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Abstract: We review various schemes of quantum-enhanced optical interferometers, both linear
(SU(2)) and non-linear (SU(1,1)) ones, as well as hybrid SU(2)/SU(1,1) options, using the unified
modular approach based on the Quantum Cramèr–Rao bound (QCRB), and taking into account the
practical limitations pertinent to all real-world highly-sensitive interferometers. We focus on three
important cases defined by the interferometer symmetry: (i) the asymmetric single-arm interferometer;
(ii) the symmetric two-arm interferometer with the antisymmetric phase shifts in the arms; and (iii)
the symmetric two-arm interferometer with the symmetric phase shifts in the arms. We show that
while the optimal regimes for these cases differ significantly, their QCRBs asymptotically correspond
to the same squeezing-enhanced shot noise limit (2), which first appeared in the pioneering work by
C. Caves in 1981.We show also that in all considered cases the QCRB can be asymptotically saturated
by the standard (direct or homodyne) detection schemes.

Keywords: interferometers; quantum noise; quantum Cramer-Rao bound

1. Introduction

Optical interferometers are an indispensable tool for many scientific and industrial
applications; in particular, two famous interrelated examples worth mentioning here. In
1987, the Michelson interferometer (see Figure 1a) helped to disprove the ether theory [1],
paving the way to A. Einstein’s special theory of relativity. After more than one century, the
first direct observation of the gravitational waves [2] by the pair of LIGO interferometers [3]
provided one of the most convincing proofs of A. Einstein’s general theory of relativity.
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Figure 1. Michelson (a) and Mach–Zehnder (b) interferometers.

The sensitivity of the best modern interferometers is very high. Probably, they are
the most sensitive measurement devices available now. For example, the contemporary
laser interferometric gravitational-wave detectors, like LIGO and VIRGO [4], can measure
relative elongations of their 3–4 km arms with the precision exceeding ∼10−23 Hz−1/2 [5].
The major factor which limits their sensitivity is the quantum noise of the probing light. In
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the most basic case of a coherent quantum state of light, the corresponding limit is known
as the shot-noise one (SNL):

∆φSNL =
1

2
√

N
, (1)

where N is the mean number of photons interacting with the phase-shifting object(s), and
φ is the measured phase.

This limit suggests a straightforward way of improving the phase sensitivity, namely
the increase of N. However, there are important cases where this brute-force approach can
not be used. In particular, in the laser gravitational-wave detectors, the circulating optical
power reaches hundreds of kilowatts and is limited by various undesired nonlinear effects,
like thermal distortions of the mirror shape or optomechanical parametric excitation [6,7].
Another example is the biological measurements [8], where the probing light intensity
could be limited due to the fragility of the samples.

At the same time, it is known that the limit (1) can be overcome using more sophis-
ticated “non-classical” quantum states. Accounting for the contemporary technological
limitations, the simplest and the only practical class of such states consists of the Gaussian
quadrature-squeezed states, which differ from the coherent ones by decreasing by e−r

(where r is the logarithmic squeeze factor) the uncertainty of one of its two quadratures and
proportionally increased uncertainty of another one [9]. It was shown in the pioneering
work by C. Caves [10], that in the realistic case of moderate squeezing, e2r � N, the phase
sensitivity could be improved by the factor e−r:

∆φSQZ ≈
e−r

2
√

N
. (2)

(the “squeezing-enhanced SNL”). In the hypothetical opposite case of very strong squeezing,
e2r ∼ N, the phase sensitivity could approach the so-called Heisenberg limit (HL) [11–17],
which, in the asymptotic case of N � 1, can be presented as follows:

∆φHL ∼
1
N

. (3)

The SNL (1) can be overcome also using Fock states and various other exotic non-
Gaussian quantum states, see e.g., Refs. [11,18–25] and the reviews [26,27]. In Ref. [28],
sensitivity approaching the HL (for a small N) was demonstrated experimentally using
a non-Gaussian quantum state. However, the generation of these states with N � 1 is
problematic with the current state-of-the-art technologies. Moreover, it was shown in
Refs. [29,30], that in the important case of a symmetric interferometer with 50%/50% input
beamsplitter(s), the optimal sensitivity could be provided by the Gaussian squeezed states.

The first proof-of-principle experiments with squeezed-light-enhanced interferometers
were done in 1987 [31,32]. During the last years, squeezing up to 15 db was demonstrated
experimentally [33–41]. Since 2011, the relatively small gravitational-wave detector GEO-
600 routinely operates in the “squeezed” regime [42]. In 2019 the squeezing was imple-
mented also in the larger and more sensitive detectors Advanced LIGO [5] and Advanced
VIRGO [43], improving their sensitivity by about 3 dB; see also the review [44]. More
impressive gain of about 10 dB is planned for the proposed third-generation detectors:
Einstein Telescope [45] and Cosmic Explorer [46].

The main factor which limits the gain promised by the non-classical light is the optical
losses. The non-Gaussian states, like the Fock or NOON ones, are most readily destroyed
by them [47]. The Gaussian squeezed states are more robust. But nevertheless, in their
case, the losses also significantly limit the sensitivity. As it was shown in Ref. [48], in the
presence of losses, the gain provided by the squeezing reduces to

e−2r → e−2r + ε2 , (4)
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where
ε2 =

1− η

η
(5)

and η is the overall quantum efficiency of the interferometer.
The standard topologies of the Michelson and Mach–Zehnder interferometers used in

the high-precision phase measurements are shown in Figure 1a,b, respectively. Evidently,
the scheme of Figure 1b can be reduced to the one of Figure 1a by folding along the
dashed line. Therefore, the Michelson interferometer is equivalent to the particular case
of the Mach–Zehnder one with identical input and output beamsplitters. In Ref. [49], the
term “SU(2) interferometer” was coined for them because the transformations of the two
optical modes by the passive beamsplitters, as well as the antisymmetric phase shifts in the
interferometer arms, are described by 2× 2 complex matrices belonging to the group SU(2).

In the standard operating regime of the SU(2) interferometers, one of the input ports
(the bright one) is excited by the laser light. Within the idealized theoretical treatment, this
corresponds to the injection of a coherent quantum state into this port. The second port either
remains dark, or the squeezed vacuum is fed into it, as it was proposed in Ref. [10]. Evidently,
other combinations with a coherent, squeezed vacuum or squeezed coherent quantum states
being injected into one or both input ports are possible, see e.g., Refs. [30,50–53] and the
review [54].

In 1986, a novel scheme of the so-called SU(1,1) interferometer was proposed by
Yurke et al. [49], see Figure 2. The key elements here are two optical parametric amplifiers
(OPA), which replace the beamsplitters used in the SU(2) interferometer. The OPAs could
be either degenerate ones (DOPA), that is, with the signal and idler beams being identical,
or non-degenerate ones (NOPA), with the physically separated signal and idler beams.
The name “SU(1,1) interferometer” is due to the fact that the transformations of the
optical modes by parametric amplifiers, as well as the symmetric (relevant to this kind of
interferometer) phase shifts in the interferometer arms, are described by 2× 2 complex
matrices belonging to the group SU(1,1). In Refs. [55,56], SU(1,1) interferometers with the
sensitivity exceeding the SNL by 3–4 db were demonstrated experimentally.
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𝜙

DOPA 2

In Out
(a)

In 1

In 2

NOPA 1

𝜙1

𝜙2
NOPA 2

Out 1

Out 2
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Figure 2. Single-arm (a) and two-arm (b) SU(1,1) interferometers. DOPA 1,2: degenerate optical
parametric amplifiers; NOPA: nondegenerate optical parametric amplifiers.

At first sight, the non-degenerate version shown in Figure 2b looks very similar to the
Mach–Zehnder interferometer (Figure 1b), with the input and output squeezers playing the
role of the respective beamsplitters. However, this visual similarity is misleading. Opposite
to the SU(2) interferometers, the non-degenerate SU(1,1) one is sensitive only to the sum
phase shift φ1 + φ2 in the arms relative to the parametric pump phase, see Section 5.5.

