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1. Introduction

The French mathematician Fréchet [1] introduced the notion of metric space. The Ba-
nach contraction principle presents a constructive way of obtaining a unique solution for
models containing various forms of differential and integral equations. Several researchers
extend this notion in multiple directions (see [2–5], and references therein). In fact, several
modifications of the Banach contraction principle were generated from contraction condi-
tions involving rational expressions. Khan [3] created one of the most significant works in
this field.

In recent years, Piri et al. [6] presented some fixed-point results of F-Khan-type self-
mappings on complete metric spaces. Wardowski [7] gave a beautiful fixed point result in
a different way to extend the Banach contraction theorem. He proposed a new contraction
known as the F-contraction and developed a fixed-point result as an extension of the Banach
contraction principle in a method distinct from previously established results from the
literature. For some recent works on F-contraction, authors can refer to [8,9].

The concept of an orthogonal in metric spaces was introduced by Gordji et al. [10].
The fixed-point results in generalized OMSs (orthogonal metric spaces) were proven by
many researchers; see [11–20]. In 2022, Aiman et al. [21] initiated orthogonality in Brianciari
metric spaces and proved some fixed point results. In this paper, we introduce the new idea
of an orthogonal F-Khan contraction to prove fixed-point result in the setting of orthogonal
complete metric spaces. The derived results are supplemented with suitable examples, and
the result is applied to find an analytical solution to the integral equation. A comparison
between the analytical and numerical solutions is also discussed.

The paper is organized as follows. In Section 2, we review some preliminary concepts
including certain definitions and monographs which are very vital to this study. In Section 3,
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we present the main results and establish a fixed point result. In Section 4, the derived
results have been applied to find analytical solutions to integral equations.

2. Preliminaries

The metric space concept was introduced by Fréchet [1] as follows:

Definition 1 ([1]). Let H be a non-void set. A function Λ : H×H→ R+ is said to be a metric
on H, if for all κ, τ, ρ ∈ H, the following conditions hold:

(Λ1) Λ(κ, τ) ≥ 0 and Λ(κ, τ) = 0 if and only if κ = τ,
(Λ2) Λ(κ, τ) = Λ(τ, κ),
(Λ3) Λ(κ, τ) ≤ Λ(κ, ρ) + Λ(ρ, τ).

Then, we say that (H, Λ) is a metric space.

Definition 2 ([7]). Let (H, Λ) be a metric space. A mapping S : H→ H is called an F-contraction
on (H, Λ), if there exists F ∈ F and µ ∈ (0, ∞) s.t.

∀ κ, τ ∈ H, [Λ(Sκ,Sτ) > 0 =⇒ µ + F(Λ(Sκ,Sτ)) ≤ F(Λ(κ, τ))].

Definition 3 ([7]). Let Fk be the family of all increasing functions F : (0, ∞)→ R; that is, for all
κ, τ ∈ (0, ∞), if κ < τ, then F(κ) < F(τ).

Gordji et al. [10] proposed orthogonal sets and generalized Banach fixed point theo-
rems in 2017. The results are as follows:

Definition 4 ([10]). Let H be a non-void set and ⊥⊆ H×H be a binary relation. If ⊥ holds, we
obtain the following axioms:

∃ κ0 ∈ H : (∀ κ ∈ H, κ ⊥ κ0) or (∀ κ ∈ H, κ0 ⊥ κ),

then, (H,⊥) is called an orthogonal set.

Definition 5 ([10]). Let (H,⊥) be an orthogonal set (Os). A sequence {κϑ} is called an orthogonal
sequence if

(∀ ϑ ∈ N, κϑ ⊥ κϑ+1) or (∀ ϑ ∈ N, κϑ+1 ⊥ κϑ).

Definition 6 ([10]). The triplet (H,⊥, Λ) is known as an OMS if (H,⊥) is an Os and (H,⊥) is
a metric space.

