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Abstract: The intuitionistic hesitant fuzzy set (IHFS) is an enriched version of hesitant fuzzy sets
(HFSs) that can cover both fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs). By assigning mem-
bership and non-membership grades as subsets of [0, 1], the IHFS can model and handle situations
more proficiently. Another related theory is the theory of set pair analysis (SPA), which considers
both certainties and uncertainties as a cohesive system and represents them from three aspects:
identity, discrepancy, and contrary. In this article, we explore the suitability of combining the IHFS
and SPA theories in multi-attribute decision making (MADM) and present the hybrid model named
intuitionistic hesitant fuzzy connection number set (IHCS). To facilitate the design of a novel MADM
algorithm, we first develop several averaging and geometric aggregation operators on IHCS. Finally,
we highlight the benefits of our proposed work, including a comparative examination of the recom-
mended models with a few current models to demonstrate the practicality of an ideal decision in
practice. Additionally, we provide a graphical interpretation of the devised attempt to exhibit the
consistency and efficiency of our approach.

Keywords: intuitionistic fuzzy set; hesitant fuzzy set; power aggregation operators; connection
number; set pair analysis theory

1. Introduction

The technique for picking the most acceptable alternative based on the provided criteria
is known as decision making (DM). Various DM procedures are originated via one feature
only, but most often, these are dependent upon multiple attributes. The area of DM is then
called multiple-attribute DM (MADM). MADM is a highly crucial testing domain, which
helps choose the correct option associated with several leading features [1–3]. Mainly, the
DM uses crisp figures to describe the preferences concerning the choices in usual MADM
problems. Nevertheless, due to the inadequacy of statistics, shortage of time, and lack of
data and quality values, fuzzy values may be used to specify the preferences exclusively
for the attribute values.

The idea of fuzzy sets (FSs) was introduced by Zadeh [4] in 1965 and, after they have
come into existence, several researchers have applied them to solve various problems and
developed symmetrical decision models [5–7]. Every fuzzy set has a pair of each compo-
nent with a function of membership, where this function provides a membership grade
in [0, 1]. Later, several extensions of this fuzzy set have been proposed by the researchers.
Atanassov [8,9] proposed an intuitionistic fuzzy set (IFS) in 1986. The IFS expresses ambigu-
ous and complex information with the aid of the membership as well as non-membership
grades, where the sum of both grades cannot exceed 1. The IFS has been getting a lot of
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attention since its initiation. For instance, Garg and Arora [10] stated a decision-making
algorithm for the DMPs (“decision-making problems”) with “interval-valued intuitionis-
tic fuzzy soft set” features. Zeng et al. [11] defined the generalized probabilistic ordered
operators for DMPs. Eom and Lee [12] elaborated the intuitionistic fuzzy theta-compact
space. In Refs. [13,14], the authors have defined an application of the intuitionistic fuzzy
pairs to solve the different DMPs. Bustince and Burillo [15] and Park et al. [16] defined
the correlation coefficients for an interval-valued IFS. Atanassov [17] stated some novel
topological operators over the IFS. In terms of ranking the different pairs of IFSs, several
researchers have defined various measures such as the accuracy function [18], similarity
measures [19], and grey relational analysis [20]-based algorithms for DMPs. Jiang et al. [21]
defined the distance measures based on the transformation techniques of IFSs and their
application to the “pattern recognition” problems. In [22,23], the authors have defined
some generalized aggregation operators to aggregate the different pairs of IFSs and their
applications to the DMPs.

In the above-mentioned literature, all the studies considered the input as a real number.
However, to address the uncertainties in a more generalized manner, Torra [24,25] presented
the concept of the hesitant fuzzy set (HFS). An HFS agrees to the membership grade holding
a set of possible values of the interval from 0 to 1. An HFS is also an expanded form of the FS.
The idea of the HFS is broadly applied in several complications. Most scholars performed a
critical investigation on HF data accumulation procedures and their effects in DMPs. For
instance, Mahmood et al. [26] defined the aggregation operators of the pairs of the bipolar-
valued hesitant fuzzy set to solve the DMPs. Mockor et al. [27] explored the relationship of
HFSs with some generalized form of fuzzy sets. Alcantud [28] ranked the different pairs of
HFSs for multi-agent decisions. Zhang et al. [29] presented an extended LINMAP method
with HFS information for green-supplier selection problems. Xia et al. [30] stated some
operators for HFSs. Shaheen et al. [31] defined the concept of hesitant fuzzy rough sets.
Sun and Ouyang [32] stated a TOPSIS-based decision-making algorithm for the DMPs.
Ni et al. [33] stated a projection method for DMPs using the dual HFS. Liu and Sun [34]
proposed generalized power operators for DMPs using the pairs of HFSs. Tahir et al. [35]
described the concept of an IHFS (“intuitionistic hesitant fuzzy set”) which is a fusion of the
IFS and the HFS. In the IHFS, the grades reflect in the form of a set of possible values from
[0, 1]. Admittedly, the IHFS has developed as a potent tool for explaining the fuzziness of
the DM complexities.

Aside from the aforementioned ideas, Zhao [36] suggested another approach, rec-
ognized as set pair analysis (SPA), to cope with uncertainty. This concept harmonizes
the system of assurance and apprehension in a specific evaluation. The most important
part of this concept is the CN (“connection number”); it is split into three kinds of senses:
identity, inconsistency, and opposition. The fundamental properties of the CNs are defined
by Jiang et al. [37]. Later, several researchers showed interest in explaining DM difficulties
using set pair analysis (SPA) [38–40]. However, Kumar and Garg [41,42] outlined the dif-
ferent formulae of connection numbers to resolve the DM problems applying the TOPSIS
method. Zhang [43] developed the relationship between fuzzy sets and the theory of SPA.
After considering the relationship between both theories, Hu et al. [44] defined a dynamic
stochastic multiple-attribute DM course. Jia et al. [45] determined the distance measures
for MADM based on CNs.

