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Abstract: It has been found that the topology effect and the possible emergent hidden scale and
hidden local flavor symmetries at high density reveal a novel structure of compact star matter. When
N f ≥ 2, baryons can be described by skyrmions when the number of color Nc is regarded as a large
parameter and there is a robust topology change—the transition from skyrmion to half-skyrmion—in
the skyrmion matter approach to dense nuclear matter. The hidden scale and local flavor symmetries,
which are sources introducing the scalar meson and vector mesons, are significant elements for
understanding the nuclear force in nonlinear chiral effective theories. We review in this paper how
the robust conclusions from the topology approach to dense matter and emergent hidden scale and
hidden local flavor symmetries figure in generalized nuclear effective field theory (GnEFT), which
is applicable to nuclear matter from low density to compact star density. The topology change
encoded in the parameters of the effective field theory is interpreted as the hadron-quark continuity
in the sense of the Cheshire Cat Principle. A novel feature predicted in this theory that has not been
found before is the precocious appearance of the conformal sound velocity in the cores of massive
stars, although the trace of the energy-momentum tensor of the system is not zero. That is, there
is a pseudoconformal structure in the compact star matter and, in contrast to the usual picture, the
matter is made of colorless quasiparticles of fractional baryon charges. A possible resolution of the
longstanding gA quench problem in nuclei transition and the compatibility of the predictions of the
GnEFT with the global properties of neutron star and the data from gravitational wave detections are
also discussed.

Keywords: dense nuclear matter; topology change; scale symmetry; quantum Hall droplet;
gravitational wave

1. Introduction

Although it has been investigated for several decades, there is no consensus on how to
describe the equation of state (EoS) of dense nuclear matter relevant to compact stars [1–8].
We do not know with certainty what the constituents involved are and how the symmetries
of quantum chromodynamics (QCD) evolve in medium. The resolution of these questions
has strong impacts on the most fundamental issues of particle and nuclear physics that
have defied theorists, for example, the mechanism of chiral symmetry breaking and the
emergence of nucleon mass.

In the past decade, we studied dense nuclear matter using a generalized nuclear
effective field theory (GnEFT) including the lowest-lying iso-vector vector mesons ρ and
iso-scalar vector meson ω and the lightest iso-scalar scalar meson σ, in addition to the
nucleon and pion considered in the standard chiral effective field theory (SχEFT) [9–12].
Implemented with the robust conclusions of the medium modified hadron properties
obtained from the topology structure of QCD at large Nc limit, we found that at the
density relevant to the cores of massive stars, the sound velocity saturates the approximate
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conformal limit although the scale symmetry is not restored and the system is still in the
confined phase [13,14]. That is, there could be a pseudoconformal structure in the cores of
massive stars (see Refs. [5,7,15–18] for reviews). Although it was previously believed that
the sound velocity in massive neutron stars should deviate from the conformal limit [19–
22], this saturation is now observed in more and more models [23–27] and allowed by the
constraints from neutron star data [28,29].

To obtain the pseudoconformal structure of dense nuclear matter, two significant
ingredients are considered in the GnEFT, the hidden symmetries which are invisible in the
matter-free space—hidden scale symmetry and hidden local flavor symmetry—and the
topology of QCD at large Nc.

The hidden local flavor symmetry—hidden local symmetry (HLS) [30–32]—provides
an effective field theory (EFT) approach of vector mesons ρ and ω in the framework where
the chiral symmetry is realized in a nonlinearized pattern. Furthermore, the breaking
scale symmetry offers a source for introducing the scalar meson—regarded as dilaton—
in the EFTs à la Crewther and Tunstall [33–35]. In the compact star matter, due to the
strong correlations among its constituents, these hidden symmetries may emerge and these
emergent symmetries affect the compact star properties in either a direct or an indirect way.

When considered in the large Nc limit, the baryon can be regarded as the topology
soliton—skyrmion—in a nonlinear field theory of mesons [36]. This is an alternative
approach to nuclear physics different from the currently widely used models including
the nucleon as an explicit fermionic field. Using the skyrmion approach, it was found that
when the nuclear matter is squeezed to a certain high density, the constituent of the nuclear
matter is changed from a baryon number-1 object to a baryon number-1/2 object, i.e., there
is a topology change [37,38]. The existence of this topology change is robust although the
density where it happens—denoted as n1/2—is model-dependent [39–44]. An interesting
conclusion which has not been observed in all the other approaches is that, after n1/2, some
hadron properties such as the pion decay constant in medium f ∗π and effective nucleon
mass m∗N become density-independent [42,43]. Moreover, it was found that at n ∼> n1/2,
the sound velocity saturates the conformal limit v2

s /c2 ' 1/3 [45] although f ∗π and m∗N are
not zero.

Since the skyrmion approach to nuclear matter requires tremendous numerical simu-
lations and includes obscure mathematics, the approach to nuclear matter using the EFTs
including baryon fields as explicit degrees of freedom are widely used now. We implement
the model-independent observations from the skyrmion approach and the effects of the
emergent symmetries with the medium-modified parameters in GnEFT through (extended)
Brown–Rho scaling [46]. By using the model-independent low momentum interaction,
called the Vlowk approach, and implementing the strategy of Wilsonian renormalization
group flow [47–49] with respect to the constraints from the nuclear matter around satura-
tion density n0 ≈ 0.16 fm−3, we construct the equation of state (EoS) of compact star matter
which has pseudoconformal symmetry, i.e., the sound velocity in the compact star matter
satisfies the conformal limit v2

s /c2 ' 1/3 but the conformal symmetry is still breaking
since the trace of the energy-momentum tensor (TEMT) is not zero. The predictions of
the pseudoconformal model (PCM) satisfy all constraints from terrestrial experiments and
astrophysical observations.

In this contribution, complementing [5,7,15–18], we will review the key points of the
pseudoconformal structure of dense nuclear matter with a special interest on the emergent
scale, local symmetries and topology constituents of compact star matter.

2. Hidden Symmetries and Hadron Resonances

In the SχEFT of nuclear physics, the hadron degrees of freedom are nucleons and
pions. However, it has been recognized long ago that the hadron resonances are crucial for
reproducing the empirical data of nuclear matter around saturation density, such as the
iso-scalar scalar meson σ and the iso-vector vector mesons ρ and iso-scalar vector ω in the
Walecka model [50].
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Another reason to include the hadron resonances in GnEFT is that although the finite
nuclei as well as infinite nuclear matter can be studied by using the nuclear EFTs—“pionless
or pionful”—anchored on relevant symmetries fairly accurately, these nuclear EFTs are
expected to break down at some high densities relevant to, say, the interiors of massive
stars. For example, when applying the SχEFT to nuclear matter where power counting
happens in terms of O(kq

F) with kF being the fermi momentum, it was found that even
for normal nuclear matter, the expansion requires going to ∼q = 5 [2]. Therefore, more
loops should be considered and more parameters are involved. This makes the calculation
involved and the ambiguities hard to control.

With the above considerations in mind, we include the iso-scalar scalar meson σ and
vector mesons ρ and ω in GnEFT and expect that GnEFT can appropriately describe nuclear
matter from low to the compact star density at a low order. Note that it was recently found
that the iso-vector scalar mesons δ (denoted as a0(980) in particle physics) also affects the
EoS through the symmetry energy in a considerable way [51,52]. However, since we do not
have any idea of how to construct an EFT for them and since their structures are still under
debate, we will not consider them in the present work.

