
 
 

 

 
Symmetry 2023, 15, 764. https://doi.org/10.3390/sym15030764 www.mdpi.com/journal/symmetry 

Article 

Bio-Inspired Machine Learning Approach to Type 2  
Diabetes Detection 
Marwan Al-Tawil 1,*, Basel A. Mahafzah 2,3, Arar Al Tawil 4 and Ibrahim Aljarah 5 

1 Department of Computer Information Systems, King Abdullah II School of Information Technology,  
The University of Jordan, Amman 11942, Jordan 

2 Department of Computer Science, King Abdullah II School of Information Technology,  
The University of Jordan, Amman 11942, Jordan 

3 Department of Computer Science, King Hussein School of Computing Sciences,  
Princess Sumaya University for Technology, Amman 11941, Jordan 

4 Abdul Aziz Al Ghurair School of Advanced Computing, Luminus Technical University College,  
Amman 11118, Jordan 

5 Department of Artificial Intelligence, King Abdullah II School of Information Technology,  
The University of Jordan, Amman 11942, Jordan 

* Correspondence: m.altawil@ju.edu.jo 

Abstract: Type 2 diabetes is a common life-changing disease that has been growing rapidly in recent 
years. According to the World Health Organization, approximately 90% of patients with diabetes 
worldwide have type 2 diabetes. Although there is no permanent cure for type 2 diabetes, this dis-
ease needs to be detected at an early stage to provide prognostic support to allied health profession-
als and develop an effective prevention plan. This can be accomplished by analyzing medical da-
tasets using data mining and machine-learning techniques. Due to their efficiency, metaheuristic 
algorithms are now utilized in medical datasets for detecting chronic diseases, with better results 
than traditional methods. The main goal is to improve the performance of the existing approaches 
for the detection of type 2 diabetes. A bio-inspired metaheuristic algorithm called cuttlefish was 
used to select the essential features in the medical data preprocessing stage. The performance of the 
proposed approach was compared to that of a well-known bio-inspired metaheuristic feature selec-
tion algorithm called the genetic algorithm. The features selected from the cuttlefish and genetic 
algorithms were used with different classifiers. The implementation was applied to two datasets: 
the Pima Indian diabetes dataset and the hospital Frankfurt diabetes dataset; generally, these da-
tasets are asymmetry, but some of the features in these datasets are close to symmetry. The results 
show that the cuttlefish algorithm has better accuracy rates, particularly when the number of in-
stances in the dataset increases. 

Keywords: machine learning; bio-inspired; metaheuristic; chronic disease; type 2 diabetes; detec-
tion; cuttlefish 
 

1. Introduction 
Non-communicable chronic diseases are the leading cause of death in the world [1]. 

Non-communicable chronic diseases are a group of illnesses that do not transmit infec-
tions from one person to another because they do not involve viruses or bacteria. Such 
diseases occur slowly, and patients do not show any signs of illness. Non-communicable 
chronic diseases are closely related to lifestyles and healthy behavior, such as the type of 
food we eat, motor behavior (daily exercises), or bad habits such as smoking. Diabetes is 
one of the most common non-communicable chronic diseases in the world. According to 
the World Health Organization (WHO), most people with diabetes have type 2 diabetes 
(https://www.who.int/news-room/fact-sheets/detail/diabetes, accessed on 14 February 
2023). This type of diabetes is primarily caused by excessive body weight and physical 
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inactivity. Recent statistics from the International Diabetes Federation (IDF) showed that 
type 2 diabetes accounts for 90% of all diabetes cases (https://www.idf.org/aboutdiabe-
tes/type-2-diabetes.html, accessed on 14 February 2023). The IDF reported that the current 
number of cases of diabetes will rise to approximately 700 million by 2045. This is con-
cerning, especially considering the scary side effects of type 2 diabetes, such as malfunc-
tioning and permanent damage to body organs. In the long run, type 2 diabetes may result 
in several critical conditions such as retinopathy (not life-threatening but sight-threaten-
ing), diabetic kidney disease, coma, destruction of pancreatic beta cells, joint failure, and 
many other conditions. Injection of adequate insulin is the best remedy option for treating 
type 2 diabetes. Although there is no long-term cure, type 2 diabetes can be controlled if 
detected at an early stage [2]. One way to predict type 2 diabetes is through the predictive 
modeling and analysis of medical datasets. 