The two foremost steps involved in MADM are, firstly, the aggregation phase to
determine the total value of the selected option by combining the given performance values
of all the attributes through the suitable integration process; and, secondly, the manipulation
phase for choosing the best option. In this paper [46], the authors employ many approaches
to support the MD process, such as a combination of the DEA window analysis with the
Malmquist index approach to assess the efficiency of the cybersecurity industry, and a
framework based on multicriteria decision making (MCDM) is provided that integrates the
spherical fuzzy analytical hierarchical process (SF-AHP) and the grey complex proportional
assessment (G-COPRAS), in which spherical fuzzy sets and grey numbers are used to
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express the ambiguous linguistic evaluation statements of experts [47]. For the aggregation
phase, during the last twenty years, experts have worked hard to develop aggregation
operators, used to tackle DM difficulties. For example, Xu and Yager [48] established
a few fundamental geometric aggregation (GA) operators named the IF-WGA operator
and IF-OWG operator, which are applied for DM based upon the intuitionistic fuzzy set.
Zhang [49] established some aggregation operators and aggregated the hesitant fuzzy
environment. Yager [50] demonstrated a power aggregation operator and confirmed its
role in MADM. Ahmmad et al. [51] used the Aczel–Alsina Average aggregation operator
for medical diagnosis. Mehmood et al. [52] produced the Hamacher Choquet-integral
aggregation operators for ranking. Moreover, Tahir et al. [35] established some AOs for
IHFSs and PHFSs for decision making.

The above-described aggregation operators are extensively applied to aggregate the
preference values for getting the best results. However, during the research, these operators
exceeded the association between the data provided. Through research, we have explored
the idea that the CN of the theory of SPA can be applied extensively for MADM. Considering
this aspect, we define the intuitionistic hesitant fuzzy connection number set (IHCS) by
merging the prominent features of the IHFS and the SPA, and the applications of fuzzy logic
in different fields should also be mentioned in the literature review. The related works were
suggested as follows [53–56]. In addition, this article establishes a sequence of aggregation
operators. The inspiration and attainments of this paper are presented below:

1. The origination of some PA operators, such as the IHCPA, IHCPWA, IHCPOWA, IHCPHA,
IHCPG, IHCPWG, IHCPOWG, and IHCPHG operators, and verifying their properties;

2. Proposing a novel MADM technique that involves the developed operations;
3. Furnishing specific mathematical examples to validate the consistency and supremacy

of the presented approach.

The rest of the article is organized as follows: In Section 2, we briefly overview
the concept of the HFS and SPA theory. In Section 3, we defined the concept of IHFCNS
(“intuitionistic hesitant fuzzy connection number set”) and stated its properties. In Section 4,
we proposed an MADM algorithm with the stated operators to address the DMPs. To
validate the performance of the proposed algorithm, a numerical example is given in
Section 5. Finally, a conclusion is drawn in Section 6. The detailed flow chart of the
proposed study is shown in Figure 1.
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2. Preliminaries

This section includes a few fundamental concepts related to the present studies on the
intuitionistic hesitant fuzzy set and the theory of SPA.

Definition 1 ([35]). The supporting mappings for an IHFS are φ, ψ: F → [0, 1].With the aid of
these mappings, IHFS Zi over F is described as below:

Zi = {(ςi, φZ (ςi), ψZ (ςi))|ςi ∈ F} (1)

where 0 ≤ max(φZ (ςi)) + max(ψZ (ςi)) ≤ 1. φZ (ςi) and ψZ (ςi) are collections of certain
amounts in [0, 1], representing the membership grades and non-membership grades of the
component ςi ∈ F .

Remark 1.

1. For each ςi ∈ F , Zi = (φZ (ςi), ψZ (ςi)) is the IHFE.
2. It is assumed that the largest element will be repeated to make the lengths of the two IHFEs

the same in the IHFSs.
3. The elements in the IHFSs will be arranged in ascending order for comparison purposes.

Definition 2 ([35]). For IHFS Z = (φZ , ψZ ), the score function (Sc(Z) ) as well as accuracy
function (T (Z)) are expressed as:

Sc(Z) = Sc(φZ )− Sc(ψZ )
2

,Sc(Z) ∈ [−1, 1]

T (Z) = Sc(φZ ) + Sc(ψZ )
2

, T (Z) ∈ [0, 1]

where Sc(φZ ) =
sum o f all elements in (φZ )

order o f (φZ )
and Sc(ψZ ) =

sum o f all elements in (ψZ )
order o f (ψZ )

.