Later, several enhancements to this scheme were proposed. In particular, it was
shown that the performance of an SU(1,1) interferometer could be improved by seeding it
with coherent or Fock quantum states [57–60]. In Ref. [61], the Fock states seeded SU(1,1)
interferometer was demonstrated experimentally.

In Ref. [62], various detection options for the SU(1,1) interferometer were considered,
and the new scheme of the truncated SU(1,1) interferometer, with the second OPA replaced
by two homodyne detectors, was proposed and demonstrated in the experiment. In
Ref. [63], the evolution of the Wigner function [64] in the SU(1,1) interferometer was
calculated. In Ref. [65], the nonlinear SU(1,1) interferometer and the hybrid “seminonlinear”
one were demonstrated experimentally.
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Reviews of various topologies and implementations of the SU(1,1) interferometers can
be found in Refs. [66–68].

The generalized conceptual schemes of the interferometric phase measurements, which
encompass both SU(2) and SU(1,1) options, are presented in Figure 3. Two configurations
are shown: (a) with the unknown (signal) phase shift φ introduced into one arm only
(the single-arm interferometer), and (b) with the two-phase shifts φ1 and φ2 introduced
respectively into each of the arms (the two-arm one). In both cases, the left block prepares
the initial single- or two-mode quantum state |ψ〉 of the probing light. Then the light
experiences the phase shift(s) and, after that, is measured by the right block. In the single-
arm case, evidently, a second beam providing the phase reference is necessary. It could
correspond to the local oscillator beam of the homodyne detector in the SU(2) interferometer
case or to the double-frequency pump for the second OPA in the SU(1,1) one. In the two-
arm case, the reference beam is optional: it is required only if the sum phase shift φ1 + φ2
has to be measured.
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Figure 3. Conceptual schemes of the single-arm (a) and two-arm (b) interferometers. |ψ〉: single- or
two-mode quantum state of the probing light.

Joint optimization of the preparation and measurement blocks can be a tedious task. In
order to simplify it, an approach based on the quantum Cramèr–Rao bound (QCRB) [69] is
broadly used in the literature, see e.g., reviews [26,54,67] and the references therein. The QCRB
defines the ultimate sensitivity achievable for any given initial quantum state |ψ〉. Therefore,
it allows the optimization of the preparation block independently of the measurement block.
Then, any measurement which saturates the QCRB automatically will be an optimal one.

The QCRB could be explained in the following way (we would like to emphasize
that this approach actually is not rigorous and can be used only for heuristic purposes).
Start with the (hypothetical) Heisenberg uncertainty relation for the phase φ̂ and photons
number N̂ for the initial quantum state of the probing light |ψ〉 [70]:

∆N∆φ ≥ 1
2

. (6)

Evidently, the phase uncertainty ∆φ defines the ultimate sensitivity limit achievable for a
given |ψ〉. In particular, in the coherent state case with ∆N =

√
N we obtain Equation (1). Squeez-

ing of the phase quadrature proportionally increases ∆N, giving Equation (2). The Heisenberg
limit (3) arises from the (strictly speaking, incorrect) argument that ∆N can not exceed N.

It is known, however, that a Hermitian phase operator φ̂, conjugate to the number
of quanta operator N̂, does not exist and therefore, the “regular” Heisenberg uncertainty
relation of form (6) also does not exist [71,72]. Various ways to circumvent this problem were
proposed [73–75]. At the same time, the QCRB for the particular case of the interferometric
phase measurement can be expressed in the form identical to (6), see details in Section 3.
But in this case, φ has the meaning of a c-number shift of the probing light phase created by
some external agent (for example, a displacement of the interferometer mirror(s)), while
∆N is still the photon number uncertainty of the probing light.

The goal of this review is to provide the unified view on the practical configurations of
the quantum-enhanced interferometers based on the QCRB. The “unified” here means that
we analyze both the single- and two-arm interferometers and, for each case, both SU(2) and
SU(1,1) preparation and measurement options. For all configurations, we optimize first the
preparation block using the QCRB. Then we identify measurement procedures that could
saturate it.
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“Practical” means the following limitations. (i) We focus on the high-precision mea-
surements with ∆φ � 1, because, in the opposite case, the required sensitivity can be
easily obtained using the coherent state. (ii) We consider only the Gaussian quantum states
because technologies of preparation of bright (multi-photon) Gaussian states, in contrast to
the exotic non-Gaussian states, are well developed and refined. (iii) We limit ourselves to
standard and well-developed detection schemes. (iv) We take into account that the useful
amount of squeezing is limited by the optical losses in the interferometer; see Equation (4).
Assuming the realistic values of ε2 & 10−2, this means that the strong classical (coherent
state) pumping with

|α|2 ≈ N � e2r, (7)

where α is the classical amplitude, is obligatory for the high-precision phase measurements.
Due to this limitation, we do not consider the Heisenberg limit here.

The detailed analysis of optical losses introduced by all elements in all the schemes
considered here far exceeds the scope of this work. At the same time, in state-of-the-art
interferometers and, in particular, in laser gravitational-wave detectors, the main part
of the total loss budget is constituted by losses in the output optical path, including the
photodetectors’ quantum inefficiency (the external losses), see e.g., Refs. [42,76]. We take
into account only this kind of loss. This approach significantly simplifies the equations
while providing realistic practical sensitivity estimates.

This paper is organized as follows. In the next section, we discuss the symmetry features of
the configurations shown in Figure 2. In Section 3 we, following Ref. [69], present the convenient
uncertainty-relation-type form of the QCRB. Then in Sections 4 and 5, we analyze the sensitivity
of the single-arm and two-arm interferometers, respectively, following the formulated above
approach. In Section 6, we summarize the main results of this paper.

The appendices contain all the calculations that are not as necessary for an understand-
ing of the main concepts discussed in this work.

2. Symmetry of the Interferometer

In the single-arm interferometer case shown in Figure 3, the reference beam does not
interact with the phase-shifting object. Therefore, much stronger optical power can be sent
into this beam, in comparison with the power in the probe beam, improving the sensitivity
for a given optical power at the object (see discussion at the end of Section 3.1). Therefore,
this configuration is, in essence, an asymmetric one.

Concerning the two-arm interferometer, in the vast majority of applications, the main
goal is not to measure two phase shifts φ1,2 in the arms independently, but to measure
instead the antisymmetric (differential) phase shift

φ− =
φ1 − φ2

2
. (8a)

In principle, in presence of the reference beam, the symmetric (common) phase

φ+ =
φ1 + φ2

2
, (8b)

also can be measured.
Note that typically in literature another normalization φ± = φ1 ± φ2 is used, which

enforces the factor 1/2 in Equation (22) instead in order to preserve the condition (23),
see e.g., Refs. [52,77]. We, following Ref. [16], prefer to use the normalization (8) and (22)
because it gives the final equations for the form more consistently between the single- and
two-arm cases.

In the laser gravitational-wave detectors, the information about φ+ is used for lock-
ing the common mode of the interferometer [6]. Another interesting example is the ex-
perimental proposals aimed at the preparation of the entangled quantum state of two
mirrors [78–80]. However, due to vulnerability to various non-fundamental noise sources,
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in particular to the laser technical noise, φ+ typically is measured with a precision signifi-
cantly inferior to the one of φ−.

In the literature, when analyzing the two-arm interferometers, the asymmetric case
with the signal phase shift in one arm only:

φ1 = ϕ , φ2 = 0 . (9)

is often considered, implicitly assuming that it is equivalent to the antisymmetric one with
the same value of φ−:

φ1 = ϕ/2 , φ2 = −ϕ/2 . (10)

This case looks identical to the single-arm interferometer; compare Figure 1b for the case of
φ2 = 0 and Figure 4a.

However, it was shown in Refs. [77,81] that in general, the cases of (9) and (10) do not
provide the same sensitivity, see details in Section 5.2. Moreover, it was shown in Ref. [82]
that in the case of (10), the symmetric balanced configuration of the interferometer with the
equal values of the optical power in both arms is optimal, opposite to the real single-arm case.