In the literature, the hidden symmetries which are not visible in the matter-free space
provide sources for including hadron resonances in the effective theories. Explicitly, the
observed hadron resonances list in the particle data group booklet [53] indicate that the
approximate chiral symmetry in QCD breaks to the vector channel and pions can be
regarded as the Nambu–Goldstone bosons of the broken axial symmetry. The local flavor
symmetry—hidden local symmetry (HLS) [30–32]—suggests an EFT approach of vector
mesons in the framework where the chiral symmetry is broken to the vector channel. And,
the hidden scale symmetry offers a source for introducing the iso-scalar scalar meson
to chiral EFTs á la Crewther and Tunstall [33,34]. In the compact star matter, due to the
strong correlations among its constituents, these hidden symmetries may emerge and these
emergent symmetries affect the compact star properties in either a direct or an indirect way.

2.1. Hidden Scale Symmetry

The QCD Lagrangian in the chiral limit preserves scale symmetry. Therefore, the trace
of the momentum-energy tensor θ

µ
µ vanishes at classical level, i.e, 〈θµ

µ〉 = 0. This invariance
is broken by trace anomaly at quantum level

θ
µ
µ =

β(αs)

4αs
Ga

µνGaµν + (1 + γ5) ∑
q=u,d,s

mq q̄q, (1)

where mq is the quark mass. Since the trace anomaly has the quantum number of vac-
uum, it has long been taken as the source of the iso-scalar scalar meson in effective
models [33,34,54–56].

In the construction of the effective models of the iso-scalar scalar meson using the
trace anomaly as its source, the only constraint on the effective Lagrangian comes from
the anomaly matching. However, to build an EFT of the scalar meson à la Weinberg, one
should set up the power counting mechanism. This was finalized in the pioneering work
of Crewther and Tunstall (CT for short) [33,34].

An alternative to the CT scheme is the framework proposed by Golterman and Shamir
(GS) in the large Nc and large N f Veneziano limit [57]. Although the IR structure is
presumably different in both approaches, the GS scheme and CT scheme were found to be
of the same form to NLO once β′ in CT and ∆n f = |nc

f − n f | in GS are related. In this work,
we follow the CT scheme.

The basic idea of Crewther and Tunstall is that the iso-scalar scalar meson can be
regarded as the pseudo-Nambu–Goldstone boson generated by the spontaneous breaking
of the scale symmetry. Provided that there is a nonperturbative infrared fixed point (IRFP)
αIR in QCD, the mass of the scalar meson, here dilaton, is generated by the explicit scale
symmetry breaking which is encoded in the departure from the IRFP and the current
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quark mass. The magnitude of the mass is proportional to the deviation from the IRFP
(∆α = αIR − αs) and the current quark mass therefore the situation is very similar to
the chiral perturbation theory where the masses of the Nambu–Goldstone bosons are
proportional to the current quark masses which measure the magnitude of the explicit chiral
symmetry breaking. Note that whether the nonperturbative IRFP which the CT approach is
anchored on exists in QCD is not yet confirmed. Among a variety of approaches, we simply
refer to the positive arguments given in [58–60]. Moreover, the lattice QCD indicates that,
in the thermal system, the scale symmetry may exists in the IR region and this therefore
leads to the existence of massless glueballs [61]. It seems not strange to expect such a scale
invariance to emerge in medium.

Following the procedure of CT [33,34], introducing the conformal compensator field
χ which has the scale dimension 1 and 〈θµ

µ〉 = 〈χ4〉 = f 4
χ, one can write the chiral-scale

effective Lagrangian. The power counting of the Lagrangian is in terms of momentum
(derivative), quark mass—as what is used in the standarded chiral perturbation theory—
and ∆α = αIR − αs due to the departure from the IRFP

O(p2) ∼ O(mq) ∼ O(∆α). (2)

In terms of the pseudoscalar pions U(x) = e2iπ(x)/ fπ and χ = eσ(x)/ fχ with σ being
the dilaton field which will be identified with the lightest scalar meson f0(500), one can
write the effective Lagrangian at leading chiral-scale order as

LLO = Ld=4
inv + Ld>4

anom + Ld<4
mass (3)

where d stands for the scale dimension and

Ld=4
inv = c1

f 2
π

4

(
χ

fχ

)2
Tr
(

∂µU∂µU†
)
+

1
2

c2∂µχ∂µχ

+ c3

(
χ

fχ

)4
, (4a)

Ld>4
anom = (1− c1)

f 2
π

4

(
χ

fχ

)2+β′

Tr
(

∂µU∂µU†
)

+
1
2
(1− c2)

(
χ

fχ

)β′

∂µχ∂µχ

+ c4

(
χ

fχ

)4+β′

, (4b)

Ld<4
mass =

f 2
π

4

(
χ

fχ

)3−γm

Tr
(
M†U + U†M

)
, (4c)

whereM stands for the current quark mass matrix withM = diag(m2
π , m2

π , 2m2
K −m2

π),
γm is the anomalous dimension of the quark mass operator q̄q, and the ci’s are unknown
constants. It should be noted that, differently from chiral perturbation theory, c3 and c4
have scale-chiral order O(p2) since, as will be seen later, they are proportional to the dilaton
mass square, similarly toM for the pseudo-scalar Nambu–Goldstone mesons.

We next consider the dilaton potential V(χ)

V(χ) = − c3

(
χ

fχ

)4
− c4

(
χ

fχ

)4+β′

. (5)

The saddle point equation in the matter-free space yields

V(χ) = − (4 + β′)c
(

χ

fχ

)4
+ 4c

(
χ

fχ

)4+β′

, (6)
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where

c = − 1
4

c4 =
1

4 + β′
c3 > 0. (7)

We see that, when β′ 6= 0, that is, the second term in (5) is not scale-invariant, the
dilaton potential is in the Nambu–Goldstone (NG) mode with minima at 〈χ〉 = fχ. How-
ever, if β′ = 0, V(χ) = 0 and the dilaton potential is scale-invariant, the scale symmetry
does not break spontaneously. This β′ dependence of the scale symmetry breaking tells
us that the spontaneous breaking of scale symmetry is locked to the explicit breaking of
scale symmetry and the former is triggered by the latter. Therefore, unlike chiral symme-
try, spontaneous breaking of scale symmetry cannot take place in the absence of explicit
symmetry breaking [62–64]. We refer to this as the “Freund–Nambu theorem”.

Using the definition of the dilaton mass mσ, from the dilaton potential (6) one obtains

c =
m2

σ f 2
χ

4β′(4 + β′)
. (8)

so that the constant c and therefore c3 and c4 through relation (7) have chiral-scale dimension
O(p2) since c ∝ m2

σ. We finally obtain the dilaton potential as

V(χ) =
m2

σ f 2
χ

4β′(4 + β′)

(
χ

fχ

)4
[
−(4 + β′) + 4

(
χ

fχ

)β′
]

. (9)

When β′ � 1, the dilaton potential is approximated to [65]

V(χ) =
m2

σ f 2
χ

4

(
χ

fχ

)4(
ln

χ

fχ
− 1

4

)
. (10)

This yields the scale Ward–Takahashi identity

〈θµ
µ〉 = 〈∂µDµ〉 = −

m2
χ

4 f 2
χ

〈
χ4
〉

(11)

which is the partially conserved dilatonic current (PCDC) relation, the counterpart to the
PCAC for the pion.