Researchers have used data mining and machine learning techniques to analyze med-
ical datasets to determine the best ways to increase the accuracy and efficiency of type 2 
diabetes prediction [3]. Data-mining methods are used to preprocess datasets to discover 
hidden patterns and select the most relevant dataset of features [4]. This will enable faster 
training of machine-learning algorithms for detecting type 2 diabetes [5]. However, ana-
lyzing medical datasets is not a trivial task, as medical datasets are often massive in di-
mension and have complex features, leading to data noise and dependency among fea-
tures. Therefore, it is vital to remove irrelevant and redundant features before analyzing 
datasets to increase prediction accuracy and improve result comprehensibility. Feature 
selection is a complex process that requires artificial intelligence methods to solve it [6]. 
The success of the feature selection process depends on reducing the number of attributes 
and increasing accuracy rates. Several studies have been conducted on the detection of 
type 2 diabetes using ordinary feature selection algorithms (a recent review can be found 
in [7]). 

However, limited research has focused on the use of bio-inspired metaheuristic fea-
ture selection algorithms to detect type 2 diabetes [8]. The efficiency of metaheuristic al-
gorithms can be attributed to their ability to imitate the best natural features [9]. Among 
several bio-inspired metaheuristic feature selection algorithms, the genetic algorithm 
(GA) has proven to be one of the most effective evolutionary techniques for solving a wide 
range of global optimization problems [10]. To the best of our knowledge, the GA is the 
only metaheuristic algorithm used to diagnose type 2 diabetes. The work in [2] combined 
GA with a multiple objective evolutionary fuzzy classifier (MOEFC) to predict type 2 di-
abetes in the Pima Indian Diabetes dataset. While the GA has successfully handled feature 
selection in detecting type 2 diabetes with an accuracy rate of (83.0435%), however, our 
work aims to enhance the accuracy rates by utilizing a bio-inspired feature selection algo-
rithm called the cuttlefish algorithm (CFA). The essential subset of features selected by the 
CFA was evaluated using six classifiers: K-nearest neighbor (KNN), support vector ma-
chine (SVM), naïve Bayes (NB), random forest (RF), decision tree (DT), and logistic regres-
sion (LR). 

The implementation of the algorithms was applied to two datasets: the Pima Indian 
Diabetes (PID) dataset, which was extracted from the UCI repository, and the hospital 
Frankfurt Diabetes (HFD) dataset. PID and HFD datasets are two of the most widely used 
medical datasets for predicting type 2 diabetes [7]. The PID dataset contained information 
about 768 instances (i.e., patients), whereas the HFD dataset contains 2000 instances. Both 
datasets shared the same features (eight features), including insulin level, body mass in-
dex (BMI), and blood pressure; generally, these datasets are asymmetry, but some of the 
features in these datasets are close to symmetry. The evaluation results showed that the 
accuracy rates for the CFA were better than those of the GA, particularly when data in-
stances were increased (using the HFD dataset, which has more instances than the PID 
dataset). 
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The main contributions of this research are as follows: 
• Apply the CFA and GA bio-inspired metaheuristic algorithms to the PID and HFD 

datasets for feature selection. Features in both datasets were reduced by applying a 
cost function for the logistic regression for the CFA. 

• Combine the CFA and GA bio-inspired metaheuristic algorithms with several classi-
fication algorithms to predict type 2 diabetes. 

• Analyze the performance of the CFA and GA over two datasets: PID and HFD. 
The remainder of this paper is organized as follows. Section 2 discusses related work. 

Section 3 presents preliminaries. The proposed approach is presented in Section 4. Section 
5 describes the results, and Section 6 concludes the paper. 

2. Related Works 
In this section, relevant related work to feature selection and classification algorithms 

that were applied to detecting diabetes and other medical applications contexts such as 
Parkinson’s and cancer are highlighted. 

Several feature selection algorithms have been applied to detect type 2 diabetes. The 
study in [2] proposed a feature selection approach that applied the GA to the PID dataset. 
The four best features in the PID dataset were identified. Several classification approaches 
have been used, including naïve Bayes (NB), decision tree (DT), and MOEFC. The results 
showed that the MOEFC provided the highest accuracy rate of (83.04%). A feature selec-
tion approach using ranker and wrapper algorithms was applied in [11] to two datasets: 
the PID dataset and the Diabetes 130-US hospital dataset. The authors used a support 
vector machine (SVM) classification algorithm and applied a 10-fold cross-validation. The 
results showed that the ranker algorithm had the highest accuracy of (72.49%), whereas 
the wrapper algorithm had lower accuracy of (71.11%). Machine learning classification 
algorithms were applied in [12] to predict type 2 diabetes. The algorithms included lo-
gistic, K-nearest neighbor (KNN), SVM, NB, DT, and random forest (RF). The results in-
dicated that RF provided the highest accuracy of (77.4%). The work in [13] used F-score 
feature selection to identify valuable features. A fuzzy SVM was used to train the dataset 
and generate fuzzy rules, and accuracy rates reached (89.02%). The study in [14] used RF, 
DT, and NB classification algorithms to identify significant features for predicting diabe-
tes. The results showed that NB had the highest accuracy of (82.30%). The authors of [15] 
compared three machine learning algorithms, namely LR, NB, and DT, and applied them 
to a diabetic dataset to predict diabetes. The results show that the three algorithms yielded 
the same accuracy of (76.60%). The work in [16] used fusion classifiers based on belief 
functions together with traditional machine learning classifiers to detect diabetes, where 
accuracy results reached (98.00%) when the long short-term memory and gated recurrent 
unit methods were combined. 