Therefore, in this paper, we focus on the following three cases: (i) the asymmetric
single-arm interferometer, (ii) the symmetric two-arm interferometer with the antisymmetric
phase shifts in the arms, and (iii) the symmetric two-arm one with the symmetric phase
shifts in the arms.

3. Quantum Cramèr–Rao Bound for Phase Measurements
3.1. General Case

Let us consider some quantum system, e.g., an optical field in the interferometer
arms, in a state described by the density operator ρ̂. Let ρ̂ depend on J ≥ 1 parameters
φ1, φ2 . . . , φJ which have to be estimated. Let

B = ‖〈δφj δφk〉‖ (11)

(j, k = 1 . . . J) be the covariance matrix of the estimates φ̃j of φj, with

δφj = φ̃j − φj . (12)

It was shown by C. Helstrom [69] that for any measurement procedure, B satisfies the
following quantum Cramèr–Rao inequality

B ≥ A−1 , (13)

where

A =

∥∥∥∥1
2

Tr[ρ̂(L̂j L̂k + L̂k L̂j)]

∥∥∥∥ (14)

is the quantum Fisher information matrix and L̂j are the symmetrized logarithmic derivatives
of ρ̂, defined by

∂ρ̂

∂φj
=

1
2
(ρ̂L̂j + L̂jρ̂) . (15)

In Sec.VIII.4(c) of the book [69], the specific case of a displacement parameter φ
estimation was considered. In this case,

ρ̂ = Ûρ̂0Û† , (16)

where ρ0 is the initial state of the system,

Û = e−iN̂φ (17)
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is the displacement operator, and N̂ is the infinitesimal generator of the displacement group.
If φ is a c-number shift in the optical mode phase created by some external agent, then N̂ is
the photon number operator of this mode. It was shown that in this case, if the quantum
state ρ̂0 is pure for all values of φ,

ρ̂ = |ψ〉〈ψ| , (18)

then inequality (13) reduces to Equation (6), with ∆N being the uncertainty of N̂ in the
quantum state |ψ〉 and ∆φ having the meaning of the phase estimation error.

Here we generalize this result to the multi-dimensional case. Let φ1, φ2 . . . be the
phase shifts introduced in the respective arms of the interferometer. In this case, the density
operator ρ̂0 corresponds to the optical field state before the phase shifts (i.e., just after the
first beamsplitter), and the evolution operator Û has the following form:

Û = exp
(
−i

J

∑
j=1

N̂jφj

)
(19)

with N̂j being the photon number operators of the respective arms of the interferometer.
Note that they commute with each other:

∀j, k : [N̂j, N̂k] = 0 . (20)

It is shown in Appendix A that in this commutative case, the quantum Fisher information
matrix is proportional to the variances matrix of the operators N̂j:

A = 4‖〈δN̂jδN̂k〉‖ ; (21)

through the paper, we denote δQ̂ = Q̂− 〈Q̂〉 for any operator Q̂.
Concluding this subsection, we would like to emphasize one actually trivial but

important issue. The sensitivity limits (6) and (13), and therefore (1)–(3) are defined in
terms of the photon number statistics at the phase shifting object(s), that is in the interferometer
arm(s). At the same time, in the literature, they often are expressed in terms of the incident
photon numbers, that is, of the photon numbers at the interferometer input ports. The latter
approach, while technically correct, usually leads to more cumbersome final equations and
sometimes misleading statements. In particular, in SU(1,1) interferometers, the incident
light is amplified by the input NOPA and therefore, the equation for the phase measurement
error, being expressed in terms of the incident photon numbers, contains the amplification
factor. Due to this reason, this equation could look like exceeding the HL, which is actually
not the case in the strict sense of Equation (3).

We would like to mention also again that in the most high-power contemporary
interferometers, namely the laser interferometric gravitational-wave detectors, the optical
power in the arms is limited not by the pump laser power but by the nonlinear effects
inside the interferometer. Therefore, in addition to the consistency with QCRB and to its
mathematical cleanness, the approach which is based on photon number statistics the phase
shifting object(s) can be considered more practical. Due to these reasons, we will follow it
in this work.

3.2. Differential and Common Modes

Consider now particular case of J = 2 which the most relevant to the interferometers.
Following Section 2, let us rewrite the QCRB directly in terms of the common and differen-
tial phase shifts (8). Introduce the corresponding common and differential values of the
photon number in the interferometer:

N̂± = N̂1 ± N̂2 . (22)
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Note that the evolution operator (19), expressed in terms of φ± and N̂±, retains its form:

Û = e−i(N̂1φ1+N̂2φ2) = e−i(N̂+φ++N̂−φ−). (23)

Therefore, the QCRB for φ± also has the form (13), up to the evident modification of the
notations (compare with Equations (4)–(6) of Ref. [29]):

B =

(
〈(δφ+)2〉 〈δφ+ δφ−〉
〈δφ+ δφ−〉 〈(δφ−)2〉

)
, (24a)

A = 4
(
〈(δN̂+)2〉 〈δN̂+ δN̂−〉
〈δN̂+ δN̂−〉 〈(δN̂−)2〉

)
, (24b)

where
δφ± = φ̃± − φ± . (25)

The explicit form of the inverse Fisher information matrix can be readily found in this case:

A−1 =
1

4 Det

(
〈(δN̂−)2〉 −〈δN̂+ δN̂−〉
−〈δN̂+ δN̂−〉 〈(δN̂+)2〉

)
, (26)

where
Det = 〈(δN̂+)

2〉〈(δN̂−)2〉 − 〈δN̂+ δN̂−〉2 . (27)

4. Single-Arm Interferometers
4.1. QCRB

Two configurations of the single-arm interferometers, the SU(2) and SU(1,1) ones,
are shown in Figure 4a,b, respectively. In both cases, we assume that the incident light
is prepared in the coherent state |α0〉. In the first case, the input beamsplitter BS 1 splits
the incident beam into the probe and reference ones. The probe beam is squeezed by the
degenerate optical parametric amplifier DOPA and then acquires the signal phase shift φ.
Finally, its phase quadrature is measured by the phase-sensitive balanced homodyne
detector, consisting of the output beamsplitter BS 2 and two photodetectors Det 1 and Det 2.
The second (reference) beam, with its phase shifted by π/2, serves as the local oscillator for
the homodyne detector.

|𝛼0⟩
|0⟩BS 1

BS 2

DOPA

𝜙

QCRB

𝜋
2

Det 1

Det 2

−
(a)

|𝛼0⟩
Pump

𝜋
2

DOPA 1

𝜙

DOPA 2

QCRB
Det

(b)

Figure 4. Single-arm SU(2) (a) and SU(1,1) (b) interferometers. BS: beamsplitters; DOPA: degenerate
optical parametric amplifiers; Det: detectors. The part, common for both schemes, is enclosed into
the dashed rectangle and labeled as “QCRB”.

Note the unusual placement of the squeezer DOPA. In the case of the standard placement
(in the “south” input port of BS 1), squeezing in the probe beam would be diluted by the
vacuum fluctuations entering the interferometer through the classical pump (“west”) port, thus
degrading the sensitivity. The placement of the squeezer directly in the signal arm solves this
problem. However, as we show here, the optimal sensitivity of this scheme corresponds to the
highly unbalanced regime with the BS 1 transmissivity T → 1. It is easy to see that, in this case,
the squeezer could be moved to its standard place without the sensitivity degradation.

In the SU(1,1) case, the incident beam goes directly to the squeezer DOPA 1, then
acquires the signal phase shift φ, and finally is anti-squeezed by the second parametric
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amplifier DOPA 2, excited by the same pump beam as the first one, but with the phase
shifted by π/2 (which corresponds to inversion of the squeeze factor sign). In this case, the
pump beam serves as the phase reference, allowing the use of the simple direct detection
method instead of the homodyne one.

It is easy to see that these schemes differ only by the measurement methods, while
the preparation and the phase shift parts that are relevant to the QCRB (in Figure 4 they
are enclosed into dashed rectangles and marked as “QCRB”) are identical. Therefore, both
schemes are characterized by the same Cramèr–Rao limit (6), where ∆N is the uncertainty
of the photon number N̂ = â† â in the squeezed coherent state generated by DOPA/DOPA 1
and â, â† are the corresponding annihilation and creation operators.