Definition 7 ([10]). Let (H,⊥, Λ) be an OMS. Then, a mapping Λ : H → H is said to be
orthogonally continuous in κ ∈ H, if for each orthogonal-sequence {κϑ} in H with κϑ → κ as
ϑ→ ∞, we have Λ(κϑ)→ Λ(κ) as ϑ→ ∞.

Definition 8. Let {κϑ} be a sequence in H. Then, the sequence {κϑ} is called a Cauchy orthogonal-
sequence if for every ε > 0, ∃ a ϑ0(> 0) ∈ N such that Λ(κϑ, κj) < ε ∀ ϑ, j > ϑ0. i.e.,
lim

ϑ,j→∞
Λ(κϑ, κj) = 0.

Definition 9 ([10]). Let (H,⊥, Λ) be an OMS. Then, H is called an orthogonal complete if every
orthogonal Cauchy sequence is convergent.

Definition 10 ([10]). Let (H,⊥) be Os. A mapping Λ : H → H is known as orthogonal-
preserving (Shortly Op), if Λκ ⊥ Λτ whenever κ ⊥ τ.
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3. Main Results

In this section, we propose the concept of F-Khan contraction of orthogonal set and we
prove the fixed point result for these contraction mappings in the setting of OMS.

Definition 11. Let (H,⊥, Λ) be an orthogonal complete metric space. A mapping S : H → H
is said to be an orthogonal F-Khan-contraction if there exist µ ∈ (0, ∞) and F ∈ Fk s.t. for all
κ, τ ∈ H with τ ⊥ κ, if max{Λ(κ,Sτ), Λ(Sκ, τ)} 6= 0, then Sκ 6= Sτ and

µ + F(Λ(Sκ,Sτ) ≤ F

(
Λ(κ,Sκ)Λ(κ,Sτ) + Λ(τ,Sτ)Λ(τ,Sκ)

max{Λ(κ,Sτ), Λ(Sκ, τ)}

)
, (1)

and for all κ, τ ∈ H with Sτ ⊥ κ or Sκ ⊥ τ, if max{Λ(κ,Sτ), Λ(Sκ, τ)} = 0, then Sκ = Sτ.

Theorem 1. Let (H,⊥, Λ) be an orthogonal-CMS and S be a self-mapping on H satisfying the
following axioms:

1. S is an orthogonal preserving;
2. S is an orthogonal-F-Khan contraction;
3. S is an orthogonal-continuous.

Then, S has a UFP (unique fixed point) κ∗ ∈ H.

Proof. Since (H,⊥) is an Os,

∃ κ0 ∈ H : (∀ κ ∈ H, κ ⊥ κ0) or (∀ κ ∈ H, κ0 ⊥ κ).

It follows that κ0 ⊥ Sκ0 or Sκ0 ⊥ κ0. Let

κ1 := Sκ0, κ2 := Sκ1 = S2κ0 . . . . . . , κϑ+1 := Sκϑ = Sϑ+1κ0, (2)

for all ϑ ∈ N ∪ {0}. If there exists ϑ0 ∈ N s.t. Λ(κϑ0 , κϑ0+1) = 0, then κϑ0+1 = κϑ0 ; hence,
the proof is complete. That is S has a fixed point.
Now, we take κϑ 6= κϑ+1 ∀ ϑ ∈ N. Suppose that Λ(κϑ,Sκϑ) 6= 0, ∀ ϑ ∈ N. Then, from (1),
we obtain

F(Λ(κϑ,Sκϑ)) < µ + F(Λ(Sκϑ−1,Sκϑ))

≤ F

(
Λ(κϑ−1,Sκϑ−1)Λ(κϑ−1,Sκϑ) + Λ(κϑ,Sκϑ)Λ(κϑ,Sκϑ−1)

max{Λ(κϑ−1,Sκϑ), Λ(Sκϑ−1, κϑ)}

)
(3)

= F(Λ(κϑ−1,Sκϑ−1)).

Since F ∈ Fk, from (3), we have

Λ(κϑ,Sκϑ) < Λ(κϑ−1,Sκϑ−1), ∀ ϑ ∈ N.