Feature selection algorithms have also been applied in other medical domain appli-
cations, such as diagnosing Parkinson’s and cancer. For example, the CFA was used to 
diagnose Parkinson’s at an early stage [17]. This approach had an accuracy rate of (94.00%) 
with KNN. The work in [18] proposed an enhanced moth-flame optimization (MFO) fea-
ture selection algorithm. The approach was applied to 23 medical datasets of different 
contexts taken from the UCI and Kaggle repositories, and the results showed that the pro-
posed approach outperformed other methods across (83%) of the datasets. An approach 
for encoding gene data based on unsupervised deep learning clustering with GA was pro-
posed in [19]. Three classifiers were used: support vector machine (SVM), KNN, and RF. 
This approach was applied to six cancer datasets. Accuracy results ranged between 66.00% 
for the RF and 99.00% for the SVM. A hybrid deep learning model based on a Laplacian 
core-convolutional neural network was proposed in [20] for the gene selection and classi-
fication of cancer data. Ten datasets were used to test the performance. The results show 
that the proposed model outperforms other algorithms. 
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Another application of feature selection algorithms is the work in [21], where the au-
thors  used a GA based on hierarchical feature selection to optimize handwritten word 
images. The proposed method was applied to 12 K words, and the results showed that 
word recognition was enhanced by 1.28% compared with the recognition obtained with 
the unreduced feature set. 

Bio-inspired metaheuristic algorithms have become powerful optimization tools for 
complex problems [22]. Among the several purposes of bio-inspired algorithms, we fo-
cused on the feature-selection problem. Previous studies have shown that metaheuristic 
bio-inspired algorithms are more efficient than ordinary feature selection algorithms [23]. 
However, research on the utilization of bio-inspired algorithms to detect type 2 diabetes 
is limited. To the best of our knowledge, the GA is the only natural bio-inspired metaheu-
ristic algorithm that has been utilized for diagnosing type 2 diabetes [7]. In this work, we 
utilized another bio-inspired metaheuristic algorithm called CFA as a search strategy to 
ascertain the optimal subset of features for diagnosing type 2 diabetes. The obtained fea-
tures from CFA were classified using several classification algorithms. The proposed ap-
proach was applied to two datasets of different sizes: the PID and HFD datasets. 

3. Preliminaries 
This section describes two bio-inspired algorithms for diagnosing type 2 diabetes: the 

cuttlefish algorithm and the genetic algorithm. 

3.1. Cuttlefish Algorithm 
The cuttlefish algorithm (CFA) was proposed in [24] as a bio-inspired optimization 

algorithm that mimics the color-changing behavior of a marine animal called cuttlefish. 
Compared to other bio-inspired metaheuristic algorithms, such as the GA and bees algo-
rithm, the CFA algorithm has shown its effectiveness in solving optimization problems 
[25]. Reflection and visibility are two important processes responsible for changing cuttle-
fish color. In the reflection process, CFA simulates the light-reflection mechanism using 
chromatophores, iridophores, and leucophore skin layers, as shown in Figure 1, and the 
visibility process simulated the visibility of the matching patterns of the cuttlefish. Overall, 
six cases were included in the CFA, as shown in Figure 2. 

 
Figure 1. Diagram of cuttlefish skin detailing the three main skin structures [24]. 
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Figure 2. Reorder of the six cases in Figure 1 [24]. 

Cases 1 and 2 (reflected color or light) were  produced by interacting cells of chroma-
tophores and iridophore skin layers, respectively. The muscles of the chromatophore cells 
are stretched or shrank, and iridophore cells (light-reflecting cells) reflect the light that 
comes from the chromatophore cells, causing them to penetrate. In cases 3 and 4, the iri-
dophore cells reflected light (with a specific color) from the outside environment. In case 
5, the light passes through the chromatophore cells with a specific color, and the color of 
the reflected light is very similar to that of the incoming light. The incoming color is as-
sumed to be the best solution (Best), and the reflected color represents any value around 
the best solution. In Case 6, the leucophore cells reflected the incoming light. These cells 
reflect mirrors of the predominant wavelength of light in the environment, reflecting 
white color (white light) and brown color (brown color). Accordingly, cuttlefish blends 
itself based on the surrounding environment. This case works as an initialization and is 
used to find new solutions. 

