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Abstract: In this study, by making the use of g-analogous of the hyperbolic tangent function and
a Sdldgean g-differential operator, a new class of g-starlike functions is introduced. The prime
contribution of this study covers the derivation of sharp coefficient bounds in open unit disk U,
especially the first three coefficient bounds, Fekete-Szeg6 type functional, and upper bounds of
second- and third-order Hankel determinant for the functions to this class. We also use Zalcman and
generalized Zalcman conjectures to investigate the coefficient bounds of a newly defined class of
functions. Furthermore, some known corollaries are highlighted based on the unique choices of the
involved parameters [ and .
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1. Introduction

Let an analytic function # in the open unit disk
U={z:2€C and |z| <1}

assume to satisfy the conditions 7(0) = 0 and 7' (0) = 1, and all such types of functions
contained in class A and every 7 € A have the following series of the form

n(z) =z+ i anz". 1)
n=2

The set of all such types of univalent functions, which are normalized by the conditions
17(0) = 0and 7' (0) = 1, is denoted by S. A function 7 is called a starlike function if y maps
U onto the starshape domain. Moreover, the set of all univalent functions which satisfy

the condition ,
Re(m7 <Z>> >0,zel

1(z)

is denoted by the class S* of starlike functions.
An analytic function w along the following conditions

and
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is called Schwarz function. For two functions, # and g, which are analytic in U, we say that
1 is subordinate to g (denoted by # < g), if there exists a Schwarz function w, such that

1(z) = g(w(2)), €

In particular, if g is univalent in U, then

n =g+ n(0)=g(0),

and
n(U) c g(U).

The class P represents the class of Caratheodory functions [1], which satisfy the conditions
p(0) =1 and Re(p(z) >0, z € U.

For every p € P, there is a Taylor series expansion of the form

p(z) =1+ ) buz". (3)

Although function theory was initiated in 1851, in 1916, Bieberbach [2] conjecture unfolded
this field and gave a new direction for research. In 1985, De-Branges [3] proved Bieberbach
conjecture. A number of outstanding scholars found some new sub-families of the class S
of normalized univalent functions associated with different image domains, for example,
starlike (S*) and convex (K) functions, respectively. These classes are primary and re-
markable subclasses of the univalent class S. In 1992, Ma and Minda [4] made a very good
contribution and defined the general form of the family of univalent functions as follows:

5%(p) = {17 c A ,’77(()) < q)(z)}, @

where ¢ is an analytic function along the conditions ¢(0) > 0 and Re(¢(z)) > 0in U. If we

choose ¢(z) = % in (4), then we have a class of starlike functions which is given below:

. a(x) 14z
S —{176.,4. e 41_2}.

Janowski [5] investigated the class of Janowski starlike functions and defined it as follows:

. B .zn/(z) 141z
S (L,M)—{WE.A. e <q)(z)—1+MZ, (—1<M<L<1)}.

Sokol and Stankiewicz [6] chose ¢(z) = v/1 + z and defined the family of class S} as
, 21 (2)
Sy = ceA: —=<V1+z;.
£ {17 7(2) }

The function ¢(z) = /1 + z maps the region U onto the image domain, which is bounded by

’wz—l‘ <1.

Recently, Cho et al. [7] chose ¢(z) = 1+ sinz and defined a class (S

sin
- 21 (2) ,
sin{UG.A. e -<1—|—smz}.

) of starlike functions:
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Recently, Bano and Raza [8] chose ¢(z) = cosz, and Alotaibi et al. [9] considered
¢(z) = coshz; they defined a family of new classes as follows:

" 21] (2)
Seosz = cA: < cosz
: {’7 1(2) }

and

. 2 (z
coshz = {;7 cA: Z(i)) =< coshz}.

Kumar and Arora [10] considered a function ¢(z) = 1+ sinh ! z and used a petal-shaped
domain and defined a class of starlike functions:

" _ 21 (2) -
Ssinhl(z)_{WEA' e <1+ sinh (z)}

In 2021, Barukab et al. [11] investigated a class Rs and found a third Hankel determinant.
For 17 € A, the jth Hankel determinant is defined by

an An+1 "0 Apgj-1
An1 An+2 T Ap+j
H],n(ﬂ) = . . . . ,
Aptj—1 Gptj—2 -+ Ap42j-2

wheren,j € N,and a; = 1.
For different values of j and 1, the H; ,,(17) has the following form:

(i) Forj=2andn =1, we obtain the Fekete-Szeg6 functional, that is,
Haa(n) = ‘ﬂs - ﬂ%‘
and the generalized form of this functional is

4

oy ped
where y is a real or complex number, (see [12]).