Therefore {Λ(κϑ,Sκϑ)}ϑ∈N is a strictly non-increasing sequence of non-negative real num-
bers, and hence

lim
ϑ→∞

Λ(κϑ,Sκϑ) = γ ≥ 0.

Since {Λ(κϑ,Sκϑ)}ϑ∈N is a positive strictly non-increasing sequence, for every ϑ ∈ N,
we have

Λ(κϑ,Sκϑ) ≥ γ. (4)
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Now, we assume that γ = 0. Arguing by contradiction, suppose that γ > 0. From (4) and
F ∈ Fk, we have

F(γ) ≤ F(Λ(κϑ,Sκϑ)) ≤ F(Λ(κϑ−1,Sκϑ−1))− µ

≤ F(Λ(κϑ−2,Sκϑ−2))− 2µ

≤ . . . · · · ≤ F(Λ(κ0,Sκ0))− ϑµ, ∀ ϑ ∈ N. (5)

Since H(γ) ∈ R and lim
ϑ→∞

F(Λ(κ0,Sκ0))− ϑµ = −∞, there exists ϑ1 ∈ N such that

F(Λ(κ0,Sκ0))− ϑµ < F(γ), ∀ ϑ > ϑ1. (6)

It follows from (5) and (6) that

F(γ) ≤ F(Λ(κ0,Sκ0))− ϑµ < F(γ), ∀ ϑ > ϑ1.

This is a contradiction. Therefore, we have

lim
ϑ→∞

Λ(κϑ,Sκϑ) = 0. (7)

Now, we assume, {κϑ}∞
ϑ=1 is an orthogonal Cauchy sequence. We claim that there exists

ε > 0; the sequences {P(ϑ)}∞
ϑ=1, {Q(ϑ)}∞

ϑ=1 ∈ N s.t.

P(ϑ) > Q(ϑ) > ϑ, Λ(κP(ϑ), κQ(ϑ)) ≥ ε, Λ(κP(ϑ)−1, κQ(ϑ)) < ε. (8)

By triangular inequality, we have

Λ(κP(ϑ), κQ(ϑ)) ≤ Λ(κP(ϑ),SκQ(ϑ)) + Λ(SκQ(ϑ), κQ(ϑ)).

It follows from (7) and (8) that

ε ≤ lim inf
ϑ→∞

Λ(κP(ϑ),SκQ(ϑ)).

So, there exists ϑ2 ∈ N s.t. for all ϑ ≥ ϑ2, Λ(κP(ϑ),SκQ(ϑ)) >
ε
2 . Therefore,

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))} >
ε

2
, ∀ ϑ ≥ ϑ2. (9)

Again by triangular inequality, we have

Λ(κP(ϑ), κQ(ϑ)) ≤ Λ(κP(ϑ),SκP(ϑ)) + Λ(SκP(ϑ),SκQ(ϑ)) + Λ(SκQ(ϑ), κQ(ϑ)).

From (7) and (8) we obtain,

ε ≤ lim inf
ϑ→∞

Λ(SκP(ϑ),SκQ(ϑ)).

There exists ϑ3 ∈ N s.t. for all ϑ ≥ ϑ3,

Λ(SκP(ϑ),SκQ(ϑ)) >
ε

2
. (10)

Since F ∈ Fk, from (1), (9) and (10), for all ϑ ≥ max{ϑ2, ϑ3}, we have

µ + F(
ε

2
) ≤ µ + F(Λ(SκP(ϑ),SκQ(ϑ)))

≤ F

(Λ(κP(ϑ),SκP(ϑ))Λ(κP(ϑ),SκQ(ϑ)) + Λ(κQ(ϑ),SκQ(ϑ))Λ(κQ(ϑ),SκP(ϑ))

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))}

)
. (11)
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From (9), for ϑ ≥ ϑ2 ,