Algorithm 1 describes the steps of the CFA. The CFA starts with random solutions to 
initialize the population. Then, the six cases shown in Figure 2 are applied until a stop 
condition is met (the stop condition is the number of maximum iterations). The main steps 
of the CFA algorithm are summarized as follows. The algorithm takes the maximum num-
ber of iterations and four random values as the input and identifies the best four features 
as the output (lines 1 and 2). The algorithm in line 3 initializes the population and the 
number of features to be selected. The algorithm then evaluates the population using a 
fitness function (Line 4) and stores the best solution (Line 5). The population was divided 
into four independent groups (Line 6). The first two groups (G1 and G2) were used for the 
global search, whereas the other two groups (G3 and G4) were used for the local search. 
The combination of visibility and reflection processes provides six different cases and a 
new possible solution using Equation (1). 
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Algorithm 1 The cuttlefish algorithm 
1 Input: Max Iteration, v1, v2, r1, r2, Upper, Lower 
2 Output: Find the best 4 features 
3 Initialize the number of populations with dimensions 
4 Evaluate the fitness of the population 
5 Store the best solution 
6 Divide cells into four groups G1, G2, G3, and G4 
7 while I <= Max iteration do 
8   Calculate average of best solution, and store in best 
9  for each cell in G1 do                        //Cases 1&2 
10      Generate new solution using (1), (2), and (3) 
1      Ref = rand(r1, r2) × G1[i].Points[j] 
12       Vis = rand(v1, v2)×(Best.Point[j])–G1[i].Points[j] 
13       Calculate fitness for new solution 
14       if (fitness > best subset) then current = new Sol 
15      end if 
16  end for 
17  for each cell in G2 do                        //Cases 3&4 
18      Generate new solution using (1) and (3) 
19      Ref = Best.Point[ j ]  
20      Vis = rand(v1,v2)×(Best.Points[j]– G2[i].Points[j]) 
21      Calculate the fitness for the new solution 
22      if (fitness > best subset) then current = new sol 
23      end if 
24  end for 
25  for each cell in G3 do                          //Case 5 
26      Generate new solution using (1) and (7) 
27      Ref = Best.Point[j] 
28      Vis = rand(v1, v2) × (Best.Points[j] − AVbest) 
29      Calculate the fitness for the new_sol 
30      if (fitness > best subset) then current = new_sol 
31      end if 
32  end for 
33  for each cell in G4 do                          //Case 6 
34      Generate random solution using (1) 
35      P[i].points[j] = rand ×(Upper − Lower) + Lower 
36      Calculate the fitness for the new_sol 
37      if (fitness > best subset) then current = new_sol 
38      end if 
39  end for 
40 I = I + 1; 
41 end while new_ population = 𝑟𝑒𝑓 + 𝑣𝑖𝑠 (1)

The interaction operator between chromatophores (i.e., stretch and shrink processes) 
and iridophore cells in cases 1 and 2 (G : lines 9–16) use reflection and the visibility of the 
pattern to produce a new solution in equation (2), where G  is a group of cells with i and Points  j   represent the i   cell and j   point of the i   cell in G  , respectively. Then, 
equation (3) formulates the visibility of the matching background, where Best.Points rep-
resent the best solution points, R is a parameter used to determine the stretch or shrink 
interval of the saccule, and V is the visibility degree of the pattern. 
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𝑟𝑒𝑓  𝑗 = 𝑅 ×  𝐺 𝑖 .𝑃𝑜𝑖𝑛𝑡𝑠[ 𝑗 ] (2)vis = V × Best. Points[ j ] − G [ i ]. Points[j]   (3)

Equations (4) and (5) are used to determine the values of both R and V, respectively 
(r  and r  are constants). R = rand() × ( r − r  ) + r  (4)V = rand() ×  (v − v ) + v  (5)

In cases 3 and 4 (Lines 17–24), a new solution is calculated based on the reflected light 
from the best solution and the matching pattern  visibility (i.e., local search). Equation (6) 
(R = 1) produces an interval around the best solution as a new search area. 𝑟𝑒𝑓[𝑗] = 𝑅 × 𝐵𝑒𝑠𝑡.𝑃𝑜𝑖𝑛𝑡𝑠[𝑗] (6)

Similar to (6), the algorithm in Equation (7) uses leucophore cells to provide a new 
solution by reflecting light from the area around the best solution and visibility of the 
pattern (case 5, lines 25–32), where AVbest is the average value of the Best.Points. A ran-
dom solution was produced using the leucophore cell operator in case 6 (G , Lines 33–39). 𝑣𝑖𝑠[ 𝑗 ] = V ×  (Best.𝑃𝑜𝑖𝑛𝑡𝑠[ 𝑗 ] − 𝐴𝑉𝑏𝑒𝑠𝑡) (7)