Along the reasoning of CT, one can set up a systematic higher-order expansion and
write down the higher-order terms [66,67]. In the general Lagrangian, there are so many
unknown parameters that it is difficult to give any prediction in practice, even at the
leading order. However, one can make substantial progress and arrive at a manageable
form by taking the so called “leading-order scale symmetry (LOSS)” approximation that
corresponds to

c1 ≈ c2 ≈ 1. (12)

That is, in LOSS, the scale symmetry breaking—in the chiral limit—is lodged entirely in the
dilaton potential V(χ). The resulting Lagrangian is

Lχlimit
LO =

f 2
π

4

(
χ

fχ

)2
Tr
(

∂µU∂µU†
)
+

1
2

∂µχ∂µχ−V(χ). (13)

Whether the LOSS approximation is valid cannot be justified from the first princi-
ple. The numerical analysis shows that it works for light nuclei [68,69] and compact star
matter [5] but it violates around the saturation density [70]. In this contribution, without
specification, we work with LOSS.
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2.2. Hidden Local Flavor Symmetry

To include the vector mesons into the chiral effective theory we use, among a variety
of approaches, hidden local symmetry (HLS) [30–32]. Explicitly, considering the chiral sym-
metry Gglobal = [SU(2)L × SU(2)R]global, following the convention of [32], we decompose
the field U(x) as

U(x) = ξ†
LξR(x). (14)

Therefore, one can sandwich a local unitary transformation Hlocal = [U(2)V ]local between
this decomposition. Under transformation Gglobal × Hlocal, ξL,R transform as

ξL,R(x) 7→ ξ ′L,R(x) = h(x)ξL,R(x)g†
L,R, (15)

where h(x) ∈ Hlocal and gL,R ∈ SU(2)L,R. The variables ξL,R can be parameterized as

ξL,R(x) = eiσ(x)/(2 fσ)e±iπ(x)/(2 fπ), (16)

where π(x) = πaXa and σ(x) = σαSα with Xa are the generators of the broken chiral
symmetry and Sa are the generators of the unbroken subgroup H. Note that here σ is
the Nambu–Goldstone boson which becomes the longitudinal part of the gauge boson
Vµ of symmetry Hlocal after the spontaneous breaking of the HLS, with fσ being its decay
constant.

With quantities ξL,R one can define the following two 1-forms:

α̂‖µ =
1
2i
(DµξR · ξ†

R + DµξL · ξ†
L),

α̂⊥µ =
1
2i
(DµξR · ξ†

R − DµξL · ξ†
L) , (17)

where the covariant derivative is defined as DµξR,L = (∂µ− iVµ)ξR,L. Both α̂
µ

‖ and α̂
µ
⊥ trans-

form covariantly under the full symmetry Gglobal, i.e., α̂
µ

‖,⊥ → h(x)α̂µ

‖,⊥h(x)†. Moreover,
the field strength tensor Vµν of the gauge field Vµ

Vµν(x) = ∂µVν(x)− ∂νVµ(x)− i[Vµ(x), Vν(x)], (18)

also has the covariant transformation Vµν(x)→ h(x)Vµν(x)h(x)†.
In terms of α̂

µ

‖,⊥ defined by Equation (17) and Vµν given in (18), the most general
effective Lagrangian with the minimal number of derivatives in the chiral limit can be
written as

LHLS = f 2
πTr[â⊥µ âµ

⊥] + f 2
σTr[â‖µ âµ

‖ ]−
1

2g2 Tr[VµνVµν]. (19)

One can easily check that, in the unitary gauge which will be taken in this paper,

ξ†
L = ξR ≡ ξ = eiπ/(2 fπ), U(x) = ξ2(x), (20)

the gauge bosons Vµ acquire mass at the classical level

m2
V = m2

ρ = m2
ω = g2 f 2

σ , (21)

which has the standard form of the gauge boson mass from the Higgs mechanism.
So far, we use Hlocal = [U(2)V ]local, and therefore the rho meson and omega meson

have the same mass (21). This approximation works well in the matter-free space. However,
in medium, it is found that this approximation breaks [9,71] and it is reasonable to take the
HLS Hlocal = [SU(2)V ×U(1)V ]local.
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In the HLS, considering that the masses of ρ mesons are smaller than the scale Λχ

of the chiral symmetry breaking, one can make a systematic expansion including vector
meson loops due to the gauge invariance [72,73] and set up a self-consistent power counting
mechanism, the essential character of effective theory [32]. Since in the nuclear matter, due
to the strong correlation among hadrons, the effective mass of the ρ meson is reduced, the
convergence of the expansion is enhanced.

Based on the Wilsonian renormalization group (RG) approach, it has been found that
there is a vector manifestation (VM) fixed point in the hidden local symmetry (HLS) at high
energy scales, i.e., fπ → 0 and mρ → mπ → 0 in the chiral limit [32,74]. It is straightforward
to expect that the VM also exists at (super-)high density. We will see later that this VM,
although it happens at the super high density beyond the cores of massive stars, affects the
equation of the state of neutron star matter in an indirect way.

Moreover, using dilaton compensated chiral effective theory, it was found that there
is a dilaton limit fixed point (DLFP) in the dense baryonic matter, that is, the medium-
modified dilaton decay constant f ∗χ → 0 at high density [71,75]. When the DLFP is
approached, the vector meson ρ becomes massless and the HLS emerges [76]. Although
the DLFP is saturated at a density beyond the core of massive neutron stars ∼ 10n0, it
affects the properties of the equation of state of the neutron star, for example the sound
velocity [9,10,77].

3. Topology Change and Hadron-Quark Continuity

It was recognized long ago that in the large Nc limit, baryon properties share the
same Nc scaling as the soliton properties in nonlinear mesonic theories [78]. This gives an
alternative approach to nuclear physics by using the topology properties of QCD at large
Nc limit, that is, regarding the baryon as a skyrmion in the Skyrme model [36], in contrast
to the standard EFT approach that includes the baryon fields as explicit degrees of freedom.

Using the skyrmion approach and regarding baryon as skyrmion, one can study
the single baryon, multibaryon and nuclear matter in a unified way [44,79,80]. Since the
skyrmion approach is only based on the topology structure of QCD, some qualitative
conclusions obtained in this approach, such as the existence of the topology change and
density dependence of some parameters in nuclear matter that will be illustrated later,
should be model-independent.

3.1. Baryons as Topology Objects and Topology Change

When the chiral symmetry is realized in a nonlinear pattern, the Nambu–Goldstone
boson of the spontaneous breaking of chiral symmetry, pion, is expressed in the polar
parameterization through the unitary field U(x) satisfying U(x)U(x)† = U(x)†U(x) = 1.
Hence, for any fixed time, say, t0, the static configuration U(x, t0) defines a map from the
manifold R3 to the manifold S3 in the isospin space, that is

U(x, t0) : R3 → S3. (22)

At low energy limit, QCD goes to the vacuum, i.e.,

U(|x| → ∞, t0) = 1, (23)

therefore, all the points at |x| → ∞ are mapped onto the north pole of S3 and the energy of
the system is finite.