Definition 3 ([35]). An IHFS Z1 will be preferred over Z2, denoted by Z1 > Z2, based upon the
following criteria:

(i) Sc(Z1) > Sc(Z2);
(ii) Sc(Z1) = Sc(Z2) and T (Z1) > T (Z2)

Definition 4 ([35]). The intuitionistic hesitant fuzzy power average and geometric operators are
denoted and defined, respectively, as follows:

IHFPA(Z1Z2 . . . .,Zn)

=
⋃

hiεφi
fiεψi

(
1−

n

∏
i=1

(
1− (hi)

(1+T(Zi))
∑n

i=1 (1+T(Zi))

)
,

n

∏
i=1

(fi)
(1+T(Zi))

∑n
i=1 (1+T(Zi))

)

and
IHFPG (Z1Z2 . . . .,Zn)

=
⋃

hiεφi
fiεψi

(
n

∏
i=1

(hi)
(1+T(Zi))

∑n
i=1 (1+T(Zi)) , 1−

n

∏
i=1

(1− (fi)
(1+T(Zi))

∑n
i=1 (1+T(Zi)) )

)

where

T(Zi) =
⋃

φiεZi
ψiεZi

 n

∑
i=1
i 6=j

Sup
(
Zi,Zj

)
The theory of SPA is based on a pair of sets that are interrelated and unified under a

certain construction. The examples may include the system and surroundings, the system
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and engineering, military problems, state security, etc. SPA analyzes the common attributes
and establishes a connection degree (J = α + βi + γj) of two such sets according to the
given settings. The theory is further extended for more than two sets.

Definition 5 ([36]). The connection degree is defined as

J =
S
N

+
F
N

i +
P
N

j

J = α + βi + γ (2)

where N represents “all attributes”, S represents “identity attributes”, P represents “con-
trary attributes”, and F = N− S− P represents the amount of “mutual attributes” of the
two sets that are neither identity nor contrary. α = S

N , β = F
N , γ = P

N are, respectively, called
the identity degree, discrepancy degree, and contrary degree of the two sets. According to
the given circumstances, i (contrary degree) and j (discrepancy degree) can be specified
from [−1, 1]. Clearly, α + β + γ = 1.

3. Proposed IHCS and Aggregation Operators

This portion includes the establishment of a new concept by combining the IHFS and
CN of the theory of SPA, called the intuitionistic hesitant fuzzy connection number set
(IHCS). Based on this definition, a sequence of new aggregation operators is developed.
These proposed operators and their properties have been analyzed and their suitability is
portrayed in some newly developed algorithm.

Definition 6. An intuitionistic hesitant fuzzy CN set (IHCS) corresponding to IHFS Z =
{(ςi, φ(ςi), ψ(ςi))|ςi ∈ F} is denoted and defined as

JZ = {(ςi, αZ (ςi) + βZ (ςi)i + γZ (ςi)j|ςi ∈ F} (3)

where αZ (ςi) =
1
m ∑m

l=1({hl(1− fl)}), βZ (ςi) =
1
m ∑m

l=1({1− hl(1− fl)− fl(1− hl)}), and
γZ (ςi) =

1
m ∑m

l=1({ fl(1− hl)}), and hl ∈ φZ (ςi) and fl ∈ ψZ (ςi) are arbitrary elements of
the membership and non-membership sets. Here, αZ (ςi), βZ (ςi), and γZ (ςi) signify the
“identity,” “discrepancy”, and “contrary” degrees.

For a particular k, αZ (ςk) + βZ (ςk)i + γZ (ςk)j, this represents the intuitionistic hes-
itant fuzzy connection number IHCN. Without loss of generality, it will be written as
αk + βki + γk j.

Remark 2.

1. For each ςi ∈ F ,JZ = αZ (ςi) + βZ (ςi)i + γZ (ςi)j will be considered as an intuitionistic
hesitant fuzzy connection number element.

2. Throughout the article, the lengths of the IHFEs will be kept similar by repeating the maximum
value in the smaller one.

3. hl , fl (l = 1, 2, . . . , m) represents the IHFEs in ascending order.
4. The components of the IHCS are considered as IHCEs.

Definition 7. For two IHCEs J1 = α1 + β1i + γ1 j and J2 = α2 + β2i + γ2(ςi)j, we have

i. J1(ςi) = J2(.ςi)⇔ α1(ςi) = α2(ςi), β1(ςi) = β1(ςi), γ1(ςi) = γ2(ςi) ;
ii. J1(ςi) ≤ J2(ςi) i f α1(ςi) ≤ α2(ςi), γ1(ςi) ≥ γ2(ςi);

iii. J1(ςi)
c = γ1(ςi) + β1(ςi)i + α1(ςi)j represents the complement of the IHCE J1(ςi).

Definition 8. Let J1 = α1 + β1i + γ1 j and J2 = α2 + β2i + γ2 j be two IHCEs; then,

i. J1
⊕J2 = (1− (1− α1)(1− α2)) + (( β1 + γ1)(β2 + γ2)− β1β2)i + (β1β2)j ;
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ii. J1 ⊗J2 = α1α2 + (1− (1− β1)(1− β2))i + ((α1 + γ1)(α2 + γ2)− α1α2)j;
iii. J1

λ = a1
λ +

(
1− (1− b1)

λ
)

i +
(
(a1 + c1)

λ − aλ
1

)
j, λ > 0.

It is straightforward to prove that these operators generate IHCEs.

Definition 9. For a group of IHCEs Ji(i = 1, 2, . . . , n), the power averaging operator IHCPA:
J n → J is defined as

IHCPA(J1,J2, . . .Jn) =

n⊕
i = 1

(1 + T(Ji))Ji

∑n
i=1(1 + T(Ji))

(4)

=

(
1−

n
∏
i=1

(
1− (α i)

(1+T(Ji)))
∑n

i=1 (1+T(Ji))

))

+

(
n
∏
i=1

(βi + γi)
(1+T(Ji))

∑n
i=1 (1+T(Ji)) −

n
∏
i=1

(βi)
(1+T(Ji))

∑n
i=1 (1+T(Ji))

)
i

+

(
n
∏
i=1

(βi)
(1+T(Ji))

∑n
i=1 (1+T(Ji))

) (5)

wherever T(Ji) is the Sup of the ith biggest IHCE (Ji) by all the other IHCEs, that is,

T(Ji) = ∑n
j = 1
j 6= i

Sup
(
Ji,Jj

)

Here, Sup
(
Ji,Jj

)
is the Sup for Ji from Jj, and it is calculated by:

Sup
(
Ji,Jj

)
= 1− d

(
Ji,Jj

)
Sup satisfies the given properties:

i. Sup
(
Ji,Jj

)
∈ [0, 1];

ii. Sup
(
Ji,Jj

)
= Sup

(
Jj,Ji

)
;

iii. Sup
(
Ji,Jj

)
≥ Sup (Js,Jt), i f d

(
Ji −Jj

)
< d(Js −Jt) where d is distance.