0 ≤
Λ(κP(ϑ),SκP(ϑ))Λ(κP(ϑ),SκQ(ϑ)) + Λ(κQ(ϑ),SκQ(ϑ))Λ(κQ(ϑ),SκP(ϑ))

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))}

=
Λ(κP(ϑ),SκP(ϑ))Λ(κP(ϑ),SκQ(ϑ))

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))}
+

Λ(κQ(ϑ),SκQ(ϑ))Λ(κQ(ϑ),SκP(ϑ))

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))}
(12)

≤
Λ(κP(ϑ),SκP(ϑ))Λ(κP(ϑ),SκQ(ϑ))

Λ(κP(ϑ),SκQ(ϑ))
+

Λ(κQ(ϑ),SκQ(ϑ))Λ(κQ(ϑ),SκP(ϑ))

Λ(SκP(ϑ), κQ(ϑ))

= Λ(κP(ϑ),SκP(ϑ)) + Λ(κQ(ϑ),SκQ(ϑ)).

It follows from (7) and (12) and sandwich theorem that

lim
ϑ→∞

Λ(κP(ϑ),SκP(ϑ))Λ(κP(ϑ),SκQ(ϑ)) + Λ(κQ(ϑ),SκQ(ϑ))Λ(κQ(ϑ),SκP(ϑ))

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))}
= 0.

So there exists ϑ4 ∈ N s.t. for all ϑ > ϑ4,

Λ(κP(ϑ),SκP(ϑ))Λ(κP(ϑ),SκQ(ϑ)) + Λ(κQ(ϑ),SκQ(ϑ))Λ(κQ(ϑ),SκP(ϑ))

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))}
<

ε

2
.

Since F ∈ Fk, for all ϑ > ϑ4, we have

F
(Λ(κP(ϑ),SκP(ϑ))Λ(κP(ϑ),SκQ(ϑ)) + Λ(κQ(ϑ),SκQ(ϑ))Λ(κQ(ϑ),SκP(ϑ))

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))}

)
≤ F(

ε

2
). (13)

From (11) and (13), for all ϑ ≥ max{ϑ2, ϑ3, ϑ4}, we obtain

µ + F(
ε

2
) ≤ F

(Λ(κP(ϑ),SκP(ϑ))Λ(κP(ϑ),SκQ(ϑ)) + Λ(κQ(ϑ),SκQ(ϑ))Λ(κQ(ϑ),SκP(ϑ))

max{Λ(κP(ϑ),SκQ(ϑ)), Λ(SκP(ϑ), κQ(ϑ))}

)
≤ F(

ε

2
),

which is a contradiction. By Completeness of (H, Λ), therefore, there exists {κϑ} → κ? ∈ H
such that

lim
ϑ→∞

Λ(κϑ, κ?) = 0 and lim
ϑ→∞

Λ(Sκϑ,Sκ?) = Λ(κ?,Sκ?). (14)

Now, we consider Λ(κ?,Sκ?) = 0. We assume that Λ(κ?,Sκ?) > 0 and consider the
following two cases:

1. for all ϑ ∈ N, there exists ϑ ∈ N, ϑ > ϑ−1, 0 = 1 and κϑ+1 = Sκ?;
2. for all ϑ ∈ N, Λ(κϑ,Sκ?) > 0.

In the first case, from (14) we have

κ? = lim
ϑ→∞

κϑ+1 = Sκ?.

In the second case, ∀ ϑ ∈ N, we have

max{Λ(κϑ,Sκ?), Λ(Sκϑ, κ?)} > 0.

So from (1), we have

µ + F(Λ(Sκϑ,Sκ?)) ≤ F
(Λ(κϑ,Sκϑ)Λ(κϑ,Sκ?) + Λ(κ?,Sκ?)Λ(κ?,Sκϑ)

max{Λ(κϑ,Sκ?), Λ(Sκϑ, κ?)}

)
. (15)
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On the other hand, from (7) and (14), we have

lim
ϑ→∞

Λ(κϑ,Sκϑ)Λ(κϑ,Sκ?) + Λ(κ?,Sκ?)Λ(κ?,Sκϑ)

max{Λ(κϑ,Sκ?), Λ(Sκϑ, κ?)} = 0.