3.2. Genetic Algorithm 
The genetic algorithm (GA) was proposed by John Holland in the 1970s as an im-

portant search technique for finding the best option for a set of available solutions [26]. 
GA was applied to the PID dataset to reduce the number of features using the fitness func-
tion (8) [2]. The algorithm initializes the population in the dataset and performs the selec-
tion, crossover, mutation, and termination operators. The selection process was based on 
survival of the fittest. The experiment in [26] was simulated using a multi-object fuzzy 
classifier.  𝑓(𝑥) = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑓(𝑖) 𝑠𝑢𝑚 𝑜𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑓(𝐼) (8)

4. Methodology 
4.1. Approach 

Figure 3 illustrates the main steps of the proposed approach followed in this re-
search. This approach comprises three phases. In the first phase, two bio-inspired algo-
rithms were applied to select the optimal features, where a cost function for logistic re-
gression was used in CFA. In the second phase, six machine learning classifiers were ap-
plied for training. Finally, the performance metrics were used to validate the algorithms. 
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Figure 3. Steps for predicting type 2 diabetes. 

4.2. Datasets 
Two datasets were used to evaluate the proposed feature-selection algorithm: the 

Pima Indian Diabetes (PID) (https://www.kaggle.com/uciml/pima-indians-diabetes-data-
base) and Hospital Frankfurt Diabetes (HFD) (https://www.kaggle.com/da-
tasets/johndasilva/diabetes). Both datasets are publicly available and are commonly used 
to predict type 2 diabetes [27,28]. The PID dataset was collected from the UCI machine 
learning repository, which originated from the National Institute of Diabetes and Diges-
tive and Kidney Diseases (sNIDDK) and was used to predict whether a patient had dia-
betes. The PID dataset contains information on 768 females and eight features. The HFD 
dataset was obtained from Hospital Frankfurt, Germany. The HFD dataset contained 2000 
instances and eight features. Both datasets share the same features (Table 1); generally, 
these datasets are asymmetry, but some of the features in these datasets are close to sym-
metry. 
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Table 1. Features of the PID and HFD datasets. 

No. Feature Description 
1 Pregnancies Number of times pregnant 
2 Glucose Plasma glucose concentration 2 h in an oral glucose tolerance test 
3 Blood Pressure Diastolic blood pressure (mm Hg) 
4 Skin Thickness Triceps skinfold thickness (mm) 
5 Insulin 2-Hour serum insulin (mu U/mL) 
6 BMI Body Mass Index (weight in kg/(height in m)^2) 
7 Age Age in year 
8 Diabetes Pedigree Function Diabetes diagnostic history of the person’s relatives 

4.3. Feature Selection 
An  abundant increase in medical data involves the incorporation of various attrib-

utes and features. Most attributes do not contribute to the results of predictive applica-
tions, leading to an increased computation time and resources. Hence, the selection of a 
subset of features is required to achieve high accuracy rates. In this research, CFA and GA 
were implemented on PID and HFD datasets to select the best subset of features. Features 
in the datasets were reduced by applying the cost function for the logistic regression for 
CFA in equation (9) and the correlation-based feature selection for GA (8) [17], where m 
is the number of examples, h is the hypothesis function, and Y is the output value. For the 
PID and HFD, the FCA and GA were applied to the training set (70% of the entire dataset). 
Table 2 lists the subset of features selected from the CFA and GA. 

𝐹𝑖𝑡(𝑌) = 1 × 1𝑚 × (𝑙𝑜𝑔(ℎ) × 𝑌 + 𝑙𝑜𝑔(1 − ℎ) × (1 − 𝑌)) (9)

Table 2. Features selected by CFA and GA. 

Dataset Algorithm Selected Features 
PID CFA Glucose, skin thickness, BMI, and insulin 

 GA Glucose, BMI, diabetes pedigree function, and age 

HFD CFA Diabetes pedigree function, age, glucose, and BMI 
 GA Pregnancies, glucose, insulin, and age 

4.4. Classification 
Because we successfully identified the most appropriate features in the PID and HFD 

datasets and cleaned up all potentially noisy data based on the feature selection process 
in the previous step, the next step is to start the classification process, where the set of 
features is trained using different classifiers. We experimented with different parameters 
in the CFA and GA, such as the number of iterations (repetition of a process to generate 
an outcome) and population (populations are created randomly to find the best popula-
tion size depending on the problem). We tested 10 to 70 iterations and 10 to 100 popula-
tions. 

4.5. Evaluation 
In order to evaluate the CFA and GA algorithms, three performance metrics were 

used: kappa statistics and mean absolute error. Accuracy is a measure of statistical bias 
that represents the proportion of the success rate of a given test, where low accuracy val-
ues indicate a difference between the result set and true values. Accuracy (10) uses four 
test measures, as shown in the confusion matrix for classification in Table 3, which repre-
sents the classification of the possible result of a recommendation of an item to a user. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (10)

Table 3. Confusion matrix for classification. 