In the Heisenberg picture, the operator â can be expressed as follows:

â = α + ẑ cosh r + ẑ†e2iθ sinh r , (28)

where α is the classical amplitude of the probe beam at the phase shifting object, ẑ, ẑ† are
the annihilation and creation operators of the input vacuum fluctuations of DOPA/DOPA 1,
r > 0 is the squeeze factor, and θ is the squeeze angle. We assume here without limiting the
generality that arg α = 0 (this assumption just defines the reference point for all phases).

It follows from Equation (28) that

〈(δN̂)2〉 = α2(cosh 2r + sinh 2r cos 2θ) +
1
2

sinh2 2r . (29)

The maximum of this expression is provided by

θ = 0 . (30)

This value of θ corresponds to the anti-squeezing of the amplitude quadrature (the one
which is in phase with the classical carrier) and to the proportional squeezing of the phase
quadrature. The resulting QCRB has the following form:

〈(δφ)2〉 = 1
4〈(δN̂)2〉

=
1

4(α2e2r + 1
2 sinh2 2r)

. (31)

4.2. Homodyne Detection

Here we take into account explicitly the homodyne detector and the corresponding
reference beam. It is well known that in the homodyne detection-based schemes, the
sensitivity for a given optical power at the object monotonously improves with the increase of
the local oscillator power. Therefore, here we consider the general case of the unbalanced
beamsplitter BS 1 with the power transmissivity T 6= 1/2.

The annihilation operators of, respectively, the probe and the reference beams just
before the output beamsplitter BS 2 (see Figure 4a) are the following:

ĉ = âe−iφ , (32a)

ĉR = iαR + âR , (32b)

where αR, with arg αR = 0, is the classical amplitude of the reference beam, the factor i takes into
account the phase shift π/2 in the reference arm, and the annihilation operator âR corresponds
to a vacuum field. The balanced output beamsplitter transforms them as follows:

d̂1,2 =
ĉ± ĉR√

2
. (33)

Following Ref. [83], we model the losses by imaginary beamsplitters with the power
transmissivities η, which mix the output fields with the vacuum noises ŷ1,2:

f̂ j =
√

η d̂j +
√

1− η ŷj , (34)
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where j = 1, 2. Correspondingly, the measured differential number of quanta is equal to

n̂− = f̂ †
1 f̂1 − f̂ †

2 f̂2 . (35)

Combining Equations (28), (30), and (32)–(35), we obtain that the mean number and
the variance of n̂− are equal to, respectively,

〈n̂−〉 = −2ηααR sin φ , (36a)

〈(δn̂−)2〉 = η2α2
R(cosh 2r− sinh 2r cos 2φ + ε2) + η(α2 + sinh2 r) . (36b)

Using the standard error propagation formula:

〈(δφ)2〉 = 〈(δn̂−)2〉
G2

∣∣∣∣
φ→0

, (37)

where

G =
∂〈n̂−〉

∂φ
= −2ηααR cos φ (38)

is the gain factor, we obtain that

〈(δφ)2〉 = 1
4

(
e−2r + ε2

α2 +
α2 + sinh2 r

ηα2α2
R

.
)

. (39)

The term ∝ 1/α2
R in this equation, which originates from the quantum noise of the

reference beam, vanishes in the strongly asymmetric case of α2
R → ∞ (which corresponds

to α0 → ∞, T → 1, and α0
√

1− T = α), giving

〈(δφ)2〉 = e−2r + ε2

4α2 . (40)

This value differs from the fundamental limit (31) by the losses term ε2 and by the absence
of the small term 1

2 sinh2 2r in the denominator.
It was shown in Ref. [84], that the latter one arises because the mean value of n̂−

does not contain full information about φ. Some of this information is contained in the
higher momenta of n̂− and can be recovered using more sophisticated multi-shot Bayesian
measurements, as it was proposed in [84]. However, in the case of (7), the ordinary
homodyne measurement is sufficient.

4.3. SU(1,1) Measurement

Consider now the single-arm SU(1,1) interferometer, shown in Figure 4b. In this case,
the phase dependence of the measured photon number n̂ is created by the DOPA 2, which
performs the anti-squeezing operation

d̂ = ĉ cosh R− ĉ†e2iθ sinh R . (41)

Here ĉ is given by Equation (32a), R > 0 is the anti-squeeze factor, and θ is the same squeeze
angle as in Equation (28).

To take into account the losses, we use the same imaginary beamsplitter model as in
the previous case, assuming that the measured photons number is equal to

n̂ = f̂ † f̂ , (42)

where
f̂ =
√

η d̂ +
√

1− η ŷ (43)

and ŷ is the vacuum noise introduced by the losses (compare with Equation (34)).
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The mean value and variance of n̂ are calculated in Appendix B, see Equations (A9).
Here we consider only the particular case of

e2R � 1 , (44)

because (i) it significantly simplifies the equations while providing the sensitivity approach-
ing the QCRB (31), and (ii) allows the suppression of influence of the photodetector ineffi-
ciency [16] (note that in the perfectly realistic case of the 10 dB squeezing, e2R = 10� 1).
In this case,

〈n̂〉 = ηe2R
[

α2 sin2(θ + φ) +
|σ|2

4

]
, (45a)

〈(δn̂)2〉 = η2
{

e4R|σ|2
[

α2 sin2(θ + φ) +
|σ|2

8

]
+ ε2e2R

[
α2 sin2(θ + φ) +

|σ|2
4

]}
, (45b)

where
|σ|2 = cosh 2r− sinh 2r cos 2φ . (46)

Using again the error propagation formula:

〈(δφ)2〉 = 〈(δn̂)2〉
G2

∣∣∣∣
φ→0

(47)

with

G =
∂〈n̂〉
∂φ

= ηe2R
[

α2 sin 2(θ + φ) +
1
2

sinh 2r sin 2φ

]
, (48)

we obtain that

〈(δφ)2〉 = 〈(δn̂)2〉
G2

∣∣∣∣
φ→0

=
1

4α2 cos2 θ

[
e−2r

(
1 +

e−2r

8α2 sin2 θ

)
+ ε2e−2R

(
1 +

e−2r

4α2 sin2 θ

)]
. (49)

In the case of a small, but not non-zero squeeze angle:

e−2r

N
� θ2 � 1 , (50)

the measurement error is equal to:

〈(δφ)2〉 = e−2r + ε2e−2R

4α2 . (51)

This equation differs from the previous one (40) by the additional factor e−2R which
suppresses the sensitivity degradation imposed by the optical losses. Evidently, this
advantage comes from the amplification of the signal in the second OPA. However, this
advantage is not unique to the SU(1,1) interferometers. It was shown in Ref. [10] that a
similar gain could be achieved in the SU(2) by using the additional NOPA(s) located before
the photodetector(s). Applications of this idea to various configurations of interferometers,
both SU(1,1) and SU(2) ones, were considered in Ref. [16]. Several years ago, the proof-of-
principle experiments with SU(1,1) [85] and SU(2) [35] interferometers were done.

In the rest of this paper, we, for brevity, do not take the factor e2R into account explicitly,
absorbing it into ε2:

ε2e−2R → ε2 . (52)
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Up to this factor, in the asymptotic case of (7) both schemes shown in Figure 4 and
considered in this section provide the same sensitivity. If the optical losses are sufficiently
small (or suppressed by the parametric amplification):

ε2 � e−2r , (53)

then both schemes saturate the common for them QCRB (31) up to the small term 1
2 sinh2 2r.

5. Two-Arm Interferometers
5.1. QCRB

Two variants of the preparation block of the two-arm interferometer (see Figure 3b) are
shown in Figure 5: the “SU(2)” (a) and the “SU(1,1)” (b) ones. Let us start with the first one.

|𝛼01⟩

|𝛼02⟩

DOPA 1

DOPA 2

BS 1 (a)

|𝛼01⟩

|𝛼02⟩
NOPA

(b)

Figure 5. Preparation options for the two-arm interferometer shown in Figure 3b. (a): SU(2) interfer-
ometer; (b): SU(1,1) interferometer. BS 1: beamsplitters; DOPA 1,2: degenerate optical parametric
amplifiers; NOPA: non-degenerate optical parametric amplifier.

