when combined with detector processing time.

Lin et al. [20] created a multi-quantity based on a GAN that could improve the
accuracy of a traffic prediction for actual values by using the joint probabilities of accuracy
to minimize the disparity in various traffic distribution situations. The combined dispersion
of relative entropy was used to reduce the discrepancy between the various traffic dispersal
conditions. This objective was achieved through the reduction of the discrepancy between
the different traffic distribution scenarios.

To reduce the time-consuming training, superior communication costs, and data
privacy risks of global GCNs as the count of data increases, Xia et al. [21] present a short-
term traffic flow predictive approach that combines community detection-based federated
learning with a graph convolutional network (GCN). The Federated Community GCN, or
FCGCN, seeks to produce a traffic state prediction that is precise, fast, and safe based on a
period of extensive traffic information. This is crucial for the smooth running of intelligent
transport organizations.

Haryana et al., cover the use of the Indian Navigation Satellite (INS) and the global
positioning system (GPS) [22] to estimate location and velocity. The Kalman filter is used
to integrate the signals from the INS and GPS sensors. The dilution of Precision (DOP)
technique is used to choose a selection of satellites to be used as range data. There are two
types of Kalman filters used: feedforward and feedback. The experiment demonstrates
how the chosen satellites affect the measurements. The autonomous UAV was constructed
and tested using the method and procedures described in this article.

Wang et al. [23] created an efficient and accurate malware detection system through
merging convolutional neural networks (CNNs) with generative adversarial networks
(GANs). First, they constructed a code visualization approach and used GAN to generate
more examples of harmful code variants for data augmentation. Then, CNN created the
lightweight AlexNet to classify malware families.

Wang et al. [24] suggests an algorithm for jointly detecting and locating multiple
beams-stealing attackers based on RSSI (received signal strength indicator) maps without
the training procedure associated with deep learning-based approaches. The first step is
to create an RSSI map using interpolation of the raw RSSI data to enable high-resolution
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localization while lowering monitoring costs. To detect and locate many attackers without
having any prior information on the attackers, three image processing processes, including
edge detection and segmentation, are carried out on the created RSSI map.

Jilani et al. [25] describes the creation of a traffic congestion dataset that has been
enhanced via GAN-based augmentation. The GAN-enhanced traffic congestion dataset
is then utilized to train AI-based traffic congestion models. In this paper, a five-layered
convolutional neural network (CNN) deep learning model for traffic congestion classifica-
tion is developed. The suggested model’s performance is compared to that of several other
well-known pretrained models, including ResNet-50 and DenseNet-121.

Wang et al. [26] proposed that traffic photos from the present surveillance system
in Shaanxi Province are recovered and pre-processed to create a proper training dataset,
including diverse illumination, weather circumstances, and vast scenarios. To detect traffic
congestion, a network topology based on residual learning is developed, and may be pre-
trained and fine-tuned. The network is then moved to the traffic application and retrained
using a self-created training dataset to produce the TrafficNet.

Khazukov et al. [27] aimed to create a full and high-quality system for collecting real-
time data, including average vehicle speed, driving directions, and traffic flow intensity. At
the same time, data are gathered throughout the whole functional area of intersections and
surrounding road segments that are covered by the angle of the street video surveillance
camera. The existing survey for traffic flow prediction is shown in Table 1.

Table 1. Literature survey for traffic flow prediction.

Author Proposed System Contribution Comparison Dataset Used

Zang et al. [28] STGI-ResNet

Large-scale traffic
prediction using a novel

spatiotemporal DL
architecture

Only 1-month data are
considered

Chengdu, China’s Didi
GAIA initiative traffic

data set

Cui et al. [15] LSTM-BDLSTM
Observed spatiotemporal
linkages between time’s

past and future

Only one model
was contrasted

LOOP-SEA Dataset,
PeMS-BAY Dataset

Guo et al. [29] CNN+RNN+C3D
A project involving

large-scale traffic
flow prediction

Compared to only
2 models

Dataset on Shenzhen,
China, traffic flow

Cheng et al. [30] STKNN
Proposed method to take

traffic spatial variation
into account

Only focused on
predicting

short-term traffic

traffic information from
PeMS and Beijing

floating car
speed information

Kumar et al. [31] GCNN
Spatiotemporal video

prediction using
transfer learning

Only used
video information

Indian Driving
Dataset (IDD)