 Recommended Not Recommended 
Preferred True Positive (TP) False Negative (FN) 

Not preferred False Positive (FP) True Negative (TN) 

The kappa statistic (K) is a metric used to examine classifiers by comparing observed 
and expected accuracy [29]. According to [30], it is advantageous to use the kappa coeffi-
cient to compare the accuracy of the classification algorithms. Values of kappa statistics 
vary between 0 (agreement equivalent)  and 1 (perfect agreement). Equation (11) repre-
sents the metric for K, where 𝑝  is the proportion of trials agreed by judges and 𝑝  is the 
proportion of trials in which agreement would be expected by chance. Interpretation of 
the strength of agreement [31] is listed in Table 4. 𝐾 = 𝑝 − 𝑝1 − 𝑝  (11)

Table 4. strength of agreement interpretation of kappa. 

Kappa Strength of Agreement 
<0.00 Poor 

0.00–0.2 Slight 
0.21–0.40 Fair 
0.41–0.60 Moderate 
0.61–0.80 Substational 
0.81–1.00 Almost perfect 

Mean absolute error (MAE) was used to test the mean absolute values of the individ-
ual prediction errors for all instances in the test set. Equation (12) presents the MAE met-
ric, where yi represents the predicted value, xi represents the true value, and n is the num-
ber of instances. 𝐴𝐸 =  ∑ |𝑦 − 𝑥 |𝑛  (12)

5. Results and Discussion 
The CFA was evaluated against the GA using two datasets, PID and HFD. To the best 

of our knowledge, the GA is the only metaheuristic algorithm used to detect type 2 diabe-
tes. Both the CFA and GA algorithms were evaluated using six classifiers: K-NN, RF, DT, 
LR, SVM, and NB. The algorithms were trained using the same methodology to ensure 
the fairness of the results. The classifiers were available in the scikit-learn library in Python 
(Python provides built-in libraries that are used to implement feature selection algo-
rithms). The implementation of the CFA uses several input parameters (line 1 in Algo-
rithm I). Table 5 lists the input parameters used in the implementation. Values of the pa-
rameters were identified through experimentation. 
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Table 5. CFA input parameters. 

Parameter Description Value 
Dimension Number of features 4 

Upper Maximum limit to initialize population 8 

Lower Minimum limit to initialize population 1 
r1 Maximum limit to find reflection 1.5 
r2 Minimum limit to find reflection −1.5 
v1 Maximum limit to find visibility 2.5 
v2 Minimum limit to find visibility −2.5 

Table 6 presents the average accuracy of 30 runs for the CFA on the PID and HFD 
datasets using the logistic classifier. Both datasets (PID and HFD) were divided into 70% 
for training and 30% for testing. The algorithms were examined using different numbers 
of iterations (10 to 70) and different populations (10 to 100). The experimental results 
showed that the CFA and GA provided better accuracy results with 50 iterations and 100 
populations because the operations in the GA depend on the possibility of selecting the 
best features, whereas the operations in the CFA depend on using its equation. Accord-
ingly, all reported results were based on 50 iterations and 100 populations. 

Table 6. Average accuracy rates for CFA and GA on the PID and HFD datasets. 

Dataset Population Iteration 10 20 30 40 50 60 70 80 90 100 

PID 

10 0.77 0.78 0.77 0.77 0.79 0.78 0.77 0.80 0.79 0.79 
20 0.75 0.75 0.75 0.76 0.76 0.77 0.76 0.79 0.79 0.80 
30 0.75 0.76 0.77 0.78 0.79 0.79 0.80 0.79 0.80 0.80 
40 0.74 0.75 0.75 0.76 0.77 0.77 0.79 0.79 0.80 0.79 
50 0.74 0.75 0.77 0.77 0.76 0.78 0.79 0.80 0.80 0.80 
60 0.75 0.76 0.77 0.77 0.77 0.78 0.79 0.79 0.80 0.80 
70 0.76 0.77 0.77 0.78 0.77 0.78 0.78 0.80 0.80 0.80 

HFD 

10 0.76 0.77 0.76 0.75 0.76 0.76 0.76 0.74 0.75 0.73 
20 0.76 0.74 0.75 0.74 0.73 0.75 0.77 0.74 0.76 0.74 
30 0.75 0.75 0.76 0.76 0.75 0.76 0.77 0.75 0.75 0.75 
40 0.74 0.76 0.76 0.76 0.77 0.77 0.78 0.73 0.74 0.75 
50 0.75 0.76 0.76 0.77 0.77 0.77 0.78 0.75 0.75 0.76 
60 0.74 0.77 0.77 0.77 0.76 0.77 0.77 0.74 0.75 0.76 
70 0.74 0.75 0.76 0.76 0.76 0.77 0.77 0.74 0.76 0.77 