We consider the most general case, assuming that both input ports of the beamsplitter
BS 1 are excited by two squeezed coherent states generated by two degenerate parametric
amplifiers DOPA 1,2. The annihilation operators describing these quantum states in the
Heisenberg picture can be presented as follows (j = 1, 2):

âj = αj + ẑj cosh rj + ẑ†
j e2iθj sinh rj , (54)

where αj are the classical amplitudes, the operators ẑj correspond to vacuum fields, rj
are the squeeze factors and θj are the squeeze angles. After the input beamsplitter BS 1,
correspondingly, we obtain:

b̂1 =
â1 + â2√

2
, b̂2 =

â1 − â2√
2

, (55)

In particular, the classical amplitudes of the beamsplitter output beams are equal to

β1 =
α1 + α2√

2
, β2 =

α1 − α2√
2

. (56)

Taking into account that the best sensitivity for the differential phase φ− is provided
by the balanced interferometer [82], we suppose that |β1| = |β2|. Then, without further
limiting the generality (and setting thus the reference point for all phases), we assume that

β1,2 =
αe±iζ
√

2
, (57)

where arg α = 0 and 2ζ is the relative phase shift between β1 and β2. It follows from
Equation (56), that in this case,

α1 = α cos ζ , α2 = iα sin ζ (58)



Symmetry 2023, 15, 774 13 of 26

and
|β1|2 + |β2|2 = |α1|2 + |α2|2 = |α|2 . (59)

Then it follows from Equation (55), that the common and differential values of the
photon numbers at the phase-shifting objects are equal to

N̂+ = b̂†
1 b̂1 + b̂†

2 b̂2 = â†
1 â1 + â†

2 â2 , (60a)

N̂− = b̂†
1 b̂1 − b̂†

2 b̂2 = â†
1 â2 + â†

2 â1 . (60b)

The second momenta of these operators are calculated in Appendix C. In the particular
case of (58), they can be presented as follows:

〈(δN̂+)
2〉 = α2(σ2

1+ cos2 ζ + σ2
2− sin2 ζ) +

1
2
(sinh2 2r1 + sinh2 2r2) , (61a)

〈(δN̂−)2〉 = α2(σ2
1− sin2 ζ + σ2

2+ cos2 ζ)

+ sinh2(r1 + r2) cos2(θ1 − θ2) + sinh2(r1 − r2) sin2(θ1 − θ2) , (61b)

〈δN̂+δN̂−〉 =
α2

2
(sinh 2r1 sin 2θ1 + sinh 2r2 sin 2θ2) sin 2ζ , (61c)

where
σ2

j± = cosh 2rj ± sinh 2rj cos 2θj . (62)

Consider now the following three characteristic scenarios.

5.1.1. Single Squeezer

Start with the case of a single squeezer. Just to be specific, we suppose that

r1 = 0 , r2 > 0 . (63)

It follows from Equations (61), that in this case,

〈(δN̂+)
2〉 = α2(cos2 ζ + σ2

2− sin2 ζ) +
1
2

sinh2 2r2 , (64a)

〈(δN̂−)2〉 = α2(sin2 ζ + σ2
2+ cos2 ζ) + sinh2 r2 , (64b)

〈δN̂+δN̂−〉 =
α2

2
sinh 2r2 sin 2θ2 sin 2ζ . (64c)

Then recall that the measurement of φ− has higher priority than the measurement of
φ+. Therefore, evidently, the following parameters have to be used, which maximize the
leading (proportional to α2) term in Equation (64b):

θ2 = 0 , ζ = 0 . (65)

In this case it follows from Equation (26) that

〈(δφ+)
2〉 = 1

4
(
α2 + 1

2 sinh2 2r2
) , (66a)

〈(δφ−)
2〉 = 1

4(α2e2r2 + sinh2 r2)
, (66b)

〈δφ+δφ−〉 = 0 , (67)
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Note that conditions (63) and (65) describe injection of the classical carrier into only
one (bright) port (α2 = 0) and injection of the squeezed vacuum into the second (dark) one.
This regime exactly corresponds to the canonical case of [10].

Note also that due to condition (67), the measurement imprecision of φ− is disentan-
gled from the one of φ+, which is typically contaminated by the technical noise. This useful
feature is true also for the “two squeezers” and “SU(1,1) type preparation” cases considered
below. For brevity, we will not mention it again and will omit the corresponding equations
for 〈δφ+δφ−〉.

5.1.2. Two Squeezers

Suppose now that both input ports are squeezed. It is natural to assume that both
squeeze factors are limited by the same technological constraints and therefore |r1| ∼ |r2|.
In this case, the leading (proportional to α2) terms in Equations (61a) and (61b) can be
maximized simultaneously by either

r1 ∼ r2 > 0 , θ1 = θ2 = 0 , ζ = 0 , (68a)

or
r1 ∼ r2 > 0 , θ1 = θ2 =

π

2
, ζ =

π

2
. (68b)

Both these options actually are equivalent, up to the renumbering of the ports. Similar
to the previous (single squeezer) case, they also correspond to the injection bright carrier
into one of the ports and the injection of the squeezed vacuum into the second one. But this
time, the light at the bright port is also squeezed.

To be specific, we consider the first option, which gives:

〈(δφ+)
2〉 = 1

4[α2e2r1 + 1
2 (sinh2 2r1 + sinh2 2r2)]

, (69a)

〈(δφ−)
2〉 = 1

4[α2e2r2 + sinh2(r1 + r2)]
. (69b)

Therefore, the bright port squeezer allows us to obtain the sub-SNL sensitivity also for the
common phase.

5.1.3. SU(1,1)-Type Preparation

Finally, consider the input part of the SU(1,1) interferometer, see Figure 5b. In this
case, the incident fields at the phase-shifting objects can be presented as follows:

b̂1 = β1 + ẑ+ cosh r + ẑ†
−e2iθ sinh r , (70a)

b̂2 = β2 + ẑ− cosh r + ẑ†
+e2iθ sinh r , (70b)

where ẑ± correspond to the vacuum fields and we assume that β j are still given by
Equation (57). It is easy to see that up to the trivial substitution

ẑ± →
ẑ1 ± ẑ2√

2
, (71)

Equations (70) coincide with Equations (54) and (55) for the particular case of

r1 = −r2 = r , (72a)

θ1 = θ2 = θ . (72b)

This means that the SU(1,1) type scheme of Figure 5b can be treated as a special case of the
SU(2) scheme of Figure 5a with the particular choice of the squeeze factors given by (72).
Therefore, we can reuse Equation (61). Combining them with Equation (72), we obtain that
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〈(δN̂+)
2〉 = α2(cosh 2r2 − sinh 2r2 cos 2θ) + sinh2 2r2 , (73a)

〈(δN̂−)2〉 = α2(cosh 2r2 + sinh 2r2 cos 2θ) . (73b)

independently on ζ.
In this case, a trade-off is possible between the φ+ and φ−. In particular, if r2 > 0

and θ = 0, then we have the sensitivity overcoming the SNL for φ−, but proportionally
degraded for φ+:

〈(δφ+)
2〉 = 1

4(α2e−2r2 + sinh2 2r2)
, (74a)

〈(δφ−)
2〉 = 1

4α2e2r2
. (74b)

If r > 0 and θ = π/2, then the situation is opposite:

〈(δφ+)
2〉 = 1

4(α2e2r2 + sinh2 2r2)
, (75a)

〈(δφ−)
2〉 = 1

4α2e−2r2
. (75b)

However, the latter case hardly has any practical sense.
The following interesting case is also worth mentioning:

θ =
π

4
, (76)

which, similar to the two squeezers case, see Equation (69), also allows us to overcome the
SNL for both φ+ and φ− simultaneously, but to a lesser degree:

〈(δφ+)
2〉 = 1

4(α2 cosh 2r2 + sinh2 2r2)
, (77a)

〈(δφ−)
2〉 = 1

4α2 cosh 2r2
. (77b)

5.2. Measurement of Individual Phase Shifts in the Arms

Here we analyze the measurement precision 〈(δφ1,2)
2〉 for the individual phase shifts

in the arms
φ1,2 = φ+ ± φ− . (78)

In general, in order to recover them, both φ+ and φ− have to be measured. The measure-
ment of φ+, in turn, requires a detection scheme that uses an additional (third) phase
reference beam, e.g., the homodyne detector.