The support (Sup) amount is a similarity indicator.

Definition 10. Let Ji be a group of IHCEs and ω = (ω1, ω2, . . . , ωn)
T by the weight vector of Ji,

ωi > 0, and ∑n
i=1 ωi = 1. The power weight averaging operator IHCPWA: J n → J is defined as

IHCPWA(J1,J2, . . . ,Jn) =

n⊕
i = 1

(ωi(1 + T(Ji)Ji)

∑n
i=1 ωi(1 + T(Ji))

= 1−
n
∏
i=1

(
1− (α i)

ωi(1+T(Ji))
∑n

i=1 ωi(1+T(Ji))

)

+

(
n
∏
i=1

(βi + γi)
ωi(1+T(Ji))

∑n
i=1 ωi(1+T(Ji)) −

n
∏
i=1

(βi)
ωi(1+T(Ji))

∑n
i=1 ωi(1+T(Ji))

)
i

+

(
n
∏
i=1

(βi)
ωi(1+T(Ji))

∑n
i=1 ωi(1+T(Ji))

)
j

(6)

The following properties can be easily justified for the IHCPWA operators.
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Property 1: (Idempotency) Suppose Ji (i = 1, 2, 3 · · · , n) are Ji = J for each i ; then,

IHCPWA(J1,J2, . . . ,Jn) = J

Property 2: (Boundedness) Suppose Ji is a collection of IHCEs, and permits

J − = min
i
Ji,J + = max

i
Ji(i = 1, 2, . . . , n)

then
J − ≤ IHCPWA(J1,J2, . . . ,Jn) ≤ J +

Property 3: (Monotonicity) Suppose Ji and J ′ i are collections of IHCEs; if Ji ≤ J ′ i for all i ,
then

IHCPWA(J1,J2, . . . ,Jn) ≤ IHCPWA
(
J ′1,J ′2, . . . ,J ′n

)
Definition 11. Let Ji be a group of IHCEs; the power order weight averaging operator of dimension
“n”, related with the weight vector ω = (ω1, ω2, . . . , ωi)

T such that ωi > 0 and ∑n
i=1 ωi = 1 ,

IHCPOWA: J n → J , is defined as

IHCPOWA(J1,J2, . . . ,Jn)=

n⊕
i = 1

(ωi(1 + T(Jσ(i))Jσ(i)))

∑n
i=1 ωi(1 + T(Jσ(i)))

= 1−
n
∏
i=1

1−
(

ασ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))


+

 n
∏
i=1

(
βσ(i) + γσ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))

−
n
∏
i=1

(
βσ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))

i

+

 n
∏
i=1

(
βσ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))

j

(7)

where σ(1), σ(2), . . . ,σ(n) indicates a permutation of (1, 2, . . . , n), in which Jσ(i−1) ≥ Jσ(i),
ωi(i = 1, 2, . . . , n) is a group of weights so that

ωi = g
(

Ri
TV

)
− g
(

Ri−1

TV

)
, Ri = ∑n

i=1 Vσ(i), TV = ∑n
i=1 Vσ(i), Vσ(i.) = 1. + T

(
Jσ(i)

)
and T

(
Jσ(j)

)
implies the Sup of the jth largest IHCE T

(
Jσ(j)

)
by all the other (IHCEs),

that is,

T
(
Jσ(j)

)
=

n

∑
i=1
i 6=j

Sup
(
Jσ(j),Jσ(i)

)

where ∑n
i=1
i 6=j

Sup
(
Jσ(j),Jσ(i)

)
shows the Sup of the jth is the biggest IHCE Jσ(j), for the ith

largest IHCE Jσ(i).

Some properties of the IHCPOWA operator are as follows:

Property 4: (Idempotency) Suppose Ji(i = 1, 2, 3 · · · , n) are Ji = J for every i; then,

IHCPOWA(J1,J2, . . . ,Jn) = J
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Property 5: (Boundedness) Let Ji be a group of IHCEs and allow

J − = min
i
Ji, J + = max

i
Ji (i = 1, 2, . . . , n)

then
J − ≤ IHCPOWA

(
(J1,J2, . . . ,Jn) ≤ J +

Property 6: (Monotonicity) Let Ji and J ′ i be two set of IHCEs; if Ji ≤ J ′ i for all i , then

IHCPOWA(J1,J2, . . . ,Jn) ≤ IHCPOWA
(
J ′1,J ′2, . . . ,J ′n

)
Property 7: (Commutativity) Let Ji and J ′ i be two set of IHCEs; if Ji ≤ J ′ i for all i, then

IHCPOWA(J1,J2, . . . ,Jn) = IHCPOWA
(
J ′1,J ′2, . . . ,J ′n

)
where J ′ j is a permutation of Jj.