In terms of the terminology of topology, maps (22) constitute the third homotopy group
π3(S 3) ∼ Z where the integer Z accounts for the times that S3 is covered by the mapping
U(x, t0), i.e., winding numbers. When the time coordinate is changed—regarded as a
homotopy trasformation—the winding number is conserved since the field configurations
in homotopically distinct classes cannot transit. In Skyrme-type models where the chiral
field U(x) figures, the conserved winding number represents the conserved baryon number
in QCD and the baryon arises as a topological soliton. Therefore, in the construction of
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Skyrme-type models, only the unitarity of the chiral field U(x) and the condition (23) are
essential characteristics that should be taken into account [44].

In the skyrmion approach, in addition to the single baryon and multi-baryon systems,
one can also access the nuclear matter. By putting skyrmions onto the crystal lattice and
change the crystal size such that the density effect enters, the skyrmion matter—regarded
as nuclear matter—is simulated [81]. This approach suggests a method for studying nuclear
matter at densities higher than the dilute density using the topology of QCD. In practice,
we do not know which crystalline structure nature favors. So far, the face-centered-cubic
(FCC) crystal is the known configuration that yields the lowest energy [37,38].

In the skyrmion crystal approach to dense nuclear matter, several novel phenomena
that have not been observed in other frameworks, including baryon fields as explicit degrees
of freedom, as mean field theory and the density functional approach have revealed. Among
them, the most important one is the existence of half-skyrmion—a winding number-1/2
object—configurations at some higher density. Since the prediction of the half-skyrmion
is anchored on the topology of QCD, its presence is robust and does not depend on what
degrees of freedom other than the pions are involved [82]. The significant point is that
the nuclear matter involves a topology change from skyrmions to half-skyrmions when
density is increased to a certain value n1/2 ∼> 2n0, and this topology change is responsible
for a dramatic change in the properties of dense nuclear matter. We will see that it plays
significant roles in describing the equation of state for compressed baryonic matter relevant
for massive compact stars.

Figure 1 shows how the skyrmion FCC crystal configuration transforms to the half-
skyrmion configuration in terms of the distribution of baryon number density. In the left
panel, one can easily see that besides the corners and the center of the square where the
skyrmions are originally placed, the baryon number density emerges at the middles of the
lines connecting the corners. That is, in the half-skyrmion matter, the half-skyrmions form
the CC crystal. After integration, each blue area has winding number-1/2 (for a detailed
explanation, see, e.g., Ref. [83]).

Figure 1. The distribution of the baryon number density (the blue areas) in the skyrmion (left panel)
matter and half-skyrmion matter (right panel). The crystal size 2 L is denoted by the blue quare.

Due to this topology change, a variety of novel phenomena which have not been
observed in the standard nucleon EFT approach emerge. Although the locations of the
density n1/2 where these phenomena start depend on the model, their existences are model-
independent. Some of them which closely relate to the present review are summarized as
follows:

• Quark condensate: In skyrmion matter, the space-average of the normalized quark
condensate φ0 = 1

2 Tr(U) is

〈φ0〉 =
1
V

∫ 2L

0
d3x

1
2

Tr(U), (24)

with V being the volume of the crystal cell. It is found that in the skyrmion matter
〈φ0〉 6= 0 but 〈φ0〉 → 0 in the half-skyrmion state. This implies that the quark
condensate in medium—here in skyrmion matter— 〈q̄q〉∗ → 0 in the half-skyrmion
matter when space-averaged.
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• Pion decay constant: In the skyrmion crystal approach, it is found that the medium
modified pion decay constant f ∗π first decreases with density until n1/2 but after n1/2
f ∗π stays as a constant. We plot a typical result of f ∗π as a function of crystal size
calculated by using the HLS up to the next leading order including the homogeneous
Wess–Zumino terms [84] in Figure 2. This means that in the half-skyrmion matter,
although the space-averaged quark condensate vanishes, the chiral symmetry is not
restored and it is still in the Nambu–Goldstone mode. Actually, in the half-skyrmion
matter, the inhomogeneous quark condensate persists [85].

• Nucleon mass: By using the medium modified pion decay constant f ∗π , one can
calculate the density dependence of nucleon mass m∗N and obtain the scaling relation

m∗N
mN

≈ f ∗π
fπ

, (25)

which, as discussed later, is consistent with the Brown–Rho scaling from the LOSS [46].
It is found that, as shown in Figure 2, similar to f ∗π , m∗N—regarded as soliton mass
M∗sol in the large Nc limit—first decreases with density until n1/2, after which it stays
as a constant. This is predominantly, if not entirely, due to the space-averaged quark
condensate going to zero at n1/2. Since in the half-skyrmion matter, 〈q̄q〉∗ → 0, this
observation indicates that the nucleon mass has decomposition

mN = m0 + ∆(q̄q), (26)

that is, there is a chiral invariant part in the nucleon mass and the parity doubling of
nucleons may emerge in dense nuclear matter [86,87].
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Figure 2. Typical results of the medium modified f ∗π and m∗N vs. lattice size L calculated from the
FCC crystal by using the HLS up to the next leading order including the Wess–Zumino terms [84].
The vertical line denotes the location of the normal nuclear matter density in the FCC crystal.

We want to emphasize that the tendencies discussed above are robust but the location
of n1/2 is highly model-dependent. So far, we cannot pin down the value of n1/2. The
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combination of the terrestrial experiments and astrophysical observations leads to the
constraint, as shown later, that 2.0n0 ∼< n1/2 ∼< 4.0n0.

3.2. Topological Baryon for N f = 1

As stated above, the skyrmion approach is anchored on the map (22). How to or
whether it is possible to study a baryon such as ∆ resonance in one-flavor QCD using the
topology approach is a problem since π3(U(1)) = 0. In the one-flavor case, the degree of
freedom in the nonlinear theory of the meson is the iso-scalar meson η′ which is dominated
by the axial U(1) anomaly. Therefore, the soliton construction of the baryon no longer
applies since, for instance, the standard topological charge—the winding number—cannot
be identified.

In 2018, Komargodski [88] noted that the chiral effective theory for one-flavor QCD
has a conserved topological current Jαβγ = εαβγλ∂λη′/2π which is carried by (2 + 1)-
dimensional charged sheets with the η′ field undergoing a 2π jump across the sheet. When
these sheets have finite boundaries, which is physically valid, they can carry massless edge
excitations with quantum baryon numbers; the baryon therefore can be identified with
fast spinning baryons These sheets are described by a topological field theory through a
level-rank duality argument [89–91], very similar to the situation of the fractional quantum
Hall (FQH) effect [92].

By using the HLS approach, Karasik [93] pointed out that the vector mesons play the
role of the Chern–Simons vector fields living on the QHD that forms the N f = 1 baryon.
This proposal gives a unified picture for the two types of baryons and allows them to
continuously transform one to the other. Recently, Bigazzi et al proposed a string theory
description of the quantum Hall (QH) sheet using the Witten–Sakai–Sugimoto model [94].

3.3. Cheshire Cat Principle and Quark-Hadron Continuity

Based on what we discussed above and will develop below, it is found that the
topology change is significant for developing the pseudo-conformal model (PCM) of dense
nuclear matter, especially for the existence of the conformal sound velocity in compact star
matter. Because of this topology change, there is a cusp structure in the symmetry energy
Esym [11,95] which provides a simple mechanism for the putative soft-to-hard change in
the EoS for compact stars at n ∼ 2n0 needed to account for the observed massive neutron
stars with mass ∼ 2M�. In the models that resort to the hadron-quark continuity in terms
of the specific quark degrees of freedom that are strongly coupled, the hardening of the EoS
at n ∼> 2n0 is associated with “deconfinement” of quarks [4,23]. The question is whether or
how the topology change represents the “quark deconfinement” process. Here, we provide
a conjecture on this issue.