(ii) Janteng [13] gave the following form of a second Hankel determinant and then a
number of researchers studied it for some new classes of analytic functions

Hop(n) =

a a
2 :'a2a4—a§‘.
az a4

(iii) For j =3 and n = 1, we have the following form of the third Hankel determinant:

1 ap 4as
5 . _ AN - )
31() =| a2 a3 ag | =az(aas — a3 ay(ag — apaz) +as(az —as).
az aq as

In 1966, Pommerenke [14] investigated the Hankel determinants for univalent star-
like functions. In 1983, Noor [15] defined a class of close-to-convex functions of higher
order and investigated Hankel determinants while Ehrenborg [16] investigated the Hankel
determinants associated with exponential function.

Recently, numerous researchers have started to pay more attention to finding the
sharp bounds of Hankel determinants for a particular family of functions. For example,
Janteng et al. [13] calculated the sharp bounds of the second Hankel determinant of the
subfamily (K, S*, R) of univalent functions class S. Cho et al. [17] investigated classes
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of starlike functions of order B and strongly starlike functions of order 8, and estab-
lished a Hankel determinant and showed that |#2,(7)| is bounded by (1 — )? and 2.
Zaprawa [18] used the new methodology and investigated the third Hankal determinant
for the class of starlike (§*) and convex (K) functions:

1 ifnes”
< .
Mz ()] < { £ ifpek }
In 2018, Kwon et al. [19] improved the Zaprawa’s result and proved that

8 «
[H31(n)| < g NES™

Again in 2021, Zaprawa et al. [20] improved the result of Kwon et al. and proved that

O | U1

[Haa(n)| < g, neS™
Jackson [21] used the idea of basic g-calculus and defined the g-analogues of derivatives
(Dy), and further, Ismail et al. [22] used this operator and defined a g-analogous of starlike
functions. Recently, number of researchers started to use the D, and defined many new
subclasses of starlike and convex functions and found sharp bounds of second- and third-
order Hankal determinants. For example, in 2019, Mahmood et al. [23] defined the family of
g-starlike functions and investigated the third-order Hankel determinant, and for close-to-
convex functions the same work was carried out by Srivastava in [24]. Arif et al. [25] used
the technique of subordination and defined a new subclass of starlike functions associated
with sine function [26] and then determined the third Hankel determinant for this class.
Meanwhile, Srivastava et al. [27] defined another new subclass of g-starlike functions
and investigated Hankel and Toeplitz determinants related with the generalized conic
domain. In 2022, Raza et al. [28] defined a new class of g-starlike functions associated
with symmetric Booth Lemniscate and studied Hankel determinants. For further research,
see [29,30].

The calculus without limits is called g-calculus and it can be dealt with just like classical
calculus. However, in g-calculus we do not use limits. Here, we define the g-derivative
operator of a function 77 € A.

Definition 1 ([21]). For € A, the g-derivative operator or q-difference operator is defined by

D) = MO, s 021, ®

where

In particular, t =n € N,
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Definition 2 ([31]). The Siligean g-differential operator for v is defined by
SO _ 81 — 2D _ 77(‘12)_’7(2)
g 1(z) = 1(z), Sgn(z) =zDgn(z) = =1
_ © 1
Sin(z) = 2Dy(Sn(2)) = n(z)+ (2 +5a (In]y)'2"),
= z+4+%, ([n]q)lanz”, (6)

wherel € N.

Remark 1. For g — 1— in (6), then we have a familiar Siligean derivative introduced in [32].
By using the definition of subordination, we introduce a new class S/ (1, q) of g-starlike

functions associated with the Sildgean g-differential operator and connected with the

g-analogue of the hyperbolic tangent function.

Definition 3. A function j € S is said to be in the class Sg (1, q) if it satisfies the following condition

)
S;;;(yz()z) < ¢(z), z€ U. (7)
That is, l
* _ . SqW(Z)
Si(Lq) = {77 €S: TEE ¢(Z)},
where

¢(z) = 1+ tanh(gz).