Definition 12. Suppose Ji is group of IHCEs; the power hybrid averaging operator IHCPHA:
J n → J is defined as

IHCNPHA(J1,J2, . . . ,Jn) =

n⊕
i = 1

(ωi(1 + T(
.
J σ(i))

.
J σ(i)))

∑n
i=1 ωi

(
1 + T

( .
J σ(i)

))

= 1−
n
∏
i=1

1−
( .

ασ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

.
J σ(i)))


+

 n
∏
i=1

( .
βσ(i) +

.
γσ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

.
J σ(i)))

−
n
∏
i=1

( .
βσ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

.
J σ(i)))

i

+

 n
∏
i=1

( .
βσ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

.
J σ(i)))

j

(8)

where ω = (ω1, ω2, . . . , ωi)
T is a represented weight vector, where ωi ∈ [0, 1] and

∑n
i=1 ωi = 1 and Jσ(i) is the ith largest objects in the IHCE arguments

.
J i (

.
J = (nωi)

Ji, i = 1, 2, . . . , n), ω = (ω1, ω2, . . . , ωn) is the weighting vector of the IHCE arguments
Ji(i = 1, 2, . . . , n), ωi ∈ [0, 1], and ∑n

i=1 ωi = 1 with ωi being a group such that

ωi = g
(

Ri
TV

)
− g
(

Ri−1

TV

)
, Ri = ∑j

i=1 Vσ(i), TV = ∑n
i=1 Vσ(i), Vσ(i) = 1 + T

( .
J σ(i)

)
and T

( .
J σ(i)

)
is the Sup of the jth biggest IHCEs

.
J σ(i) by all the other (IHCEs), that is,

T
( .
J σ(i)

)
=

n

∑
i=1
i 6=j

Sup
( .
J σ(j),Jσ(i)

)
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where ∑n
i=1
i 6=j

Sup
( .
J σ(j),Jσ(i)

)
shows the Sup of the jth biggest IHCE

.
J σ(j), for the ith

biggest IHCE
.
J σ(i). Specifically, the IHCPHA is reduced to the IHCPWA operator if

ω =
(

1
n , 1

n , . . . , 1
n

)T
and the IHCPHA is reduced to the IHCPOWA operator if ω =(

1
n , 1

n , . . . , 1
n

)
.

Definition 13. Suppose Ji is family of IHCEs; the power geometric operator IHCPG: J n → J is
defined as

IHCPG(J1,J2, . . . ,Jn) =
n
⊗

i = 1
(J )

1+T(Ji)
∑n

i=1 (1+T(Ji)) (9)

=
n
∏
i=1

(αi)
(1+T(Ji))

∑n
i=1 (1+T(Ji))

+

(
1−

n
∏
i=1

(1− βi)
(1+T(Ji))

∑n
i=1 (1+T(Ji))

)
i

+

(
n
∏
i=1

(αi + γi)
(1+T(Ji))

∑n
i=1 (1+T(Ji)) −

n
∏
i=1

(αi)
(1+T(Ji))

∑n
i=1 (1+T(Ji))

)
j

(10)

where
T(Ji) = ∑n

j = 1
i 6= j

Sup
(
Ji,Jj

)

Definition 14. Let Ji be a group of IHCEs and ω = (ω1, ω2, . . . , ωn)
T be the weight vector of Ji,

ωi > 0 and ∑n
i=1 ωi = 1. The power weight geometric operator IHCPWG: J n → J is defined as

IHCPWG(J1,J2, . . . ,Jn) =
n
⊗

i = 1
(J )

ωi(1+T(Ji))
∑n

i=1 ωi(1+T(Ji))

=
n
∏
i=1

(αi)
ωi(1+T(Ji))

∑n
i=1 ωi(1+T(Ji))+(

1−
n
∏
i=1

(1− βi)
ωi(1+T(Ji))

∑n
i=1 ωi(1+T(Ji))

)
i

+

(
n
∏
i=1

(αi + γi)
ωi(1+T(Ji))

∑n
i=1 ωi(1+T(Ji)) −

n
∏
i=1

(αi)
ωi(1+T(Ji))

∑n
i=1 ωi(1+T(Ji))

)
j

(11)

The following characteristics can be easily proven for the IHCPWG operator.

Property 8: (Idempotency) When Ji(i = 1, 2, 3 · · · , n) are Ji = J for each i, then

IHCPWG(J1,J2, . . . ,Jn) = J

Property 9: (Boundedness) Suppose Ji is a group of IHCEs, and permits

J − = min
i
Ji,J + = max

i
Ji (i = 1, 2, . . . , n)

then
J − ≤ IHCPWG(J1,J2, . . . ,Jn) ≤ J +
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Property 10: (Monotonicity) Let Ji and J ′ i be two sets of IHCEs; if Ji ≤ J ′ i for all i, then

IHCPWG(J1,J2, . . . ,Jn) ≤ IHCPWG
(
J ′1,J ′2, . . . ,J ′n

)
Definition 15. Let Ji be group of IHCEs; the power order weight geometric operator of dimension
‘n′, related with the weight vector ω = (ω1, ω2, . . . , ωi)

T such that ωi > 0 and ∑n
i=1 ωi = 1,

IHCPOWG: J n → J , is defined as

IHCPOWG(J1,J2, . . . ,Jn) =
n
⊗

i = 1

(
Jσ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))

=
n
∏
i=1

(ασ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))


+

1−
n
∏
i=1

(
1− βσ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))

i

+

 n
∏
i=1

(
ασ(i) + γσ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))

−
n
∏
i=1

(
ασ(i)

) ωi(1+T(Jσ(i)))