We first consider one-flavor QCD in which, as we discussed above, the topological
baryon an be interpreted as the fractional Quantum Hall (FQH) droplet [88]. In this case,
the connection between the topology change and the quark deconfinement can be made by
using the Cheshire Cat mechanism [96].

Explicitly, we consider a (2 + 1)-dimensional chiral bag surrounding a QH droplet as
shown in Figure 3. The bag is an annulus of width 2R clouded by an η′ with a monodromy
of 2π. The bag is filled in by Nc quarks. When the bag radius shrinks to zero, the chiral bag
reduces to a vortex string with unit baryon number—the simile is left.

It is shown that a current transverse to the smile—the x direction—embodying the
Callan–Harvey anomaly outflow [97] appears. This transverse current is analogous to
the Hall current of the QH effect through the emergence of an effective U(1) gauge field.
This U(1) gauge field which is described by a purely topological field theory in (2 + 1)
dimensions lives in the disk enclosed by the Cheshire Cat smile and the action of the
emergent U(1) gauge field is of an FQH droplet. The quantum numbers of this baryon—
as a QH droplet—follow from the construction of the chiral bag. This argument can be
extended to the case where N f = 2, 3 that we are concerned with in this review.



Symmetry 2023, 15, 776 11 of 27

←→
2R

+π

−π

x
y

QHD droplet

U(1) chiral bag in 1+2

Figure 3. Chiral bag (annulus) in (1 + 2)-dimension surrounding a QH droplet (green sheet) [96].

Now suppose the η′ becomes lighter at higher density as is expected at high tempera-
ture [98]. Then the FQH pancakes could become relevant as density increases and figure in
dense matter in a form of a stack of FQH pancakes. Interactions must then induce the Nc
quarks with the fractional (1/Nc) baryon charge living on the boundary of the pancakes
to tunnel between the pancakes. This could lead to sheets of fractional baryon-charged
topological objects in (3 + 1) dimensions. In fact, in a recent analysis of dense matter using
the skyrmion crystal approach, certain configurations unstable at low density but stabilized
at high density of sheets with half-baryon charged objects called “lasagnes” were found [99];
this was also the case with 1/q-charged baryons in tube configurations with baryons living
on the surface of the tube [100]. In addition, it was recently found that this QHD sheet
exists in the string theory description of single-flavor QCD [94]. Anyway, it seems not
impossible that the layers of FQH droplets in (3 + 1) dimensions give rise to deconfined
quasiparticles dual to quarks of fractional charges, e.g, half-skyrmions, and this FQH
droplet may be explored in superdense compact star matter [101]. Such deconfinement can
take place in the presence of domain walls as in some condensed matter systems [102] and
the half-skyrmions probed in the density regime n > n1/2 could be deconfined as in the
Néel-VBS deconfined quantum critical transition [102,103].

4. Generalized Nuclear Effective Field Theory

Equipped with the discussion of the hidden symmetries, one can write down the
generalized nuclear effective field theory (GnEFT). Here, for simplicity, we only consider the
leading order scale symmetry (LOSS). In this limit, the effective Lagrangian is expressed as

LGnEFT = LM
GnEFT + LB

GnEFT −V(χ) (27)

where

LM
GnEFT = f 2

π

(
χ

fσ

)2
Tr
[
α̂⊥µα̂

µ
⊥
]

+ a f 2
π

(
χ

fσ

)2
Tr
[
α̂‖µα̂

µ

‖
]
− 1

2g2 Tr
(
VµνVµν

)
− 1

2
∂µχ∂µχ,

LB
GnEFT = N̄iγµDµN − χ

fσ
m0N̄N

+ gAN̄γµγ5α̂
µ
⊥N + gV N̄γµα̂

µ

‖N,

V(χ) = h5

(
χ

fσ

)4
+ h6

(
χ

fσ

)4+β′

, (28)
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with N being the iso-doublet of the baryon fields. Using the saddle-point equation and in
terms of the dilaton mass mσ, the dilaton potential is reexpressed as

V(χ) =
m2

σ f 2
χ

β′(4 + β′)

(
χ

fχ

)4
[(

χ

fχ

)β′

−
(

1 +
β′

4

)]
. (29)

Lagrangian (27) is the starting point of the PCM of the compact star matter.

4.1. Generalized Brown–Rho Scaling

From GnEFT, one can derive the generalized BR scaling [46] which mimics the medium-
modified hadron properties at LOSS. The most general scaling including the corrections to
LOSS can be found in [104]. At LOSS, one finds

f ∗π
fπ

=
m∗V
mV

=
m∗N
mN

= Φ(n),
m∗σ
mσ

= Φ(n)1+β′ , (30)

where Φ(n) = 〈χ〉∗/〈χ〉. The density effect entering through BR scaling is inherited from
QCD at the scale where the GnEFT and QCD are matched (denoted as IDD). We will see
later that when we perform the Vlowk calculation, there is an induced density dependence
(DDindueced) due to the correlations among nucleons. The full density dependence in our
final results is the sum of them, IDD+DDindueced.

Note that, differently from the BR scaling originally proposed in [46], here, the density
scaling of the sigma mass depends on β′. When β′ � 1, the dilaton potential reduces to
the logarithm form [66] and the scaling of sigma mass becomes m∗σ/mσ → Φ(n), the form
suggested in [46].

So far, we do not have any priority to fix β′ without ambiguity. What we have learned
is that when using the chiral-scale EFT to study dense skyrmion matter, β′ is constrained to
1 . |β′| . 3.5 [45,105]. This magnitude is consistent with the phenomenological Lagrangian
approach to nuclear matter where the six-point interaction of the sigma meson—roughly
β′ = 2 in the present framework—was found to be significant [87].

It should be noted that the scaling relation (30) is obtained from the LOSS. In the
following explicit calculation, to fit the nuclear matter properties around saturation density
n0, we should tune the scaling parameters, which is attributed to the corrections to LOSS.

4.2. Quenching of gA in Nuclei Transition

Let us put the discussion of compact star matter aside for a moment. We show
how the scale symmetry manifests in nuclei by looking at the gA quench problem in the
nuclear Gamow–Teller transitions, that is, the axial coupling constant gfree

A = 1.276 in the
vacuum should be taken as geff

A → 1 in the nuclear Gamow–Teller transitions [106–108].
Some uncertainties in experiments and possible ambiguities in theoretical resolutions weer
discussed in [109] recently. Here I follow the reasoning of [68–70].

In GnEFT, the axial current relevant to the nuclear Gamow–Teller transitions is gener-
ally expressed as

qSSBgAψ̄τ+γµγ5ψ (31)

where

qSSB = cA + (1− cA)Φβ′ . (32)

In the matter-free space or very low density, Φ→ 1 so that qSSB → 1, that is, scale symmetry
breaking does not affect the effective axial coupling. In nuclear medium, since Φ < 1, the
axial coupling becomes modified when cA < 1 since β′ 6= 0 and the trace anomaly effect
enters. Using (31), the quench factor is finally expressed as [70]

qESPM
GnEFT = qSSB × qSNC, (33)
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where qSNC accounts for strong nuclear many-body correlations. By using the Fermi-liquid
fixed point theory [110], one can work out qSNC [68]. With the value Φ(n0) ' 0.8 [111], one
obtains [70]

qSNC ' 0.79. (34)

In nucleus up to A ∼ 60, geff
A in the shell model calculation of the nuclear Gamow–

Teller transitions turn out to be [107,108]

geff
A = qlightgfree

A = 0.98–1.18 (35)

with gfree
A = 1.276. In the range qlight = 0.76–0.93 implied by this equation, let us pick what

gives geff
A ' 1

qlight ' 0.78. (36)

With respect to (34), one concludes that qSSB ' 1 in Equation (34). This indicates that Φ ' 1
in the light nuclei system and the axial current is scale-symmetric.