Remark 2. Forl = 1and ¢(z) = 1+ sin(qz), then §; (1, q) reduces to the class Sy, studied by
Taj et al. [33].

Remark 3. For | = 1 and q — 1—, then S}(1,q) reduces to the class Sgs studied by
Ullah et al. [34].

2. A Set of Lemmas

We need the following lemmas to investigate the sharp coefficient problems for the
class S¥(1,9).

Lemma 1 ([35]). Let the function p(z) be of the form (3), then
|bn] <2, neN. 8)

Additionally,
|bn — }lb,’bn,i| <2,n>i, uc [0, 1]. 9)

The equality holds for
n(z) = (1+2)(1-2)"

Lemma 2 ([25]). Let the function p € P be given by (3), then

by — 2Bbyb, + Db | < 2,

0<B<1,and B2B—1) <D <B.
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Lemma 3 ([35]). Let an analytic function p(z) be of the form (3), then
2by = b7 + x(4 — b7)

and
4@:@+uywmw—@—&mﬁ+xmwmyﬂﬁw,

where x,z € C, with |z] <1and |x| <1.

Lemma 4 ([36]). Consider the function p € P of the form (3),0 <a < 1,0 <a < 1and

8a(1 — a){(ac‘B —2A)? + (a(a+a) — ﬁ)z} + (1 —a)(B — 2aa)?

< 4a*a(1—a)*(1—a). (10)
Then,
4 2 3.2
/\bl + ﬂbz + 21Xb1b3 - Eﬁblbz — b4 <2. (11)
3. Main Results
Bound of |H3z1(#7)| for the class S; (1, 9).
Theorem 1. If € S5 (q,1) is of the form (1), then
q
i < ———, 0<g<],
1+q) -1
q
las] < ,0<g<1,
(1+q+4) —1
jas| < 0<g<1,
(I+q+q>+4°) -1
las| < 1 , 0 < g < 0.8651682397.

(1+g+a@+P+q4) —1
All bounds of Theorem 1 are sharp for the functions given in (29)—(32).

Proof. Let 7 € S} (gq,1), then y satisfies (7), we have

Spi(2)
1(z)

< 1+ tanh(gz). (12)

By using (2), we have

=1+ tanh(g(w(z)). (13)

Let

b12+b222+b323+...
24+b1z+bpz2+...

1 1 1 1 1
= Eb]Z + 5 (by_ - 2b%> 22 + 5 <b3 — b1y + 4b?>z3 4. (14)




Symmetry 2023, 15, 763 7 of 18

In view of (13) and (14), we have

1+ tanh(g(w(z)))
1 1
= 1+ gblz + q<2b2 — 4b%>z2

1 1 3242

1 1
+24q( 300~ Jouts = 163+ B(q)es + Bl )4+, (15)

where

2 3

_ (39 __ 1 8q
Bla) = (8 256><24+256><3>’
2 3
- (4, 1 A
cla) = (6 256><24+256>‘

Similarly,

[z]q>171>a2z+{(([3],1)171)%7( )ug}zz
l )l 1) 3} 3
]

| ([5}q)1_1)a4—{([2]q>1+([4]q) }aza4—(([3q) ) 2 ]4
) - (1 o= () - )

Equating the corresponding coefficients of (15) and (16), we have

/'\/:/‘\
L
=
~—
I
—_
N——
_
=~
I
—
~—
DN
=
~—
/N
2
~——
N
—
_
)
AN
@
+
/N
/\
=

(16)

P L — (17)

S E— ) — DL
as 2( ([4]q)l_1>{b3 B(L,q)brbz — D(1,q)b}} (19)
g 2(<[5]:’)l_1>(Ab§+ab§+2ab1b3—iﬁb%brm), (20)

where
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B(Lg) = _2( 2],) _1)(([3]11) -1 -
e q(([z]q)l+([3b>l‘22)(Uz]q) ‘q‘1>+ T -2 o)
() =) () ) a((m) )