∑n
i=1 ωi(1+T(Jσ(i)))

j

(12)

where σ(1), σ(2), . . . ,σ(n) indicates a permutation of (1, 2, . . . , n), where Jσ(i−1) ≥ Jσ(i),
and ωi(i = 1, 2, . . . , n) is group of weights so that

ωi = g
(

Ri
TV

)
− g
(

Ri−1

TV

)
, Rj =

j

∑
i=1

Vσ(i), TV =
n

∑
i=1

Vσ(i), Vσ(i.) = 1. + T
(
Jσ(i)

)
and T

(
Jσ(i)

)
implies the Sup of the ith biggest IHCE Jσ(i) by all the other (IHCEs), that is,

T
(
Jσ(i)

)
=

n

∑
j=1
i 6=j

Sup
(
Jσ(i),Jσ(j)

)

where ∑n
j=1
i 6=j

Sup
(
Jσ(i),Jσ(j)

)
shows the Sup of the ith is the biggest IHCE Jσ(i), for the jth

largest IHCE Jσ(j).
Some properties of the IHCPOWG operator are as follows:

Property 11: (Idempotency) Let Ji (i = 1, 2, 3 · · · , n) be Ji = J for every i; then,

IHCPOWG(J1,J2, . . . ,Jn) = J

Property 12: (Boundedness) Suppose Ji is a group of IHCEs, and permits

J − = min
i
Ji, J + = max

i
Ji(i = 1, 2, . . . , n)

then
J − ≤ IHCPOWG(J1,J2, . . . ,Jn) ≤ J +
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Property 13: (Monotonicity) Let Ji and J ′ i be two sets of IHCEs; if Ji ≤ J ′ i for all i, then

IHCPOWG(J1,J2, . . . ,Jn) ≤ IHCPOWG
(
J ′1,J ′2, . . . ,J ′n

)
Property 14: (Commutativity) Let Ji and J ′ i be two sets of IHCEs; if Ji ≤ J ′ i for all i, then

IHCPOWG(J1,J2, . . . ,Jn) = IHCPOWG
(
J ′1,J ′2, . . . ,J ′n

)
where J ′ j is a permutation of Jj.

Definition 16. SupposeJi is group of IHCEs; the power hybrid geometric operator of objects ‘n’
IHCPHG: J n → J is defined as

IHCPHG(J1,J2, . . . ,Jn) =
n
⊗

i = 1

( .
J σ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

..
J σ(i)))

=
n
∏
i=1

( .
ασ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

..
J σ(i)))

+

1−
n
∏
i=1

(
1−

.
βσ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

..
J σ(i)))

i

+

 n
∏
i=1

( .
ασ(i) +

.
γσ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

..
J σ(i)))

−
n
∏
i=1

( .
ασ(i)

) ωi(1+T(
.
J σ(i)))

∑n
i=1 ωi(1+T(

..
J σ(i)))

j

(13)

where ω = (ω1, ω2, . . . , ωi)
T is a represented weight vector, where ωi ∈ [0, 1] and ∑n

i=1 ωi =

1, and Jσ(i) is the ith largest object in the IHCEs arguments
.
J i (

.
J = (nωi) Ji, i = 1, 2, . . . , n),

ω = (ω1, ω2, . . . , ωn) is the weighting vector of the IHCE influences Ji(i = 1, 2, . . . , n),
ωi ∈ [0, 1]. ∑n

i=1 ωi = 1, as well as ωi, is a group where

ωi = g
(

Ri
TV

)
− g
(

Ri−1

TV

)
, Ri = ∑j

i=1 Vσ(i), TV = ∑n
i=1 Vσ(i), Vσ(i) = 1 + T

( .
J σ(i)

)
and T

( .
J σ(i)

)
is the Sup of the jth biggest IHCEs

.
J σ(i) by all the other IHCEs, that is,

T
( .
J σ(i)

)
=

n

∑
j=1
i 6=j

Sup
( .
J σ(i),Jσ(j)

)

where ∑n
j = 1
i 6= j

Sup
( .
J σ(i),Jσ(j)

)
shows the Sup of the jth largest IHCE

.
J σ(j), for the ith

biggest IHCE
.
J σ(i). Specifically, the IHCPHG is reduced to the IHCPWG operator if

ω =
(

1
n , 1

n , . . . , 1
n

)T
and the IHCPHG is reduced to the IHCNPOWG operator if ω =(

1
n , 1

n , . . . , 1
n

)
.

Theorem 1. The IHCPA operator aggregates the “n” IHCEs and again generates IHCE.
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Proof 1. The proof is straightforward. �

Remark 3. Similarly, the IHCPWA, IHCPOWA, IHCPHA, IHCPG IHCPWG, IHCPOWG, and
IHCPHG also generate the IHCE.

4. Proposed MADM Algorithm Based on IHCS

This section includes the execution of the proposed operators to DMPs through
IHF data. The proposed concepts are applied to denote the MADM challenges for the
promising computation of developing technology companies with IHF data. Suppose
H = {H1,H2, . . . ,Hm} is the distinctive collection of alternatives, and G = {G1,G2, . . . ,Gn}
is the collection of attributes. Suppose ω = (ωt)(t = 1, 2, . . . n) is the weight vector of
the attributes, such that ωt ≥ 0, ∑n

t=1 ωt = 1. Therefore, both the IHCPWA and IHCWG
operators are applied to the MADM problems for the possible calculation of emerging
technology commercialization by the IHF environment.

Step 1. Arrange all data about the alternative in matrixM =
(
Y̌it
)

m×n in such a way:

M =

H1
H2
...