Tables 7 and 8 present the evaluation results for CFA and GA on the PID and HFD 
datasets, respectively, in terms of accuracy, kappa, and MAE. As for accuracy results, it is 
clear from the results that CFA had better results than GA on the HFD dataset, and the 
highest accuracy values were achieved with the RF classifier (maximum accuracy = 0.97). 
However, this was not the case with the PID dataset. The accuracy results for the CFA and 
GA on the PID varied for the different classifiers. The results showed that CFA provided 
better accuracy results with the LR, SVM, and NB classifiers. This shows that the CFA 
works well with larger datasets, particularly with the RF and DT classifiers. This is be-
cause DT is a series of sequential decisions made to reach a specific result regarding the 
importance of features, and the sequence of attributes to be checked is decided based on 
criteria such as the Gini Impurity Index or information gain. RF leverages the power of 
multiple decision trees to make decisions (i.e., a forest of trees). 
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Table 7. Difference between the performance of the CFA and the GA using different classification 
algorithms on the PID dataset. 

Classifier Algorithm Accuracy ± STD Accuracy Maximin Accuracy Minimum Kappa MAE 

LR CFA 0.80 ± 0.03 0.82 0.70 0.49 0.2 
GA 0.78 ± 0.04 0.80 0.70 0.4 0.24 

RF 
CFA 0.77 ± 0.04 0.77 0.73 0.3 0.23 
GA 0.78 ± 0.03 0.79 0.72 0.39 0.25 

K-NN 
CFA 0.72± 0.02 0.73 0.69 0.30 0.29 
GA 0.74± 0.02 0.75 0.71 0.38 0.25 

SVM CFA 0.80 ± 0.03 0.81 0.70 0.48 0.21 
GA 0.76± 0.03 0.77 0.73 0.4 0.25 

NB CFA 0.76± 0.02 0.77 0.69 0.4 0.24 
GA 0.75 ± 0.03 0.76 0.73 0.34 0.26 

DT 
CFA 0.69± 0.02 0.70 0.64 0.35 0.29 
GA 0.72 ± 0.03 0.75 0.67 0.28 0.31 

Table 8. Difference between the performance of the CFA and the GA using different classification 
algorithms on the HFD dataset. 

Classifier Algorithm Accuracy ± STD Accuracy Maximin Accuracy Minimum Kappa MAE 

LR CFA 0.79 ± 0.02 0.78 0.69 0.46 0.22 
GA 0.73 ± 0.02 0.73 0.69 0.37 0.26 

RF CFA 0.97 ± 0.01 0.97 0.90 0.91 0.03 
GA 0.96 ± 0.03 0.97 0.89 0.92 0.03 

KNN 
CFA 0.77± 0.04 0.82 0.72 0.53 0.19 
GA 0.76 ± 0.03 0.78 0.74 0.52 0.21 

SVM 
CFA 0.75± 0.02 0.78 0.69 0.45 0.22 
GA 0.73 ± 0.03 0.74 0.70 0.4 0.26 

NB CFA 0.75 ± 0.02 0.77 0.69 0.46 0.22 
GA 0.72 ± 0.04 0.73 0.69 0.36 0.28 

DT CFA 0.95± 0.04 0.97 0.76 0.89 0.04 
GA 0.93± 0.01 0.96 0.94 0.86 0.06 

As a more conservative measure than accuracy, kappa results were measured and 
observed for the CFA and GA. The results showed that the CFA, in general, provided 
better performance than the GA, especially with the HFD dataset, because the HFD da-
taset has a large number of instances, and the classifier is trained using many instances. 
All classifiers provided better results, except the RF, which provided only (0.01) less than 
the GA. The performance of the classification algorithms using kappa varied in the PID, 
with all values being less than 0.50. This shows that the kappa coefficient aligns well with 
the accuracy results, particularly for larger datasets. Furthermore, classification algo-
rithms should possess reduced MAE rates to prove that they have a better performance. 
The MAE results showed that the proposed CFA outperformed the GA in all cases on the 
PID and HFD datasets because the CFA selected better features than the GA. This suggests 
the application of the MAE as a performance metric for evaluating classification algo-
rithms on datasets of various sizes. Figure 4 shows the kappa results of the six classifiers 
for the PID dataset at different training set levels (0.5 to 0.9). The features selected by the 
CFA in Figure 4 provided better results than the GA when the LR, SVM, and NB classifiers 
were used because these classifiers are based on linear probability theory and statistics. 
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Figure 4. Kappa values on the PID dataset at different levels of the training set. 