Ketabi et al. [32] Numerous-variable
RNN

Superior outcomes
compared to other

camera-based studies

Only used
camera-generated data

Images from London’s
traffic cameras

Zang et al. [33] CNN-STFSA
Considered the temporal
and spatial characteristics

of traffic flow

High error rate and low
sample size

Washington State
Transportation

Department data set

Lu et al. [34] LSTM-MDC
For traffic prediction, it is

advised to employ a
unique DL-based network

Fewer traits
were employed

Information on traffic
from PeMS

Rahman F. I [35]
KNN
SVM
ANN

Weather-informed
short-term TFP using

machine learning’s KNN,
SVM, and ANN

Short term prediction
Transportation
Infrastructure
Ireland (TII)
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3. Proposed System

Current traffic information, historical traffic information, and any other relevant
statistical data are utilized in the development of an appropriate mathematical method that
is used to develop a traffic flow prediction shown in Figure 1. It is possible to use a method
of intellectual computation to produce more accurate projections of the amount of traffic
that will occur in the years to come. The findings may provide a plausible basis for vehicle
dynamic guidance and an urban circulation regulator if they are implemented.
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3.1. Data Collection

A data warehouse called the Hive project runs on the Hadoop framework. Its query
language, HiveQL, implements most of the SQL-92 standard; however, unlike conventional
relational databases, it supports the schema-on-read technique. Using this technique, the
information may be taken in and saved, and if necessary, tables can be constructed on top of
the information to facilitate data searching. A database, as well as text files and RC Files, is
used to store the data (by default, Apache HBase). Apache Derby is used to implicitly store
the metadata; however, other relational databases, such as MySQL, may be used instead.
Spark [36], MapReduce, and Tez are the other three options for Hive to use as its execution
engine. Sample images from CCTV are shown in Figure 2.
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3.2. Data Normalization

The presented GAN-HDFS model uses min–max normalization to begin the process of
traffic data normalization at the beginning level. The min–max method applies to this piece
of work provided that the result of the linear alteration procedure applied to the initial
information is a range that falls within the boundaries [0,1].

xScale =
x− xmin

xmax − xmin
(1)

If xmin and xmax were the attributes’ minimal and maximal values, respectively, and
xScale denotes the measure that is close to the characteristic matching processes.

3.3. Traffic Flow Prediction Using GAN-HDFS

When it comes to deep learning algorithms, the most important aspects to consider are
the availability of a database, the algorithm’s selection and application, and the algorithm
itself. This instruction places a lot of emphasis on the usage of information augmentation
because of the traffic database’s limited reach. As a result, a study of a novel approach
known as sequential generative adversarial networks GAN-HDFS was carried out to
address the issue of traffic congestion [37]. The temporal dynamics of roadways would be
accurately modeled using this technique to produce realistic traffic scenarios. In a recent
paper [38,39], researchers developed a novel approach for forecasting traffic flow that
analyses real-time traffic datasets using generative adversarial networks. Comparing this
strategy to the baseline method, it made noticeable progress. An inventive deep learning
framework has been presented for traffic state estimation because the traffic states that
are readily available in the real world are frequently insufficient. Real-time production of
traffic road statuses will be possible using this system.

3.3.1. Generative Adversarial Networks (GAN)

Utilizing data augmentation and image modification techniques, the GAN perfect
is used to create synthetic imageries that look very similar to the originals. In essence,
GAN makes use of a min–max game and a value purpose called V (DR, GR)), where DR
is the discriminator and GR is the generator. Exploiting the cost for the producer while
minimizing the gain for the discriminator are the two competing objectives that are at stake.
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The next loss function can be lowered or increased, and this is the aim of both the generator
(GR) and the discriminator (DR). To generate samples GR (rn), the GAN generator is run
with a random noise P(rn) devoted to the early input information x. Here, (rn) stands for
the random noise variable. The GAN generator creates these samples, as shown in Figure 3.
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Figure 3. Representation of the GAN architecture.