Hm

G1 G2 · · · Gn
Y̌11
Y̌21

Y̌12
Y̌22

· · · Y̌1n
Y̌2n

...
. . .

. . .
...

Y̌m1 Y̌m2 · · · Y̌mn


Step 2. Formulate the IHCEs Jit = αit + βiti + γit j from the IHFEs given in Y̌it, by

using Definition 6.
Step 3. Compute the supports:

Sup(Jit,Jik) = 1− d(Jit,Jik), (t, k = 1, 2, . . . , n) (14)

where
d(Jit,Jik) =

1
3
(|αit − αik|+ |βit − βik|+ |γit − γik|) (15)

Step 4. Utilize the weights ωj of attribute Gj to calculate the weighted Sup T (Jit) of
the IHCEs Jit by other IHCEs Jik (t, k = 1, 2, . . . , n, t 6= k)

T(Jit) = ∑n
k = 1
k 6= j

ωjSup(Jit,Jik) (16)

and calculate the weight ξit connected with the IHCEs Jit, (i = 1, 2, . . . , n, t = 1, 2, . . . , m)

ξit =
ωt((1 + T(Jit))

∑n
i=1 ωt(1 + T(Jit))

(17)

where ξit ≥ 0 and ∑n
i=1 ξit = 1.

Step 5. Use the decision data, the IHCPWA operator, and IHCPWG operators

Jt = IHCPWA(Ji1,Ji2, . . . ,Jin)=

n⊕
i = 1

(ωi(1 + T(Ji)Ji)

∑n
i=1 ωi(1 + T(Ji))

= 1−
n

∏
i=1

(
1− (α it)

ξit
)
+

(
n

∏
i=1

(βit + γit)
ξit −

n

∏
i=1

(βit)
ξit

)
i +

(
n

∏
i=1

(βit)
ξit

)
j (18)
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and

IHCPWGω(Jt1,Jt2, . . . ,Jtn) =
n
⊗

i = 1
(J )ξit

=
n

∏
i=1

(αit)
ξit +

(
1−

n

∏
i=1

(1− βit)
ξit
)

i +

(
n

∏
i=1

(αit + γit)
ξit −

n

∏
i=1

(αit)
ξit

)
j (19)

to obtain the complete preference elements Ji of Ht(t = 1, 2, . . . , m).
Step 6. Calculate the scores Sc(Ji) for the total IHCEs Ji to rank the Hi each, then

choose the best one(s).

Sc(Ji) =
1 + (αi − γi)(1 + βi)

2
(20)

Step 7. Rank the alternative Hi values and select the biggest, considering (Ji) (i = 1, 2,
. . . , n).

5. Illustrative Example

In this section, we illustrate a mathematical problem to express the potential evaluation
of companies of emerging technology by IHF information, demonstrating the method
suggested in this paper. In a state of Pakistan, the government wants to contest an election
and to overcome fraud and make it fair. The government decided to use technology for this
election, so the government decided to develop an electronic voting machine (EVM). To
complete this task, the government invites some electronics companies and configures five
attributes for selecting the best company for the effort—“project cost” (G1),“completion
time” (G2), “technical capability” (G3), “business status” (G4), and “company background”
(G5)—and allocate the weights of the relative importance of every attribute. The weight
vector relating to it has been given as ω = (0.25, 0.3, 0.1, 0.2, 0.15)T based on the decision
maker’s preferences. The four electronics companies have taken in this structure of the
alternatives, namely, “Noor Manufacturers Ltd.” (H1), “F&I Electronics Ltd.” (H2), “Pakistan
Software Company” (H3), and “Sial Group of Technological Companies” (H4), who are
interested in these tasks. The major purpose of the task is to select the best company for the
project. The steps for the suggested technique are executed as follows:

Step 1: The specialist has calculated all alternatives for the distinct attributes based on the
IHFSs as given in Table 1.

Table 1. IHF information corresponding to attributes.

G1 G2 G3 G4 G5

({0.2, 0.1}, {0.1, 0.4}) ({0.1, 0.2}, {0.6, 0.3}) ({0.1, 0.3}, {0.5, 0.1}) ({0.2, 0.4}, {0.1, 0.2}) ({0.2, 0.1}, {0.5, 0.1})
({0.1, 0.0}, {0.2, 0.2}) ({0.0, 0.1}, {0.1, 0.2}) ({0.1, 0.1}, {0.1, 0.3}) ({0.1, 0.2}, {0.1, 0.3}) ({0.1, 0.4}, {0.1, 0.2})
({0.3, 0.2}, {0.2, 0.1}) ({0.1, 0.2}, {0.0, 0.1}) ({0.2, 0.5}, {0.2, 0.1}) ({0.0, 0.6}, {0.2, 0.1}) ({0.2, 0.2}, {0.5, 0.2})
({0.3, 0.1}, {0.2, 0.5}) ({0.3, 0.5}, {0.1, 0.1}) ({0.1, 0.0}, {0.1, 0.2}) ({0.3, 0.2}, {0.2, 0.2}) ({0.3, 0.5}, {0.2, 0.2})

Step 2: The IHCE for every IHFS is calculated by using Definition 6, and thus, the calculated
results are summarized in Table 2.

Table 2. Developed IHCEs.