However, as the mass number of nuclei goes up above A ∼ 60, the scenario is different.
A more stringent recent experiment from RIKEN on the superallowed GT decay of the
doubly magic nucleus 100Sn [112] yields [70]

qESPN
RIKEN = 0.46–0.55. (37)

This means that, if the RIKEN data are right, in the heavy nuclei system, (34) is not
enough to account for the quench factor. This discrepancy can be interpreted by assuming
cA ' 0.15 and β′ ' 2.5, which is consistent with the estimation from the resolution of the
HWZ problem [45,105]. This choice gives

qSSB = 0.64 (38)

which leads to

qESPM
GnEFT = qSSB × qSNC = 0.64× 0.79 ' 0.5 (39)

consistent with the constraint from the RIKEN data (37).
The simple analysis above teaches us the following lessons: in light nuclei and very

low density nuclear matter, conformal symmetry emerges [113,114]. However, in normal
nuclear matter, such conformal symmetry is absent. Later, we will see that at high density
approaching the dilaton-limit fixed point (DLFP), this symmetry reappears. This tells us
how the scale symmetry manifests in nuclear system.

The key reasoning made in the above argument is that the Fermi-liquid fixed-piont
(FLFP) calculation can be identified with the Extreme Single Particle Model (ESPM). If this
identifiction is problematic, the above argument should be taken with cautioun [109].

5. Equation of State of Nuclear Matter

Let us come back to the nuclear matter properties by using the GnEFT with the
generalized BR scaling (30). Since the GnEFT includes, in addition to the Nambu–Goldstone
bosons pions, the effects from the hadron resonances σ, ρ and ω, the obtained equation of
state is expected to be applicable to the cores of massive stars up to, i.e., ∼10n0.

Considering that the density dependence of the medium-modified hadron properties
is categorized into two regions due to the topology change delimited by density n1/2, we
denote the region n < n1/2 as R-I and region n > n1/2 as R-II in the parameterization of
the density effect. The density scalings of the medium-modified hadron properties are
summarized as follows:
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• R-I: In this region, the scaling function Φ in the master formulism (30) decreases with
density. Without first principle information on the explicit form of Φ, we parameterize
it as

ΦI =
1

1 + cI
n
n0

(40)

with cI being a constant. With respect to the nuclear matter properties around satura-
tion density [16] and the measured pion decay constant [111], the range of cI is found
to be

cI ≈ 0.13–0.20. (41)

In practice, to reproduce the nuclear matter properties around saturation density, it is
easy to imagine that there should be fine-tuning within the range (41).

• R-II: Due to the topology change—which is one of the most robust inputs from
skyrmion matter—at n1/2 ∼> 2n0, the scaling behaviours of some parameters in R-II
are drastically different from that in R-I. The scaling behaviours of the parameters are
quite involved.

– gρ and ρ mass: The hidden local gauge coupling gρ related to the ρ mass through
the KSRF relation. Combined with the vector manifestation(VM) fixed-point
structure of HLS this leads to the fact that for n > n1/2 the coupling gρ should
drop to zero toward the putative VM fixed point nVM. We take the simple
form [77]

g∗ρNN

gρNN
=

{
1− 0.1 n

n0
, for n ∈ (n1/2, 3.5n0)

0.65− h (n−3.5n0)
n0

, for n ∈ (3.5n0, nVM)
(42)

where h is determined by the location of the VM fixed point m∗ρ/mρ = g∗ρNN/gρNN
→ 0, e.g., h ≈ 0.04 for nVM ≈ 20n0. Where nVM is located is not known in QCD. In
compact stars, whether it is ∼ 6n0 or ∼> 20n0 does not make noticeable differences
with one possible exception, namely, the star sound velocity, as we will see below.

– Nucleon mass: As we learned from the 1/2-skyrmion phase, the parity doubling
emerges giving rise to the chiral-invariant mass m0, and the pion decay constant
f ∗π becomes density invariant. In the chiral-scale effective theory, they both lock
to the dilaton condensate f ∗χ . Therefore we have

m∗N
mN
≈

f ∗χ
fχ
≈ f ∗π

fπ
≡ κ ∼ (0.6− 0.9). (43)

– Dilaton mass: Since from the partially conserved dilatation current (PCDC) the
dilaton mass is also proportional to the dilaton condensate [33], we then have

m∗σ
mσ
≈ κ. (44)

– ω meson: The nuclear matter density dependences of the ω meson properties
are subtle. Using the HLS, the ω mass is locked to the hidden gauge coupling
constant. Since the U(2) HLS which works well in R-I breaks in R-II [9,71], some
sort of fine-tuning is needed in the density-scaling of ω mass and hidden gauge
coupling constant. We take it as

m∗ω
mω
≈ κ

g∗ω
gω

= κΦω(n). (45)
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In the numerical calculation, we take

Φω ≡
g∗ω
gω
≈ 1− d

n− n1/2

n0
(46)

with d ≈ 0.05.

After the above discussions, one can make a numerical calculation of the equation of
state of the nuclear matter by using the renormalization-group approach with Vlowk (Vlowk
RG) [9,115] once the vacuum values of the parameters are fixed.

The Vlowk RG is extracted from an effective low-mementum T-matrix, Tlowk, which is
obtained by imposing a cutoff Λ—the nucleons with momentum k ≤ Λ are considered
but the k > Λ compoments are integrated out—on all the loop integrals in the T-matrix
equation and replace the bare VNN with an effective potential Vlowk. By requiring that
the observables are independent of the scale Λ, the renormalization flow of Vlowk can be
obtained. We refer to [47–49] for the details of the VlowkRG and to [9] for its application to
chiral-scale EFT which GnEFT is anchored on.

Therefore, after taking the Vlowk approach, the meson fluctuation effects are taken
into account and the density effect in the results comes from both the intrinsic density
dependence encoded in the BR scaling (IDD) and hadron correlations (DDinduced). It is
found that, with the only parameter cI , all the nuclear matter properties n ≤ 2n0 . n1/2
can be reproduced well [16].

The density n1/2 where the topology change happens and how the R-I and R-II
are delineated changes the density dependence of the hadron properties drastically and
therefore impacts the EoS in a qualitative way. However, as we discussed above, the
location of the topology change is model-dependent so that we cannot pin down its value
theoretically. With respect to the constraints from various astrophysical observations
available so far, the maximum mass of a neutron star and the gravitational wave data, we
constrain n1/2 as 2.0n0 ∼< n1/2 ∼< 4.0n0 [12].

5.1. Vector Manifestation

Where the vector manifestation fixed point nVM is located is known neither theoret-
ically nor empirically. While most of the global properties of compact stars do not seem
to depend much on where nVM lies since its value is above the possible central density of
massive compact stars, it seems that it affects the sound velocity of compact star matter in
an indirect way.