One could consider the noise to be a latent demonstration of the information that
the producer is trying to study. Every element of the “noise” vector can be thought of as
a feature that is given to the producer; the more valuable a feature, the better the image
that is produced. A case x may or may not be present in data distribution Pd, depending
on how a discriminator assesses the probability. The discriminator uses a mathematical
formula known as DR (GR(rn)) to determine whether a specific instance is false or real. The
generator tries to generate images that are almost perfect to deceive the discriminator. Even
though it is impossible to tell the difference between actual and fraudulent samples, the
discriminator attempts to improve its performance by doing so [40–44]. The discriminator
wants to make the next loss function bigger, whereas the generator wants to make it smaller.
After receiving the input x, the GAN generator adds the random noise component P(rn)
to the equations to produce samples GR(rn) [45–48]. The discriminator’s parameter DR
represents the assessment of the probability that an actual case of x occurs from the entire
data distribution Pd(x) [49–52]. The encoder must first comprehend the representation
feature to achieve its main objective, and the discriminator must look for the discriminating
characteristic [53–55].

min[max[V(DR, GR)]] = −ES∼pd(x)[log DR(x)]
+Ern∼prn[log(1− DR(GR(rn)))]

(2)

J pixel
recons = Eä∼DREncoder (s),s∼Ireal

[||K(q)− τ(S)||] (3) p′

q′

1

 =

 −1 0 0
0 1 0
0 0 1

×
 p

q
1

 (4)

p′ = −p, q′ = q (5) p′

q′

1

 =

 −1 0 0
0 − 1 0
0 0 1

×
 p

q
1

 (6)

p′ = p, q′ = −q (7)

To augment data with high-quality images and improve segmentation performance
for the resulting dataset, the GAN is used.
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3.3.2. Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System, or HDFS, is a distributed file system created to
store enormous volumes of data (hundreds of terabytes and even terabytes of data) and offer
high-throughput access to these data. Files are redundantly stored across many machines
to guarantee their resilience to failure, and are highly available for highly parallelized
applications. A software framework called Hadoop Map-Reduce processes large amounts
of data concurrently and fault-tolerantly. It is used to process enormous datasets because
of its high efficiency and scalability. Master/slave architecture is used by HDFS. An HDFS
cluster typically includes an Effectively Set, secondary Name Nodes, a single Name Node,
and at minimum three Data Nodes. The Master Server panels client entrance to files and
manages the file scheme namespace.

All the data files in the Hadoop cluster are stored in HDFS, the essential component
of distributed computing. The file state’s administrator, Primary Name Node, oversees
managing user document access, the namespace, and the descriptive metadata for the
file system. The secondary Name Node is a name for Name Node’s backup. By dividing
the regional disc into many storage blocks, each Data Storage block stores information in
this manner. Periodically, the Data Node must report to the Name Node. Additionally,
chunking of files improves throughput. A variety of Data Nodes, normally three ends in
the cluster, oversee managing the memory that is connected to the network that they run on.
Writing map operators and a reduce function are required for map-reduce programming.

The map function returns a list of the intermediate values together with the key after
taking a key and a couple of intermediate levels. The chart purpose, which is constructed in
a method that permits several map functions to operate concurrently, is the component of the
computer that splits tasks shown in Figure 4. The output of the map functions is processed
in some way when the reduce function is used—typically by joining values—to obtain the
wanted result in a production folder. Thus, the Map Decrease closely follows the design and
nomenclature provided by Dean and Ghemawat [56–59] to parallelize calculations.
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4. Result and Discussion
4.1. Experimental Setup

The system that was designed was evaluated using two metrics. We first trained and
assessed the detection network and all suggested upgrades using our new dataset. The out-
comes of the traffic flow estimation problem were then assessed. We processed surveillance
data using the technology during peak hours to achieve this. The number of cars moving
through each of the four popular congestion directions was compared with the actual data
gathered by on-the-ground observers. All tests were run on the Ubuntu 18.04 operating
system with an Nvidia RTX 2080 Ti GPU, 12 Intel Core i7-8700 CPU cores operating at
3.20 GHz, and 32 GB of RAM. On top of Fb Detectron’s official realization [60–62], we built
our solution.
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4.2. Performance Metrics

Five different presentation parameters were used to check the precision of the out-
puts that the trained model generated. Accuracy, recall, precision, F1 score, and energy
consumption [63–68] were used to assess the model’s presentation.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F-Score = 2 ∗ precision ∗ recall
precision + recall

(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Energy Consumption
µ = mean(x)

µ(X) = ∑ (xi−µ)2

N−1

(12)

4.2.1. Precision

A comparison of precision of the GAN-HDFS approach and other existing techniques
is shown in Figure 5 and Table 2. The graph demonstrates how the machine learning
strategy has an improved performance with precision. For instance, the GAN-HDFS model
has a precision value of 93.83% for data 100, compared to the precision values of 78.43%,
81.54%, 74.29%, 84.21%, and 89.43% for BiLSTM, CNN, RNN, GAN, and ARIMA models,
respectively. The GAN-HDFS model has nonetheless demonstrated its best performance
with various data sizes. The precision value of the GAN-HDFS is 96.21% under 350 data,
compared to 80.13%, 82.54%, 75.83%, 86.11%, and 91.65% for BiLSTM, CNN, RNN, GAN,
and ARIMA models, respectively.
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Table 2. Precision analysis for GAN-HDFS with existing systems.