Since Λ(κ?,Sκ?) > 0, so there exists ϑ5 ∈ N s.t. ϑ ≥ ϑ5,

Λ(κϑ,Sκϑ)Λ(κϑ,Sκ?) + Λ(κ?,Sκ?)Λ(κ?,Sκϑ)

max{Λ(κϑ,Sκ?), Λ(Sκϑ, κ?)} <
1
2

Λ(κ?,Sκ?).

Therefore

F
(Λ(κϑ,Sκϑ)Λ(κϑ,Sκ?) + Λ(κ?,Sκ?)Λ(κ?,Sκϑ)

max{Λ(κϑ,Sκ?), Λ(Sκϑ, κ?)}

)
≤ F

(1
2

Λ(κ?,Sκ?)
)

, (16)

for all ϑ ≥ ϑ5.
It follows from (15) and (16), we have

µ + F
(
Λ(Sκϑ,Sκ?)

)
≤ F

(1
2

Λ(κ?,Sκ?)
)

, ∀ ϑ ≥ ϑ5.

Hence

Λ(Sκϑ,Sκ?) ≤ 1
2

Λ(κ?,Sκ?), ∀ ϑ ≥ ϑ5.

From (14), we obtain

Λ(κ?,Sκ?) ≤ 1
2

Λ(κ?,Sκ?),

which is a contradiction. Therefore, κ? = Sκ?. Now, we prove that S has a UFP. Now, we
consider τ? is another fixed point of S in H s.t. Λ(κ?, τ?) > 0. Therefore

max{Λ(κ?,Sτ?), Λ(Sκ?, τ?)} > 0.

From (1),

F(Λ(κ?, τ?)) = F(Λ(Sκ?,Sτ?)) < µ + F(Λ(Sκ?,Sτ?))

≤ F
(Λ(κ?,Sκ?)Λ(κ?,Sτ?) + Λ(τ?,Sτ?)Λ(τ?,Sκ?)

max{Λ(κ?,Sτ?), Λ(Sκ?, τ?)}

)
.

Since

Λ(κ?,Sκ?)Λ(κ?,Sτ?) + Λ(τ?,Sτ?)Λ(τ?,Sκ?)

max{Λ(κ?,Sτ?), Λ(Sκ?, τ?)} = 0,

which is a contradiction and hence κ? = τ?. This completes the proof.

Example 1. Let H = [0, 1] and Λ : H×H→ R+ be defined by

Λ(κ, τ) = |κ − τ|.

Define ⊥ on H by κ ⊥ τ iff κ, τ ≥ 0. Then, it is easy to prove that (H,⊥, Λ) is an O-complete
metric space. Define the mapping S : H→ H by

S(κ) =
{

κ
4 , κ ∈ [0, 1)
1
6 , κ = 1.
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Clearly, S is an Op and an orthogonal continuous. Define the function F(r) = ln r, for r ∈ R+.
Then, we have

o+ F(Λ(Sκ,Sτ)) ≤ F(Λ(κ, τ)) ⇐⇒ ln
(

Λ(κ, τ)

Λ(Sκ,Sτ)

)
≥ o,

for all κ, τ ∈ H. First, we can observe that

Λ(Sκ,Sτ) > 0,
1
2

Λ(κ,Sκ) < Λ(κ, τ) ⇐⇒
{
(κ = 1 and τ = 0)

∨ (κ = 0 and τ = 1) ∨ (κ < τ < 1) ∨ (τ ≤ κ < 1)
}

.

For κ = 1 and τ = 0, we have Λ(κ, τ) = 1 and

Λ(Sκ,Sτ) = Λ
(

1
6

,Sτ

)
=


1
6 , τ ∈ [0, 1

2 ]
τ
6 , τ ∈ ( 1

2 , 1)
1
6 , τ = 1.