Here, to show the effect of nVM on the sound velocity, we fix the typical value n1/2 =
2.5 n0. We choose the typical values nVM = 6.75 n0 and 20 n0 in Equation (42). The lower
value of the density is about the central density of massive stars, and the upper value
represents an “asymptotic density” where perturbative QCD is expected to be applicable.
The nVM dependences of the sound velocity are plotted in Figure 4.
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Figure 4. Sound velocity for nVM = 6.75 n0 (upper panel) and 20n0 (lower panel) for neutron matter
(α = 1) and symmetric matter (α = 0), both computed in Vlowk RG with n1/2 = 2.5 n0 [77].

From Figure 4, one can easily see that the location of nVM drastically affects the behav-
ior of sound velocity. When nVM is big, the sound velocity converges to the “conformal
velocity” v2

s ≈ 1/3 after n1/2. However, for a smaller nVM, e.g., nVM ≈ 7 n0, it increases
steadily after n1/2 and overshoots conformal velocity. We will see later that the conformal
sound velocity is locked to the (pseudo-)conformality of matter.

5.2. Pseudoconformal Structure

Now, let us understand what the implication of the conformal velocity in nuclear
matter is.

In the matter system, the sound velocity is defined by

v2
s =

∂P(n)
∂n

/
∂ε

∂n
, (47)

where ε and P are, respectively, the energy density and the pressure density. We then have∫
∂P(n)

∂n
dn =

∫
v2

s
∂ε

∂n
dn− 1

3
C0 (48)

where C0 is a constant independent of density and the factor 1
3 is due to convenience. For a

constant sound velocity, one obtains

P(n) = v2
s ε(n)− 1

3
C0. (49)

And for v2
s /c2 = 1/3, we obtain

ε(n)− 3P(n) = C0. (50)

For an ideal liquid system where the nuclear matter is assumed to work, the TEMT is
expressed as

θ
µ
µ = ε− 3P. (51)
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Therefore, when v2
s /c2 = 1/3, one has

〈θµ
µ〉 = C0, (52)

which is a density-independent quantity. When C0 = 0, the TEMT vanishes so that the scale
symmetry in the system is restored. A system with this property can be regarded as one
where both the scale symmetry and chiral symmetry are restored, quarks are deconfined
and perturbative QCD applies. Since this scenario happens at a density much beyond that
in the cores of massive stars, we are not interested in it.

Let us focus on the scenario C0 6= 0, that is, where TEMT is a density-independent
quantity. This scenario does feature in the chiral-scale EFT approach to nuclear matter.
In the mean field approach it is shown that, going toward the DLFP, the TEMT 〈θµ

µ〉 is a
function of only the dilaton condensate [71]. In the skyrmion crystal approach to nuclear
matter it was found that the nucleon mass goes to a constant ∼m0 after topology change
due to the emergence of parity-doubling [42]. If this works in the mean field approach, 〈θµ

µ〉
will be independent of density. This is indeed confirmed in the full Vlowk RG calculation,
specifically for n ∼> n1/2. In Figure 5, the TEMT (upper panel) is shown that gives the
conformal velocity for n ∼> 3 n0 > n1/2 (lower panel) using the scaling parameters discussed
above.

One can easily see that the scenario 〈θµ
µ〉 = C0 6= 0 means that the sound velocity

saturates the conformal limit but the conformal symmetry is not restored. We call this
matter pseudoconformal matter, in which the nucleon has a constant effective mass and the
pion decay constant is not zero.

Figure 5. The density dependence of 〈θµ
µ〉 (upper panel) and vs (lower panel) for α = 0 (nuclear

matter) and α = 1 (neutron matter) in Vlowk RG for n1/2 = 2n0 and nVM = 25 n0 [5].

A recent analysis combining the astrophysical observations and model-independent
theoretical ab initio calculations [116] shows that in the core of massive stars the sound
velocity approaches the conformal limit v2

s /c2 → 1/3 and the polytropic index takes the
value γ < 1.75—a value close to the minimal one obtained in hadronic models. Therefore
the core of massive stars is populated by “deconfined” quarks. An explicit calculation
shows that the polytropic index γ < 1.75 in the PCM (see Figure 6), but we are still in the
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confined phase. Therefore the smallness of the polytropic index and conformal velocity
cannot be regarded as sufficient criteria for the appearance of the deconfined quark.

0 1 2 3 4 5 6

0

1

2

3

4

n/n0

γ

Figure 6. The polytropic index γ = d ln P/d ln ε as a function of density in neutron matter from the
pseudo-conformal model with typical value n1/2 = 2.5n0 [14].

Finally we compare our prediction for P/ε for n1/2 = 2.5n0 with that obtained by the
sound velocity interpolation method in Figure 7 [116]. We see that our prediction is not
inside but parallel to the conformality band. The most significant point is that it lies above
this band. The parallelism and location of our prediction come from the fact that in PCM
the TEMT is positive and density-independent, as seen from the upper panel of Figure 5.
It seems that, as a whole, the predictions of GnEFT resemble the “deconfined” quark
structure [116]. However, there are intrinsic differences. First of all, in PCM, conformality
is broken in the cores of massive stars. Most importantly, the half-skyrmion in PCM is still
a colorless object. It is neither pure baryon with baryon number one nor purely quarkonic
but a quasiparticle with fractional baryon charge. In fact it can be anyonic lying on a (2 + 1)
dimensional sheet [7].
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Figure 7. Comparison of (P/ε) between the PCM velocity (red line) and the band generated with the
sound velocity interpolation method used in [116]. The location of the topology change is denoted by
the dash-dotted line.

5.3. Equation of State

We next compute the equation of state of the pseudoconformal dense nuclear matter
and compare it to the constraint from the astrophysical observation and gravitational wave
detection. We also vary the last parameter in the model n1/2 to see its effect on the EoS.

We should say that, whatever the topology change density n1/2 ∼> 2n0 is, properties of
the ordinary nuclear matter are fixed as stated already. In addition, we assume and actually
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numerically checked that for n ∼> n1/2, slightly above that transition density, the sound
velocity must be v2

s /c2 ≈ 1/3.
It turns out that the energy per-particle E/A at n ∼> n1/2 can be fitted by a two-

parameter formula

E/A = −mN + Xαx1/3 + Yαx−1 (53)

where X and Y are parameters to be fixed, α = (N− Z)/(N + Z), and x ≡ n/n0. From (53),
one concludes that the sound velocity satisfies

v2
s

c2 =
1
3

, (54)

independently of Xα and Yα.
The full E/A from low to high density is obtained by uniting that given by Vlowk in

R-I (n < n1/2) and that given by Equation (53) in R-II ( n ≥ n1/2). The parameters Xα and
Yα are fixed by the continuity at n = n1/2 of the chemical potential and pressure

µI = µI I , PI = PI I at n = n1/2. (55)

We refer to such obtained EoS as the pseudoconformal model for compact star matter. It
is found that this EoS works well for both pure (α = 1) and symmetric (α = 0) nuclear
matter in the entire range of densities appropriate for massive compact stars, say up to
n ∼ (6–7)n0 [10].

Note that the continuity (55) at n = n1/2 follows from the fact that in the present
approach there is no Ginzburg–Landau-type phase transition. The EoS with the first-order
transition between the hadronic and the quark phases can be parameterized by using either
the Gibbs construction [117,118] or Maxwell construction [119,120], which is not applicable
in the present approach.