G1 G2 G3 G4 G5

0.12 + 0.66i + 0.22j 0.09 + 0.52i + 0.39j 0.16 + 0.58i + 0.26j 0.25 + 0.65i + 0.1j 0.095 + 0.66i + 0.245j
0.04 + 0.77i + 0.19j 0.04 + 0.82i + 0.14j 0.08 + 0.74i + 0.18j 0.115 + 0.72i + 0.165j 0.205 + 0.69i + 0.105j
0.21 + 0.68i + 0.11j 0.14 + 0.82i + 0.04j 0.305 + 0.59i + 0.105j 0.27 + 0.61i + 0.12j 0.13 + 0.59i + 0.28j

0.145 + 0.56i + 0.295j 0.36 + 0.58i + 0.06j 0.045 + 0.81i + 0.145j 0.2 + 0.65i + 0.15j 0.32 + 0.56i + 0.12j
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Now, we apply the proposed operators to show the possible assessment of the emerg-
ing technology companies of the participants developing technology enterprises.
Step 3: Using Equation (14), we calculate the supports Sup (Jkt,Jkl) among the IHCEs.
(k = 1, 2, 3, 4; t, l = 1, 2, 3, 4, 5)
Step 4: Evaluate the weights ξit(i = 1, 2, 3, 4, t = 1, 2, 3, 4, 5) by applying Equation (17) that
are associated with the IHCEs, that include R = γ4×5

ξ =


0.266868
0.263069
0.266225
0.260804

0.34021
0.345547
0.338625
0.343185

0.075676
0.074877
0.07573
0.074549

0.18803
0.191087
0.19356

0.192559

0.129215
0.125421
0.12686

0.128904


Step 5: Utilize the IHCPWA operators and IHCPWG operators given in Equations (18)
and (19), respectively, to obtain all IHCEs Jit(i = 1, 2, 3, 4, t = 1, 2, 3, 4, 5) of the emerging
enterprises Hi. The aggregating values are reflected in Table 3.

Table 3. Aggregate the finding of the developing enterprises by IHCPWA and IHCPWG operators.

IHFCNPWA IHFCNPWG

H1 0.136176 + 0.262893i + 0.600931j 0.123867 + 0.609392i + 0.266741
H2 0.079838 + 0.156161i + 0.76399j 0.063278 + 0.770114i + 0.166608j
H3 0.1972 + 0.113411i + 0.68939j 0.185977 + 0.712337i + 0.101686j
H4 0.251833 + 0.148609i + 0.599558j 0.213909 + 0.610781i + 0.17531j

Step 6: By Equation (20), the values obtained by applying the score function are produced
in Table 4.

Table 4. Results after applying score function.

IHCPWA IHCPWG

H1 0.206531 0.38503
H2 0.1045 0.408546
H3 0.225995 0.572167
H4 0.3003 0.531087

Step 7: Agreeing to the score values given in Table 4 and evaluating the formula of score
functions, the rank of the emerging technology companies is stated in Table 5. Recall that
this idea “ > “ indicates “preference.”

Table 5. Ranking of the best attributes.

Ranking

IHCPWA H4 > H3 > H1 > H2
IHCPWG H3 > H4 > H2 > H1

Comparative Study

Now, we will evaluate the execution of the suggested method with the current opera-
tors, power averaging aggregation, and power geometric aggregation based on intuitionistic
hesitant fuzzy data as proposed by Tahir et al. [35]. We will consider the data of Example 1
for this comparative study, and the outcomes are presented in Table 6.
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Table 6. Comparative study with some existing approach discussed.

Methods Ranking

Tahir et al. [35]
IHFPWA H3 > H4 > H2 > H1
IHFPWG H3 > H4 > H1 > H2

Proposed method IHCPWA H4 > H3 > H1 > H2
IHCPWG H3 > H4 > H2 > H1

By comparison, we obtain the existing approach and the proposed method and their
ranking results in Table 6 and Figure 2, which show the geometrical representation that
will be helpful for understanding this comparative analysis.
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affects our daily life and investigate our novel techniques in the context of multi-criteria 
development in the fuzzy environment . We also intend to examine the idea behind our 
suggested methods within the perspective of square root fuzzy information [57] and on-
going research using a Pythagorean fuzzy system [58]. 
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The advantages and benefits of the proposed notion defined in this paper is a general-
ized form of the CN defined for the IFS. If we have a singleton set, then the IHFS reduces to
the IFS and Definition 6 for the IHFCS reduces to the IFCNS. Therefore, the IHCS is capable
of coping with the ambiguity and vagueness of the environment.

6. Conclusions

We have proposed an extension of the intuitionistic hesitant fuzzy set IHFS by integrat-
ing it with the CN of SPA, resulting in the intuitionistic hesitant fuzzy connection number
set (IHCS). This development has filled certain existing gaps in MADM by facilitating
the design of a novel MADM algorithm. The primary contribution of this manuscript is
the presentation of novel aggregation operators and basic operational laws of the IHCNs.
We explored the concept of power aggregation operators and developed a series of novel
operators, including the IHCPA, IHCPG, IHCPWA, IHCPWG, IHCPOWA, IHCPOWG,
IHCPHA, and IHCPHG, and verified their novelty with the deserved properties. We
validated the proposed methodology by applying it to a real-life problem and demonstrat-
ing its feasibility and competency. Additionally, we conducted a comparison analysis of
our approach with some existing AO models to establish its validity, authenticity, and
effectiveness, and presented a graphical interpretation of the proposed approach. These
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operators and techniques have numerous applications, including networking analysis, risk
assessment, cognitive science, and other areas in uncertain situations. We plan to construct
more broadly applicable information metrics to comprehend the information that affects
our daily life and investigate our novel techniques in the context of multi-criteria develop-
ment in the fuzzy environment. We also intend to examine the idea behind our suggested
methods within the perspective of square root fuzzy information [57] and ongoing research
using a Pythagorean fuzzy system [58].
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