Hence, we have

Λ(κ, τ)

Λ(Sκ,Sτ)
=


6, τ ∈ [0, 1

2 ]
6
τ , τ ∈ ( 1

2 , 1)
6, τ = 1.

(17)

For κ = 0 and τ = 1, we have Λ(κ, τ) = 1 and

Λ(Sκ,Sτ) = Λ
(
Sκ,

1
6

)
=

{
1
6 , κ ∈ [0, 1

2 ]
κ
6 , κ ∈ ( 1

2 , 1).

Hence, we have
Λ(κ, τ)

Λ(Sκ,Sτ)
=

{
6, κ ∈ [0, 1

2 ]
6
κ , κ ∈ ( 1

2 , 1).
(18)

For κ < τ < 1, we have Λ(κ, τ) = |κ − τ| and Λ(Sκ,Sτ) = Λ( κ
4 , τ

4 ) =
|κ−τ|

4 . Hence, we have

Λ(κ, τ)

Λ(Sκ,Sτ)
= 4. (19)

For τ ≤ κ < 1, we have Λ(κ, τ) = |κ − τ| and Λ(Sκ,Sτ) = Λ( κ
4 , τ

4 ) =
|κ−τ|

4 . Hence, we have

Λ(κ, τ)

Λ(Sκ,Sτ)
= 4. (20)

From (17)–(20), we have if 0 < o ≤ ln 4, then ln
(

Λ(κ,τ)
Λ(Sκ,Sτ)

)
≥ o. Thus,

o+ F(Λ(Sκ,Sτ)) ≤ F(Λ(κ, τ)).

Therefore, S satisfies all the conditions of Theorem 1 with 0 < o ≤ ln 4. Thus, S has a UFP.

4. Application

Let F = C([0,H],R) be the set of all real-valued continuous functions with domain
[0,H]. Consider the integral equation

µ(`) =
∫ H

0
Σ(`, τ)z(τ, µ(τ))dτ, ` ∈ [0,H], (21)
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where

(a) z : [0,H]×R→ R is continuous;
(b) Σ : [0,H]× [0,H] is continuous and measurable at τ ∈ [0,H], ∀ ` ∈ [0,H];

(c) Σ(`, τ) ≥ 0, for all `, τ ∈ [0,H] and
∫ H

0 Σ(`, τ)dτ ≤ 1, for all ` ∈ [0,H].

Theorem 2. Assume that the conditions (a)–(c) hold. Suppose that there exists ℘ > 0 s.t.

|z(`, µ(`))−z(`,ð(`))| ≤ e−℘|µ(`)− ð(`)|,

for every ` ∈ [0,H] and for all µ,ð ∈ C([0,H],R). Then, the Equation (21) has a unique solution
in C([0,H],R).

Proof. Let F = {w ∈ C([0,H],R) : w(ρ) > 0, for all ρ ∈ [0,H]}. Define the orthogo-
nality relation ⊥ on F by

µ ⊥ ð ⇐⇒ µ(ρ)ð(ρ) ≥ µ(ρ) or µ(ρ)ð(ρ) ≥ ð(ρ), for all ρ ∈ [0,H].

Define a mapping Λ : F ×F → [0, ∞) by

Λ(µ,ð) = |µ(`)− ð(`)|,

for all µ,ð ∈ F . Thus, (F ,⊥, Λ) is an OMS and also an orthogonal complete metric space.
Define S : F → F by

Sµ(`) =
∫ H

0
Σ(`, τ)z(τ, µ(`)), ` ∈ [0,H].

Now, we prove that S is an Op. For every µ,ð ∈ F with µ ⊥ ð, ρ ∈ I, we get

Sµ(`) =
∫ H

0
Σ(`, τ)z(τ, µ(`)) ≥ 1.