The values of measurement errors 〈(δφ1,2)
2〉 crucially depend on a priori information

on φ1,2. It follows from Equations (67) and (78) that in the absence of this information, the
mean square measurement errors of φ+ and φ− add up to

〈(δφ1,2)
2〉 = 〈(δφ+)

2〉+ 〈(δφ−)
2〉 , (79)

where 〈(δφ±)2〉 are given by Equations (66), (69) or (74), depending on the input state
preparation procedure.

At the same time, suppose that an unknown phase shift ϕ is introduced into one, say,
the first, arm only and the phase shift in another arm is known—say, equal to zero, see
Equation (9). It follows from Equation (8), that in this asymmetric case,

φ+ = φ− =
ϕ

2
. (80)
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This means that both the “+” and the “−” channels carry the same information on ϕ.
It is easy to show that in this case, with account for condition (67), the Fisher information
values for both channels are summed:

〈(δϕ)2〉 = 4
1/〈(δφ+)2〉+ 1/〈(δφ−)2〉 . (81)

Consider then the case of the antisymmetric distribution of the phase shifts; see
Equation (10). It corresponds to

φ+ = 0 , φ− =
ϕ

2
. (82)

In this case, the “+” channel does not provide any information on ϕ; correspondingly,

〈(δϕ)2〉 = 4〈(δφ−)
2〉 . (83)

Evidently, the additional phase reference is useless in this case.
It was shown in Ref. [77], that the asymmetric and antisymmetric cases are equivalent

only within the class of detection schemes insensitive to the common phase. Equations (81)
and (83) clearly show the reason for this. Indeed, the first one contains the Fisher infor-
mation from the “+” channel, in addition to the “–” one. Taking into account that in the
double squeezed input case, there could be 〈(δφ+)2〉 ≈ 〈(δφ−)2〉, the value of (81) could be
twice as small as of (83). At the same time, consider the asymmetric case with the neglected
common phase information (assuming, for example, that a detection scheme that does not
employ the reference beam is used). In this case, putting in Equation (81) 〈(δφ+)2〉 → ∞,
we recover Equation (83).

In Ref. [81], the following no-go theorem has been proven: if one of the input ports of
the two-arm interferometer is kept in the vacuum state, then in the antisymmetric case the
sensitivity is limited by the SNL independently of the quantum state at the second port.
At the sama time, in the asymmetric case this no-go theorem does not hold. The origin
of this peculiar limitation also can be seen in Equations (81) and (83). Indeed, consider
Equation (69), assuming that r2 = 0, which corresponds to the vacuum state at the second
input port. In this case, φ− can not be measured with a precision better than the SNL, but
φ+ still can. Due to this reason, in the antisymmetric case, the precision is limited by the
SNL, see Equation (83). But in the asymmetric case, the SNL can be overcome due to the
Fisher information provided by the “+” channel, see Equation (81).

5.3. Double Homodyne Detection

In this and the next two subsections, we consider three variants of the measurement
block of the two-arm interferometer (see Figure 3b), shown in Figure 6: the double homo-
dyne detection (a), the double direct detection (b), and the SU(1,1) type measurement (c).
Here we start with the first one.

Reference

BS 2

HD 1

HD 2

(a)

opt

BS 2

Det 1

Det 2

(b)

opt

NOPA 2

Det 1

Det 2

(c)

Figure 6. Measurement options for the two-arm interferometer shown in Figure 3b. (a): Double
homodyne detection; (b): double direct detection; (c): SU(1,1) type measurement. BS 2: beamsplit-
ter; NOPA 2: non-degenerate optical parametric amplifier; HD 1,2: homodyne detectors; Det 1,2:
detectors; “opt” means the optimally weighted sum of the two outputs.
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An evident advantage of the double homodyne detection scheme, in comparison with
the more standard single homodyne detection one, as well as with the direct detection
scheme considered in Section 5.4, is its ability to measure both the differential phase φ−
and (due to the external phase reference) the common phase φ+. Another probably more
important advantage of homodyne detection in comparison with the direct one also could
be mentioned here. The homodyne detectors can measure arbitrary quadrature of the
output light of the interferometer; this feature is typically required by the schemes of
overcoming the Standard Quantum Limit in optomechanical measurements, in particular,
in the laser gravitational-wave detectors, see details in the reviews [86,87].

Let us continue the analysis of Section 5.1, see Equation (55), introducing the signal
phase shifts in the arms (j = 1, 2):

ĉj = b̂je
−iφj . (84)

The output beamsplitter BS 2 modifies them as follows:

d̂1 =
ĉ1 + ĉ2√

2
, d̂2 =

ĉ1 − ĉ2√
2

. (85)

Combining Equations (55), (84) and (85), and reusing Equation (34), we obtain that with
account for the losses, the effective fields at the detectors are described by the annihilation
operators

f̂1 =
√

η(â1 cos φ− − iâ2 sin φ−)e−iφ+ +
√

1− η ŷ1 , (86a)

f̂2 =
√

η(−iâ1 sin φ− + â2 cos φ−)e−iφ+ +
√

1− η ŷ2 . (86b)

Then, following the results of Section 5.1, we assume that

â1 = α + ẑ1 cosh r1 + ẑ†
1 sinh r1 , (87a)

â2 = ẑ2 cosh r2 + ẑ†
2 sinh r2 , (87b)

where arg α = 0. Combining Equations (86) and (87) and taking into account that |α| � 1
and |φ±| � 1, we obtain finally:

f̂1 =
√

η[α(1− iφ+) + ẑ1 cosh r1 + ẑ†
1 sinh r1] +

√
1− η ŷ1 , (88a)

f̂2 =
√

η[−iαφ− + ẑ2 cosh r2 + ẑ†
2 sinh r2] +

√
1− η ŷ2 . (88b)

It follows from these equations, that the first (bright) output contains information
about the common phase φ+, and the second (dark) one — about the differential one φ−.
Both could be measured independently by the respective homodyne detectors.

In order to calculate the measurement errors, it is convenient to introduce the sine
quadratures of the input and output fields (j = 1, 2):

ŷs
j =

ŷj − ŷ†
j

i
√

2
, ẑs

j =
ẑj − ẑ†

j

i
√

2
, d̂s

j =
d̂j − d̂†

j

i
√

2
. (89)

In these notations, Equation (88) give:

f̂ s
1 =
√

η[−
√

2αφ+ + ẑs
1e−r1 ] +

√
1− η ŷs

1 , (90a)

f̂ s
2 =
√

η[−
√

2αφ− + ẑs
2e−r2 ] +

√
1− η ŷs

1 . (90b)

Taking into account that the variances of ŷs
1,2 and ẑs

1,2 are equal to 1/2, we obtain:

〈(δφ+)
2〉 = e−2r1 + ε2

4α2 , (91a)
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〈(δφ−)
2〉 = e−2r2 + ε2

4α2 . (91b)

In the asymptotic case of (7) and (53), these results are in the full agreement with the
ones predicted by the QCRB, see Equations (66), (69) and (74).