No. of Data
from Dataset BiLSTM CNN RNN GAN ARIMA GAN-HDFS

100 78.43 81.54 74.29 84.21 89.43 93.83
150 78.67 82.76 74.31 84.09 89.69 94.29
200 77.12 81.71 75.48 85.29 90.14 95.15
250 79.29 81.98 76.97 84.97 91.32 95.64
300 79.74 82.13 75.39 85.32 90.87 95.89
350 80.13 82.54 75.83 86.11 91.65 96.21

4.2.2. Recall

Comparative recall testing between the GAN-HDFS strategy and other approaches is
shown in Figure 6 and Table 3. The chart demonstrates that the machine learning strategy
led to an improved recall performance. For instance, the recall value for the GAN-HDFS
model with data 100 is 92.54%, while the recall values for BiLSTM, CNN, RNN, GAN,
and ARIMA models are 81.23%, 69.32%, 84.90%, 75.32%, and 88.21%, respectively. The
GE-DBN model has nonetheless demonstrated its best performance with various data sizes.
Similarly, the recall value of the GAN-HDFS is 97.54% under 350 data, whereas the recall
values of BiLSTM, CNN, RNN, GAN, and ARIMA models are 82.43%, 72.89%, 86.19%,
77.76%, and 91.76%, respectively.
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Table 3. Recall analysis for GAN-HDFS with existing systems.

No. of Data
from Dataset BiLSTM CNN RNN GAN ARIMA GAN-HDFS

100 81.23 69.32 84.90 75.32 88.21 92.54
150 81.54 69.95 85.01 77.21 89.54 93.76
200 80.32 70.32 85.32 76.43 89.97 94.92
250 80.97 70.41 85.79 76.75 90.14 95.87
300 81.99 71.98 86.27 76.92 91.32 96.21
350 82.43 72.89 86.19 77.76 91.76 97.54

4.2.3. F-Score

A comparison of F-Score analysis of the GAN-HDFS methodology with other available
approaches is shown in Figure 7 and Table 4. The figure demonstrates that the machine
learning approach has led to an improved F-Score performance. For instance, the GAN-
HDFS model’s F-Score for data 100 is 93.01%, while the corresponding values for the
BiLSTM, CNN, RNN, GAN, and ARIMA models are 76.80%, 74.28%, 78.90%, 81.25%,
and 88.43%, respectively. The GAN-HDFS model has nonetheless demonstrated its best
performance with various data sizes. The F-Score value of the GAN-HDFS model is 96.32%
under 350 data, compared to 80.12%, 78.97%, 83.41%, 86.28%, and 91.76% for the BiLSTM,
CNN, RNN, GAN, and ARIMA models, respectively.
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Table 4. F-Score analysis for GAN-HDFS with existing systems.

No. of Data
from Dataset BiLSTM CNN RNN GAN ARIMA GAN-HDFS

100 76.80 74.28 78.90 81.25 88.43 93.01
150 77.97 75.89 79.32 82.87 89.21 93.98
200 78.87 76.32 80.21 83.65 89.43 94.32
250 79.43 76.95 82.31 84.29 90.21 94.28
300 80.34 77.32 82.78 85.18 90.32 95.71
350 80.12 78.97 83.41 86.28 91.76 96.32

4.2.4. Accuracy

A comparison of accuracy of the GAN-HDFS approach and other existing techniques is
shown in Figure 8 and Table 5. The graph demonstrates that the machine learning strategy
has an improved performance in terms of accuracy. For instance, the accuracy for the
GAN-HDFS model with data 100 is 96.52%, whereas the accuracy values for the BiLSTM,
CNN, RNN, GAN, and ARIMA models are 81.90%, 77.21%, 73.87%, 85.43%, and 89.31%,
respectively. The GE-DBN model has nonetheless demonstrated its best performance with
various data sizes. The accuracy value of the GAN-HDFS model is 98.21% under 350 data,
compared to 82.67%, 79.73%, 75.43%, 87.32%, and 92.43% for the BiLSTM, CNN, RNN,
GAN, and ARIMA models, respectively.
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Table 5. Accuracy analysis for GAN-HDFS with existing systems.