Since the energy density ε and pressure P relate to the energy per-particle (53) through

ε = n0x(mN + E/A),

P = n0x2 d(E/A + mN)

dx
, (56)

we have

〈θµ
µ〉 = ε− 3P = 2n0Yα. (57)

Therefore, the constant C0 defined in Equation (52) is given by

C0 = 2n0Yα. (58)

Since Yα is fixed by the continuity (55), C0, the magnitude of the scale symmetry, is totally
fixed by the nuclear properties in R-I which is constrained by that around saturation density.

We plot the sound velocity in Figure 8 by varying n1/2. From this figure, one can easily
see that after n1/2, the conformal sound velocity v2

s /c2 = 1/3 emerges which indicates
the emergence of pseudoconformal symmetry. It is clear from Figure 8 that the sound
velocity for the case of n1/2 = 4n0 violates the causality bound v2

s /c2 < 1. One may see
that there is a spike around the location of the topology change. It may be an artifact of the
sharp connection made at the boundary. What we want to emphasize, however, is that the
rapid increase of the sound velocity at the transition point signals the changeover of the
degrees of freedom [121] and the derivative contribution from the trace anomaly [28,29].
Significantly, this allows us to set the constraint for n1/2

2 n0 ∼< n1/2 ∼< 4 n0. (59)
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What is important regarding this constraint is that the emergence of the conformal
sound velocity which signals the precocious emergence of pseudo-conformality in compact
stars is an order of magnitude lower than the asymptotic density ∼> 50 n0 predicted by
perturbative QCD. By using the quarkyonic model, a recent detailed analysis of currently
available data does confirm the onset density of v2

c ≈ 1/3 at ∼ 4n0 [25–27].

Prediction for n1/2=4.0n0

Prediction for n1/2=3.0n0

Conformal sound velocity

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

n/n0

v
s

Figure 8. Density dependence of the sound velocity in neutron matter with different n1/2 [5].

We plot the predicted pressure P for n1/2/n0 = 3, 4 in comparision with the available
heavy-ion data [122] in Figure 9. It should be noted that although the predicted pressure for
n1/2 = 4n0 is consistent with the bound at n ∼ 6n0, it is beyond the available experimental
bound at n ∼ 4n0. Although this may again be an artifact of the sharp matching, it puts
n1/2 ' 4n0 in tension with nature. Nonetheless it may be too hasty to rule out the threshold
density n1/2 = 4n0.
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Figure 9. Comparision of the density dependence of the pressure for neutron matter (α = 1) with
the available experimental bound (shaded) given in [122]. The bound at 6n0 is indicated by the
blue band.

6. Star Properties and Gravitational Waves

The final topic we want to discuss in this review is the confrontation of the PCM
with star properties and gravitational wave detection with the purpose of showing the
rationality of the PCM.

Duly taking the pressures of leptons in beta equilibrium into account, the solution
of the TOV equation yields the results for the mass-radius relation of a neutron star.
It has been found that the maximum mass of a neutron star in the PCM is roughly
2.04M� ∼ 2.23M� for 2.0 ≤ n1/2/n0 ≤ 4.0 which is consistent with the present astrophysi-
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cal observation [123–125]. We plot the M-R relation with the typical value n1/2 = 2.5n0 in
Figure 10. One can easily see that the present calculation is consistent with the observations.

Figure 10. M-R relation from PCM with observed mass of pulsar J0348 + 0432 [124] and radius
constraints [126,127] from NICER [77].

Next, let us turn to how our theory fares with what came out of the LIGO/Virgo
gravitational observations. The quantities that we will consider are the dimensionless tidal
deformability Λi for the star Mi and Λ̃ defined by

Λ̃ =
16
13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 + M2)5 (60)

for M1 and M2 constrained to the well-measured “chirp mass”

M =
(M1M2)

3/5

(M1 + M2)1/5 = 1.188M�. (61)

To confront the LIGO/Virgo data, we plot our prediction for Λ1 vs. Λ2 in Figure 11.
As it stands, our prediction is compatible with the LIGO/Virgo constraint for n1/2 ∼> 2 n0.
Although there seems to be some tensions with the pressure, the result for n1/2 = 4 n0 is of
a quality comparable to that of n1/2 = 3 n0.

●●

●●
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n1 2=3.0 n0

n1 2=4.0 n0
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Figure 11. Tidal deformabilities Λ1 and Λ2 of the components of the binary neutron star system
GW170817 with chirp mass 1.188M� [5]. The constraint from GW170817 at the 90% probability
contour and the result from “FSUGarnet (0.16)” [128] are also quoted for reference.

7. Summary and Perspective

We reviewed in this work the possible emergent symmetries and topology change in
dense compact star matter. The information of the medium-modified hadron properties
obtained from the skyrmion crystal approach, in addition to the presumed emergent scale
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and local flavor symmetries, inspired the construction of the pseudoconformal model of
dense compact star matter.

In the pseudoconformal model, a peculiar feature that has not been observed by any
other models before is that, in compact star matter, the trace of the energy-momentum
tensor is a nonzero, density-independent quantity and therefore, induces the precious
appearance of the conformal sound velocity v2

s /c2 = 1/3, in stark contrast to what has
been widely accepted in society [20]. That is, there is a pseudoconformal symmetry in the
compact star matter. The predictions of the pseudoconformal model are consistent with all
the constraints from all the terrestrial experiments and astrophysical observations.

In the present approach, the peudoconformal model is made of a quasiparticle with
fractional baryon charge, such as an anyon. Actually, in the literature, not only the con-
stituents of the compact star matter at n ∼> 2n0 are under debate, but the state of the
matter is also not well understood. The state of a compact star could be, for example, a
Fermi-liquid [129], a non-Fermi-liquid [130], a (2 + 1)-dimensional sheet [7], a crystal lattice
made of baryonic popcorn [131], and so on. It is interesting to explore the diagnosis of
these possibilities.

We finally devote ourselves to the possible extensions and revisions of the model.
The idea of the chiral-scale EFT à la Crewther and Tunstall ,which GnEFT is based on,

is anchored on three-flavor QCD. Therefore f0(500) can be taken as the same footing as the
pseudoscalar mesons pion and kaon. However, in the present approach, we only included
the up and down quarks and ignored the strange degrees of freedom for simplicity. It is
therefore interesting to extend the present framework to see the effect of strangeness on
compact star matter [132]. In addition, it is also interesting to extend the present approach
to include the ∆ baryons and hyperons [133–135].

Another issue that should be considered in extensions of the present work is to include
the corrections to the presently applied LOSS. With these corrections, not only the hadron
masses, but also the coupling constants have IDD. Therefore, both the stiffness of the EoS
and the tidal deformability of the compact star may be changed. In addition, due to these
corrections which explicitly violate the conformal symmetry, the sound velocity after the
topology change may deviate from the conformal limit. It should be noted that, since the
correction from the explicit breaking of the conformal limit is taken as a perturbative one,
the global picture of the compact star discussed is intact.

Finally, it is interesting to pin down the location at which the hidden scale and local
flavor symmetries are restored. As we explicitly discussed above, this is encoded in the
IDDs of the hadron parameters such as the pion decay constant, dilaton decay constant,
rho-N-N coupling and rho meson mass. By checking the location dependence of the
star properties as well the waveforms of the gravitational waves, one can also extract
information on the emergent symmetries and consequently the phase structure of QCD at
low temperature [136] since the gravitational waves emitted from the binary neutron star
merger carry the information of the equation of state of the nuclear matter [137–140].
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