5.4. Double Direct Detection

Consider now the double direct detection case, shown in Figure 6b. Using Equation (86),
the photon numbers measured by the two photodetectors can be presented as follows:

n̂out
1 = f̂ †

1 f̂1 = η(n̂1 cos2 φ− + n̂2 sin2 φ− + Ŷ cos φ− sin φ−) + n̂loss
1 , (92a)

n̂out
2 = f̂ †

2 f̂2 = η(n̂1 sin2 φ− + n̂2 cos2 φ− − Ŷ cos φ− sin φ−) + n̂loss
2 , (92b)

where (j = 1, 2)
n̂j = â†

j âj (93)

are the incident photon numbers,

Ŷ = i(â†
2 â1 − â†

1 â2) , (94)

and
n̂loss

j =
√

η(1− η)
(
d̂†

j ŷj + ŷ†
j d̂j
)
+ (1− η)ŷ†

j ŷj (95)

are the additional fluctuations created by the optical losses.
Correspondingly, the common and differential output photon numbers are equal to:

n̂out
+ = n̂out

1 + n̂out
2 = ηn̂+ + n̂loss

1 + n̂loss
2 , (96a)

n̂out
− = n̂out

1 − n̂out
2 = η(n̂− cos 2φ− + Ŷ sin 2φ−) + n̂loss

1 − n̂loss
2 , (96b)

where
n̂± = n̂1 ± n̂2 . (97)

It is evident that in this case, due to the absence of the common phase reference, only
the differential phase shift φ− can be measured. Note also that n̂+ does not depend on φ−.
Due to this reason, in the literature, typically the measurement of the differential photons
numbers n̂out

− only is considered, see e.g., Ref. [54]. However, fluctuations of n̂out
+ and n̂out

−
correlate. Therefore, the measurement of n̂out

+ provides some information about the noise of
n̂out
− , and taking this information into account by means of the optimal combination of both

outputs, it is possible to improve the phase sensitivity [88]. The resulting measurement
error can be presented as follows:

〈(δφ−)
2〉 = 1

G2

[
〈(δn̂out

− )2〉 −
〈δn̂out
− δn̂out

+ 〉2

〈(δn̂out
+ )2〉

]
, (98)

where

G =
∂〈n̂out
− 〉

∂φ−
(99)

is the gain factor.
Here we, similarly to the double homodyne detection case (see Section 5.3), follow the

results of Section 5.1, assuming that the incident fields are described by Equation (87). The
explicit form of Equation (98) for this case is calculated in Appendix D, see Equation (A27).

Note that the squeeze factor r1 is responsible for the common phase φ+ sensitivity, see
Section 5.1. Therefore, the “two squeezers” option has no sense in the direct detection case,
which is insensitive to φ+. Consider the two remaining ones.

In the single squeezer case of Equation (63), Equation (A27) simplifies to
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〈(δφ−)
2〉 = 1

4(α2 − sinh2 r2)2

[
α2e−2r2 + sinh2 r2 + ε2(α2 + sinh2 r2)

+ 2(sinh2 2r2 + 2ε2 sinh2 r2) cot2 2φ− + O(α−2)
]

. (100)

In the SU(1,1)-type preparation case, see Equation (72a), we obtain:

〈(δφ−)
2〉 = 1

4α4

[
α2e−2r2 + sinh2 2r2 + ε2(α2 + 2 sinh2 r2)

+ 2(sinh2 2r2 + 2ε2 sinh2 r2) cot2 2φ− + O(α−2)
]

, (101)

where O(α−2) means a value of the order of magnitude of α−2 � 1.
In both cases, the terms diverging at φ− → 0 can be suppressed by introducing

a sufficiently big given constant displacement into φ−. In the asymptotic case of (7),
Equations (100) and (101) become identical to each other and to Equation (91b); that is,
both homodyne and direct detection options provide the same asymptotic sensitivity for
the differential phase.

5.5. SU(1,1) Measurement

Finally, consider the SU(1,1) measurement case, shown in Figure 6c. In this case, with
account for Equation (84), the optical fields after the NOPA 2 can be presented as follows:

d̂1 = b̂1e−iφ1 cosh R + b̂†
2ei(φ2+2iϑ) sinh R , (102a)

d̂2 = b̂2e−iφ1 cosh R + b̂†
1ei(φ2+2iϑ) sinh R (102b)

where R, ϑ are, respectively, the squeeze factor and the squeeze angle of the NOPA 2.
The corresponding output photon numbers are equal to

d̂†
1 d̂1 = b̂†

1 b̂1 cosh2 R + [b̂†
1 b̂†

2e2i(φ++ϑ) + b̂1b̂2e−2i(φ++ϑ)] cosh R sinh R + b̂2b̂†
2 sinh2 R , (103a)

d̂†
2 d̂2 = b̂†

2 b̂2 cosh2 R + [b̂†
1 b̂†

2e2i(φ++ϑ) + b̂1b̂2e−2i(φ++ϑ)] cosh R sinh R + b̂1b̂†
1 sinh2 R . (103b)

It follows from these equations that independently of the incident quantum state, this
measurement procedure gives information only on the common phase φ+ and, therefore,
has no advantages in comparison with the single-arm SU(1,1) interferometer considered in
Section 4.3.

In principle, sensitivity to the differential phase φ− can be recovered by measuring
the NOPA 2 outputs by means of the homodyne detectors. However, taking into account
that the more simple SU(2)-type measurement schemes, considered in Sections 5.3 and 5.4,
allow us to asymptotically saturate the QCRB, such a sophisticated scheme with two-phase
references (NOPA pump and the homodyne detectors local oscillator beams) hardly has
any sense. Therefore, we do not consider it here.

6. Conclusions

We analyzed the sensitivity of squeezing-enhanced enhanced interferometers using
the unified approach based on the convenient uncertainty-relation-type form of QCRB,
presented in Section 3.1. We considered both linear (SU(2)) and non-linear (SU(1,1)) inter-
ferometers, as well as the hybrid SU(2)/SU(1,1) schemes, taking into account the practical
limitations of all real-world high-sensitive interferometers. In particular, we assumed the
realistic case of Gaussian states of the probing light, supplemented by the strong classical
carrier, see the condition (7).

We focused on the following three configurations, defined by the interferometer
symmetry: (i) the asymmetric single-arm interferometer; (ii) the symmetric two-arm interfer-
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ometer with the antisymmetric phase shifts in the arms, and (iii) the symmetric two-arm
interferometer with the symmetric phase shifts in the arms.

We showed that while the optimal regimes for these cases differ significantly, the
QCRBs for both linear (SU(2)) and non-linear (SU(1,1)) interferometers are given by the
following equations having the same uniform structure that first appeared in the work [10].

In the asymmetric case of the single-arm (both SU(2) and SU(1,1)) interferometers,

〈(δφ)2〉 ≥ e−2r

4N , (104)

where
N = N + o(N) , (105)

N is the mean number of photons at the phase-shifting object, and r is the corresponding
squeeze factor. The function o(N) is defined in the standard way: o(N)/N → 0 if N → ∞.

In the case of the two-arm SU(2) interferometer, the sensitivity for the symmetric and
antisymmetric phase shifts depends on the squeeze factors r1 and r2 at the bright and dark
ports, respectively:

〈(δφ+)
2〉 ≥ e−2r1

4N , (106a)

〈(δφ−)
2〉 ≥ e−2r2

4N , (106b)

where N is still defined by Equation (105), but with N being the total photon number in
the both arms.

In principle, the input part of the SU(2) interferometer (the input beamsplitter +
squeezer(s)) can be replaced by the SU(1,1) type one, that is, by the single non-degenerate
optical parametric amplifier with the squeeze factor r. This configuration gives the QCRB,
which also is described by Equation (106), but with −r1 = r2.

In the ideal lossless case, the standard measurement schemes, namely the direct
detection and, if the additional phase reference is available, the homodyne detection, allow
to asymptotically (that is, for the case of N � 1) saturate these limits. In presence of
the optical losses, the general structure of Equations (104) and (106) still holds up to the
replacement of the squeeze factors by the effective lossy ones following the rule (4).