No. of Data
from Dataset BiLSTM CNN RNN GAN ARIMA GAN-HDFS

100 81.90 77.21 73.87 85.43 89.31 96.52
150 81.32 78.32 73.86 84.64 90.14 96.87
200 81.78 77.41 74.29 84.92 91.54 97.21
250 82.43 77.78 74.38 85.32 91.98 97.32
300 82.31 78.35 75.12 86.18 92.67 98.01
350 82.67 79.73 75.43 87.32 92.43 98.21

4.2.5. Encryption Time

The encryption time analysis of the GAN-HDFS approach with existing methods
is described in Table 6 and Figure 9. The data clearly demonstrate that the GAN-HDFS
method has performed better than the other methods in every way. For example, with
100 data, the GAN-HDFS method has taken only 5.943 ms to encrypt, while the other
existing techniques such as BiLSTM, CNN, RNN, GAN, and ARIMA have an encryption
time of 12.342 ms, 10.432 ms, 7.219 ms, 8.201 ms, and 9.321 ms, respectively. Symmetrically,
for 350 data, the GAN-HDFS method has an encryption time of 6.692 ms, while the other
existing techniques such as BiLSTM, CNN, RNN, GAN, and ARIMA require 13.654 ms,
12.782 ms, 7.943 ms, 8.328 ms and 10.372 ms of encryption time, respectively.

Table 6. Encryption time analysis for GAN-HDFS with existing systems.

No. of Data
from Dataset BiLSTM CNN RNN GAN ARIMA GAN-HDFS

100 12.342 10.432 7.219 8.201 9.321 5.943
150 12.549 10.893 7.531 8.282 9.943 5.981
200 12.943 11.543 7.092 8.125 10.432 6.210
250 13.043 12.059 7.325 8.783 10.157 6.398
300 13.258 12.143 7.167 8.104 10.231 6.482
350 13.654 12.782 7.943 8.328 10.372 6.692
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4.2.6. Decryption Time

Table 7 and Figure 10 describe the decryption time analysis of the GAN-HDFS method
with existing methods. The data clearly show that the GAN-HDFS method has outper-
formed the other methods in all aspects. For example, with 100 data, the GAN-HDFS
method has taken only 6.721 ms for decryption, while the other existing techniques such as
BiLSTM, CNN, RNN, GAN, and ARIMA have a decryption time of 12.894 ms, 10.342 ms,
8.043 ms, 9.210 ms, and 8.743 ms, respectively. Similarly, for the 350 data, the GAN-HDFS
method has a decryption time of 7.321 ms while the other existing techniques such as
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BiLSTM, CNN, RNN, GAN, and ARIMA require 14.013 ms, 11.854 ms, 8.932 ms, 10.382 ms
and 9.710 ms of decryption time, respectively.

Table 7. Decryption time analysis for GAN-HDFS with existing systems.

No. of Data
from Dataset BiLSTM CNN RNN GAN ARIMA GAN-HDFS

100 12.894 10.342 8.043 9.210 8.743 6.721
150 12.963 10.541 8.210 9.365 8.932 6.832
200 13.901 10.975 8.428 9.732 8.431 6.942
250 13.453 11.784 8.643 9.843 8.743 7.013
300 13.894 11.652 8.742 9.217 9.419 7.148
350 14.013 11.854 8.932 10.382 9.710 7.321
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4.2.7. Execution Time

Table 8 and Figure 11 describe the execution time analysis of the GAN-HDFS tech-
nique with existing methods. The data clearly show that the GAN-HDFS method has
outperformed the other techniques in all aspects. For example, with 100 data, the GAN-
HDFS method has taken only 3.143 s to execute, while the other existing techniques such
as BiLSTM, CNN, RNN, GAN, and ARIMA have an execution time of 8.320 s, 7.329 s,
5.294 s, 6.312 s, and 4.421 s, respectively. Similarly, for 350 data, the GAN-HDFS method
has an execution time of 4.321 s, while the other existing techniques such as BiLSTM, CNN,
RNN, GAN, and ARIMA require 9.762 s, 8.129 s, 6.765 s, 7.921 s and 5.154 s of execution
time, respectively.

Table 8. Execution time analysis for GAN-HDFS with existing systems.