Figure 5 shows the kappa results of the six classifiers for the HFD dataset at different 
training set levels (0.5 to 0.9). As shown in Figure 5, the CFA provided better results than 
the GA on the HFD, particularly with RF and DT, because these classifiers depend on 
ensemble learning algorithms. This suggests the need to use the RF and DT classifiers with 
larger datasets. This shows that the performance of the classifiers varied across datasets 
of different sizes. RF and DT outperformed the other classifiers when applied to a larger 
dataset (HFD), whereas LR, SVM, and NB provided better results for the CFA when ap-
plied to the PID dataset. 

 
Figure 5. Kappa values on the HFD dataset at different levels of the training set. 
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Figure 6 shows the MAE values of the six classifiers for the PID dataset at different 
training set levels (0.5 to 0.9) with 50 iterations and 100 iterations as the population size. 
The results show that each time the number of training samples in the PID dataset is in-
creased, the features selected by the CFA provide better results than the GA using all clas-
sifiers except KNN. 

 
Figure 6. MAE values on the PID dataset at different levels of the training set. 

Figure 7 shows the MAE values of the six classifiers for the HFD dataset at different 
training set levels (0.5 to 0.9) with 50 iterations and 100 as the population size. The CFA 
provided better results than the GA, particularly with RF and DT. The main reason for 
this is that DT operates as a series of sequential decisions made to reach a particular output 
of the importance of features and attribute sequences based on criteria such as the Gini 
impurity index. The RF leverages the power of multiple DTs to make a decision. 

 
Figure 7. MAE values on the HFD dataset at different levels of the training set. 
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Examination of the execution time of the CFA and GA showed that the CFA outper-
formed the GA in terms of execution time (CFA: 55 sec for the PID dataset and 68 sec for 
the HFD dataset; GA: 64 sec for PID and 75 sec for HFD). The algorithmic design of the 
GA was different from that of the CFA, and the solutions were ranked based on their fit-
ness values. A GA usually clusters around good solutions within a population. This is 
based on the observation that the selection of parents in the GA is based on probabilities 
that favor fitness individuals. The solutions are more likely to be similar to the parents’ 
because the crossover operation produces offspring with the parents’ parts. The diversifi-
cation aspect of GA is accomplished through a mutation operation that injects some dif-
ferences in the solutions from time to time. The solution time of the GA also increases 
nonlinearly as the population size increases, whereas the CFA aims to find the optimal 
solution based on color-changing behavior. The patterns and colors observed in cuttlefish 
were produced by light reflected from the three layers. The simulation of light reflection 
and visibility of the matching patterns used was formulated. 

6. Conclusions and Future Directions 
Medical data analysis is a critical research field in which decisions can be made. How-

ever, medical datasets are often massive in dimension with complex redundant features, 
which increases the possibility of noise and dependency among features. Therefore, iden-
tifying a proper feature selection approach is important in the data preprocessing stages 
to reduce the redundancy and irrelevance among features, which positively affects the 
speed of performance and prediction accuracy. In this research, a bio-inspired algorithm 
called cuttlefish was adapted for feature selection, which was inspired by the color-chang-
ing behavior of cuttlefish to find the optimal solution. Earlier research has proven the ef-
fectiveness of the cuttlefish algorithm compared to other bio-inspired algorithms, such as 
the genetic algorithm, for solving various optimization problems. We applied the cuttle-
fish and genetic algorithms to two datasets: the Pima Indian diabetes dataset and the hos-
pital Frankfort dataset, and the results were observed. The results show that the cuttlefish 
algorithm works well in predicting type 2 diabetes and has better performance and exe-
cution time than the genetic algorithm. The classification results showed that the RF and 
DT classifiers outperformed other classifiers when a larger dataset was used. The results 
also suggested using LR, SVM, and NB classifiers with small-scale datasets. 

For future research directions, we propose using richer databases for predicting type 
2 diabetes using modern features such as the features proposed in [32]. Future applica-
tions of the CFA algorithm in the medical domain include the prediction of chronic kidney 
disease in diabetics, the prediction of chronic obstructive pulmonary disease in smokers, 
the prediction of strokes in patients with hypertension, the prediction of diabetes treat-
ment choices, the prediction of cancer diseases, and classification of diabetic retinopathy 
caused by high blood sugar levels damaging the back of the eye (retina). Furthermore, the 
CFA algorithm can be applied to diabetes images [33]. In addition, various heuristic and 
metaheuristic algorithms can be applied to predict diabetes, such as the A* heuristic search 
algorithm [34], iterative deepening A* (IDA*) algorithm [35], 2-opt local search algorithm 
[36], nearest neighbor search algorithm [37], harmony search algorithm [38], chemical re-
action optimization [39], grey wolf optimizer [40], and the most valuable player algorithm 
[41] for different large high-dimensional datasets. 
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