We have to mention also that the two-arm interferometers, the SU(1,1) type detection
scheme (the non-degenerate optical parametric amplifier followed by the photodetector(s))
hardly has any sense because it gives information on φ+ only; therefore, a single-arm
interferometer would be sufficient for this case.
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Appendix A. Fisher Information Matrix

Using Equations (16)–(20), Equation (15) can be presented as follows:

i(ρ̂N̂j − N̂jρ̂) =
1
2
(ρ̂L̂j + L̂jρ̂) . (A1)

Let |ρl〉, pl be the eigenstates and eigenvalues of ρ:

ρ̂ = ∑
l
|ρl〉pl〈ρl | . (A2)

Using this representation, Equation (15) can be solved explicitly:

〈ρl |L̂j|ρm〉 = 2i
pl − pm

pl + pm
〈ρl |N̂j|ρm〉 . (A3)

Substitution of this solution into Equation (14) gives:

Ajk =
1
2 ∑

lm
pl

(
〈ρl |L̂j|ρm〉〈ρm|L̂k|ρl〉+ 〈ρl |L̂k|ρm〉〈ρm|L̂j|ρl〉

)
= 2 ∑

lm

(pl − pm)2

pl + pm
〈ρl |N̂j|ρm〉〈ρm|N̂k|ρl〉 . (A4)

Suppose that ρ̂ is a pure state:

p0 = 1 , pl 6=0 = 0 . (A5)

In this case, only the terms with l = 0, m 6= 0 and l 6= 0, m = 0 survive in Equation (A4):

Ajk = 2
(

∑
m 6=0
〈ρ0|N̂j|ρm〉〈ρm|N̂k|ρ0〉+ ∑

l 6=0
〈ρl |N̂j|ρ0〉〈ρ0|N̂k|ρl〉

)
= 4

(
〈N̂jN̂k〉 − 〈N̂j〉〈N̂k〉

)
= 4〈δN̂jδN̂k〉 . (A6)

Appendix B. Single-Arm Interferometer with SU(1,1) Measurement

Evolution of the optical field in the single-arm SU(1,1) interferometer shown in Figure 4a is
described by Equations (28), (41) and (43). It follows from these equations that

d̂ =
√

η(Bα + Cẑ + Sẑ†) +
√

1− η ŷ , (A7)

where

B = e−iφ cosh R− e2iθ+iφ sinh R , (A8a)

C = e−iφ cosh r cosh R− eiφ sinh r sinh R , (A8b)

S = e2iθ−iφ sinh r cosh R− e2iθ+iφ cosh r sinh R . (A8c)

Therefore, the mean value and variance of n̂ = f̂ † f̂ are equal to

〈n̂〉 = η(|B|2α2 + |S|2) , (A9a)

〈(δn̂)2〉 = η2[|B∗S + BC∗|2α2 + 2|C|2|S|2 + ε2(|B|2α2 + |S|2)
]

. (A9b)
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In the particular case of (44),

B =
eR

2
(e−iφ − e2iθ+iφ) , (A10a)

C =
eR

2
σ , (A10b)

S = − eR

2
e2iθσ∗ , (A10c)

where
σ = e−iφ cosh r− eiφ sinh r , (A11)

which gives Equation (45).

Appendix C. Variances of the Photon Numbers in the Arms of the SU(2) Interferometer

It follows from Equation (54) that

δ(â†
j âj)|0〉 =

[
(αjGj + α∗j gj)ẑ†

j + Gjgj ẑ†
j

2]|0〉 , (A12a)

δ(â†
1 â2)|0〉 =

(
α2G1ẑ†

1 + α∗1 g2ẑ†
2 + G1g2ẑ†

1 ẑ†
2
)
|0〉 , (A12b)

δ(â†
2 â1)|0〉 =

(
α1G2ẑ†

2 + α∗2 g1ẑ†
1 + G2g1ẑ†

1 ẑ†
2
)
|0〉 , (A12c)

and

δN̂+|0〉 = ∑
j=1,2

(
Ajj ẑ†

j + Gjgj ẑ†
j

2)|0〉 , (A13a)

δN̂−|0〉 =
[
A21ẑ†

1 + A12ẑ†
2 + (G1g2 + G2g1)ẑ†

1 ẑ†
2
]
|0〉 , (A13b)

where

Gj = cosh rj , gj = e2iθj sinh rj , (A14)

Ajk = αjGk + α∗j gk . (A15)

Therefore,

〈(δN̂+)
2〉 = ∑

j=1,2

(
|Ajj|2 + 2G2

j |gj|2
)
, (A16a)

〈(δN̂−)2〉 = |A21|2 + |A12|2 + |G1g2 + G2g1|2 , (A16b)

〈δN̂+δN̂−〉 = A∗11 A21 + A∗22 A12 . (A16c)

With account for the conditions (58), Equation (A16) reduce to Equation (61).

Appendix D. Measurement Error in the Double Direct Detection Case

Equation (87) give that

n̂1|0〉 = (α2 + αẑ†
1er1 + ẑ†

1
2 cosh r1 sinh r1 + sinh2 r1)|0〉 , (A17a)

n̂2|0〉 = (ẑ†
2

2 cosh r2 sinh r2 + sinh2 r2)|0〉 , (A17b)

Ŷ|0〉 = i[αẑ†
2e−r2 + ẑ†

1 ẑ†
2 sinh(r1 − r2)]|0〉 . (A17c)

Therefore,

〈n̂1〉 = α2 + sinh2 r1 , (A18a)

〈n̂2〉 = sinh2 r2 , (A18b)

〈Y〉 = 0 , (A18c)
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〈(δn̂1)
2〉 = α2e2r1 +

sinh2 2r1

2
, (A19a)

〈(δn̂2)
2〉 = sinh2 2r2

2
, (A19b)

〈δn̂1 ◦ δn̂2〉 = 0 , (A19c)

〈Ŷ2〉 = α2e−2r2 + sinh2(r1 − r2) , (A19d)

〈δn̂1 ◦ δY〉 = 〈δn̂2 ◦ δY〉 = 0 , (A19e)

and

〈n̂+〉 = α2 + sinh2 r1 + sinh2 r2 , (A20a)

〈n̂−〉 = α2 + sinh2 r1 − sinh2 r2 , (A20b)

〈(δn̂+)
2〉 = 〈(δn̂−)2〉 = 〈(δn̂1)

2〉+ 〈(δn̂2)
2〉 , (A21a)

〈δn̂−δn̂+〉 = 〈(δn̂1)
2〉 − 〈(δn̂2)

2〉 , (A21b)

〈δn̂+ ◦ δŶ〉 = 〈δn̂− ◦ δŶ〉 = 0 . (A21c)

where “◦” denotes the symmetrized product.
Then, using Equation (96):

〈n̂out
+ 〉 = η〈n̂+〉 , (A22a)

〈n̂out
− 〉 = η〈n̂−〉 cos 2φ− , (A22b)

〈(δn̂out
+ )2〉 = η2[〈(δn̂+)

2〉+ ε2〈n̂+〉] = η2(∆2
1 + ∆2

2) , (A23a)

〈(δn̂out
− )2〉 = η2[〈(δn̂−)2〉 cos2 2φ− + 〈Ŷ2〉 sin2 2φ− + ε2〈n̂+〉]

= η2[(∆2
1 + ∆2

2) cos2 2φ− + (〈Ŷ2〉+ ε2〈n̂+〉) sin2 2φ−] , (A23b)

〈δn̂out
− δn̂out

+ 〉 = η2[〈δn̂−δn̂+〉+ ε2〈n̂−〉] cos 2φ− = η2(∆2
1 − ∆2

2) cos 2φ− , (A23c)

where
∆2

j = 〈(δn̂j)
2〉+ ε2〈n̂j〉 . (A24)

Substitution of Equations (A22) and (A23) into Equation (98) gives that

〈(δφ−)
2〉 = 1

4〈n−〉2

(
〈Y2〉+ ε2〈n̂+〉+

4 cot2 2φ−
1/∆2

1 + 1/∆2
2

)
. (A25)

Note that
∆2

1 ∼ α2 , ∆2
2 ∼ α0 . (A26)

Therefore,

〈(δφ−)2〉 = 1
4〈n−〉2

[
〈Y2〉+ ε2〈n̂+〉+ 4∆2

2 cot2 2φ− + O(α−2)
]

= 1
4(α2+sinh2 r1−sinh2 r2)2

[
α2e−2r2 + sinh2(r1 − r2) + ε2(α2 + sinh2 r1 + sinh2 r2)

+2(sinh2 2r2 + 2ε2 sinh2 r2) cot2 2φ− + O(α−2)
]

.

(A27)
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