No. of Data
from Dataset BiLSTM CNN RNN GAN ARIMA GAN-HDFS

100 8.320 7.329 5.294 6.312 4.421 3.143
150 8.421 7.431 5.348 6.843 4.589 3.654
200 8.672 7.481 5.914 6.921 4.783 3.781
250 8.721 7.738 6.043 7.317 4.904 3.981
300 9.421 7.956 6.285 7.562 5.087 4.109
350 9.762 8.129 6.765 7.921 5.154 4.321
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4.2.8. Energy Consumption

Table 9 and Figure 12 display the energy consumption analysis of the GAN-HDFS
method with existing methods. The proposed method consumes much less energy when
compared to the other techniques for any amount of data. For example, with 100 data, the
GAN-HDFS method consumes only 30.32 J, while the other methods such as BiLSTM, CNN,
RNN, GAN, and ARIMA consume 48.19 J, 52.04 J, 40.64 J, 38.19 J and 45.21 J, respectively.
Similarly, with 350 data, the proposed GAN-HDFS method consumes only 32.04 J, whereas
the other methods such as BiLSTM, CNN, RNN, GAN, and ARIMA consume 49.74 J, 53.45 J,
43.97 J, 39.75 J and 46.97 J, respectively. The proposed method shows higher performance
with less energy consumption.
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Table 9. Energy consumption analysis for GAN-HDFS with existing systems.

No. of Data
from Dataset BiLSTM CNN RNN GAN ARIMA GAN-HDFS

100 48.19 52.04 40.64 38.19 45.21 30.32
150 48.56 52.28 42.58 38.73 45.58 30.48
200 48.23 52.74 43.12 38.59 45.87 30.98
250 48.59 52.89 42.98 39.19 45.21 31.39
300 49.27 53.12 43.63 39.43 46.87 31.85
350 49.74 53.45 43.97 39.75 46.97 32.04

5. Conclusions

A growing number of methods for gathering, processing, storing, and exploiting data
are now accessible thanks to the emergence of big data. This study concentrated on the
responsibilities of traffic approximation and prediction and provides a current compilation
of readily accessible datasets and tools as a guide for individuals looking for open resources.
It is also suggests the use of outside data, such as weather, calendar, and other data. Air
pollution emissions and noise levels are important indicators for more accurate estimation
and forecasting of traffic conditions. Geographic information systems, data acquisition and
processing technologies, along with artificial intelligence technology, are now frequently
used in urban traffic systems. Situational awareness in urban traffic is made possible by the
state of intelligent identification in urban traffic, which also serves as a theoretical founda-
tion for intelligent control of the urban traffic system. One of the fundamental approaches
to relieving urban traffic congestion is short-term traffic flow prediction, which is the
foundation and premise of proactive and proactive traffic management. This research aims
to solve the classification problem between crowded and uncongested traffic conditions,
particularly in developing countries. The lack of traffic datasets is a significant impediment
in this scenario. To build the dataset, traffic photos were collected from video recordings
captured in developing countries and augmented to provide a larger number of images.
This attempted in order to address the problem by exploiting the better deep learning
capabilities of a GAN to generate images from the provided dataset. Because the obtained
dataset contained fuzzy photos, the adoption of a GAN considerably enhanced image qual-
ity. This study utilized GAN-HDFS for a real-time traffic forecasting system using CCTV
surveillance and discovered a significant improvement in accuracy. In comparison to other
recent methods applied to the dataset, the proposed method achieved the highest accuracy
of 98.21%. As a result, the development of intelligent regulation of the urban traffic system
will inevitably be intimately related to future research on short-term traffic flow prediction
approaches. A fresh approach to solving traffic prediction problems is suggested by the
proposed GAN-HDFS and its application. The GAN-HDFS offers a flexible framework for
fusing the benefits of several sub-models and an appropriate arena for competition among
them. Big information situations (such as traffic forecast and traffic state approximation),
which were originally intended for the machine learning environment, can be resolved with
GAN-HDFS. However, it is important to investigate how well GAN-HDFS applies to varied
datasets, distributions, and statistical characteristics. It is possible that ML technology will
one day be a crucial information source because it can be applied to many symmetric IoT
applications. In the future, we will create a model that works effectively in both typical and
unusual situations, such as special occasions, or other events. Weather conditions as well
as information on other incidents such as accidents and road closures can be considered to
improve the model. Since missing data make prediction problems even more challenging
in real-world applications, we will offer a strategy to handle missing data effectively.
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