It follows that [(Sµ)(ρ)][(Sð)(ρ)] ≥ (Sð)(ρ) and so (Sµ)(ρ) ⊥ (Sð)(ρ). Then, S is an Op.
Next, we assume that S is an orthogonal F-Khan contraction. Let µ,ð ∈ F with µ ⊥ ð.
Suppose that S(µ) 6= S(ð). For every ` ∈ [0,H], we have

Λ(Sµ,Sð) = |Sµ(`)− Sð(`)| =
∫ H

0
Σ(`, τ)|z(τ, µ(τ))−z(τ,ð(τ))|dτ

≤
∫ H

0
Σ(`, τ)e−℘|µ(`)− ð(`)

)
dτ

= e−℘|µ(`)− ð(`)|
∫ H

0
Σ(`, τ)dτ

≤ e−℘|µ(`)− ð(`)|
= e−℘Λ(µ,ð).

Therefore,

℘+ ln(Λ(Sµ,Sð)) ≤ ln
(
Λ(µ,ð)

)
.

Taking F(`) = ln(`), we obtain

℘+ F(Λ(Sµ,Sð)) ≤ F
(
Λ(µ,ð)

)
.

for all µ,ð ∈ F . Therefore, by Theorem 1, S has a UFP. Hence there is a unique solution
for (21).
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Example 2. Consider the integral equation∫ t

0
cos(t− s)κ(s)ds = tsint. (22)

From (22) with exact solution κ(t) = 2sin(t), for 0 ≤ t < 1. Table 1 shows the numerical value.

Table 1. Comparison of exact solution and approximation solutions.

t Exact Solution Approximation Solution
(m = 64)

Approximation Solution
(m = 128)

0.0 0 0.010417 0.005208
0.1 0.199667 0.197570 0.192399
0.2 0.397339 0.382942 0.398412
0.3 0.591040 0.605205 0.589930
0.4 0.778837 0.781174 0.785758
0.5 0.958851 0.967335 0.963098
0.6 1.129285 1.126666 1.122812
0.7 1.288435 1.276056 1.289847
0.8 1.434712 1.446451 1.433200
0.9 1.566654 1.569934 1.572171

Figures 1 and 2 show that the error between the approximation and exact solution is also
relatively very small.
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Figure 1. Graph of approximation (m = 64) compared to exact solution (h = 0.1).
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Figure 2. Graph of approximation (m = 128) compared to exact solution with h = 0.1.
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Example 3. Consider the integral equation

κ(t) = 1− κ − κ2

2
+
∫ 1

0
(κ − s)δs.

Here, 1− κ − κ2

2
is not an orthogonal continuous function on (0, 1). The following table compares

analytical and numerical solutions.
Table 2 shows that the error between the approximation and exact solution is also relatively

small, and Figure 3 shows the comparison of approximation and exact solution with h = 0.1.

Table 2. Comparison of approximation and exact solution.

κj
Approximation

Solution Exact Solution Error

0.05 0.95 0.94875 0.00125
0.15 0.85 0.83875 0.01125
0.25 0.75 0.71875 0.03125
0.35 0.65 0.58875 0.06125
0.45 0.55 0.44875 0.10125
0.55 0.45 0.29875 0.15125
0.65 0.35 0.13875 0.21125
0.75 0.25 −0.03125 0.28125
0.85 0.15 −0.21125 0.36125
0.95 0.05 −0.40125 0.45125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

Y
 a

x
is

Approximation solution

Exact solution

Figure 3. Comparison of approximation and exact solution with h = 0.1.

5. Conclusions

In this article, we demonstrated the existence of fixed point theorem for orthogonal
F-Khan contractions of an orthogonal CMS. The derived results have been applied to find
the solution to the integral equation. We have also compared the analytical and numerical
solutions for the integral equation and found that the margin of error was minimal.

Recently, Özgür et al. [22–26] introduced the fixed-circle problem considered for metric
and some generalized metric spaces. It is an interesting open problem to study the fixed-
circle problem and obtained Branciari metric space results on complete Branciari metric
spaces. More generally, it will be also an open problem to use appropriate contractive
conditions for the existence and uniqueness of theorems for fixed circles of self-mappings
on metric spaces with geometric interpretation.
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