A= Clg) - T 5~ Pla) - q(l[z}q)l—q—ll
2 8(([z]q)l—1> v 8((%) —1>(([3],,) _1>
_qz<2([2]q)l+([3]q)l—3>(([2]q)l—q—1) 23
8 ([Z}q)l—1> (([3]q>l_1>
o) () -2) o
* (@) ) () )
_ A 4, q(mq)l_q_l) 25
B = 3 (q) 39 (Lq) 3(([2]17)11)(([2}011) (25)
A+ (8)-3)
o((e) 1) () -)
a = -+ ql : (26)

Applying the Lemma 1 on (17), we have

la2] < 9

Applying the Lemma 1 on (18), we have

las| < 9
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Now consider (19), we obtain

as] = ————|bs — B( q)bab> + D(1, )15

2(([4]q)l—1)

where B(l,q) and D(I,q) are given by (21) and (22). Assuming the value, B = B(l,q) and
D = —D(l,q), which satisfy B(2B —1) < D < B, when g € (0,1), by the applications of
Lemma 2, we obtain

7

g < T
A+q+q>+4°) -1

Now, from (20), we consider

} 2(([5]01 —1) (

weseethat0 <a<1,0<a<1,q¢€ (0,1). Now, we take

Ab$ 4 ab3 + 2aby by — % Bb3by — b4>,

8a(1— a){(zxﬁ —20)? 4 (a(a+a) — [3)2} +a(1—a)(B —2an)*
< 4ata(1—a)*(1—a). 27)

Using (23)—(26) in (27), we obtain

8a(1— a){(oc,B —20)% + (a(a+a) — ﬁ)z}
+a(1 —a)(B —2a0)* — 4a2a(1 — 2)*(1 — a)

= 21— ——— [{@1(g) + 2(L,9) + ©s(l,q) - 21(,9)°}
where

(C(q) - DL, q)) + 1 37 )

4(([3]q)l - 1)3 °

I
= |

3 () = B(L0) ~qTa(0) +PTo(0) |
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and

Therefore, we have ¥(g,a,a, B) < 0, when 0 < g < 0.8651682397.
Now, by using Lemma 4, we have

|a5|§ q ] .
(I+g+g>+a>+q*) -1

For sharpness, consider the function 7, : U — C, defined by

Séqn(z)
1 (z)

=1+ tanh(gz"), n = 2,3,4,5.

The following functions show that the result is sharp.

y4 = Z q 22 ..
12(2) + ({2]q)1_1 +
B = 2t — 2 T
B O N (CYRR (G
y4 = Z q Z4 ..
14(2) + ([4],,)1—1 +
ns5(z) = z++25+
5l,) —1

O

Considering I = 1, in Theorem 2, we obtain the result which is proved in [33].

(28)

(29)

(30)

(31)

(32)



Symmetry 2023, 15, 763

110f18

Corollary 1. Ify € SF(q) is of the form (1), then

i < 1, 0<g<1,

las| < 11{4 0<g<1,

lag| < m, 0<g<1],

las| < W 0 < g < 0.8651682397.

Let! =1and g4 — 1—, in Theorem 1, we obtain the following corollary proved in [37]:

Corollary 2. If 7 € S has the series as given in (1), then

‘az‘ S 1/
1

‘a3‘ S n’
2

1

< -

las| = 3

These bounds are sharp for the following functions:

miz) = z+224+...,
1

n3(z) = z+§z3+...,
1

na(z) = z+§z4+....

Let/ =1and g — 1— in Theorem 1, we obtain the following corollary proved in [30]:

Corollary 3. If 7 € S has the series as given in (1), then

1
lan| < 1/ n=2>34.

Zalcman and Generalized Zalcman Conjecture
In 1960, Zalcman defined the conjecture for univalent functions. He stated that every
7 € S of the form (1) satisfies the following inequality:

a* — a2n_1‘ <(n—-17% n>2 (33)

In 1999, Ma [38] proved a generalized version of Zalcman conjecture and stated that every
univalent function 57 € S satisfies the following inequality:

lana; —ayiq| < (n—1)(i—1), ViineN, n>2,i>2. (34)

In [39,40], authors discussed the Fekete-Szeg® functional, the second-order Hankel
determinant,and Zalcman conjecture, and these results are shown to be sharp. Furthermore,
we have estimated the bounds of the third-order Hankel determinant for this class S;(1, )
for different values of n and i. For n = 2, the inequality (33) has the form

’a%—ag‘ <1
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Theorem 2. Ify € S;(1,q) is of the form (1), then

q
14+g+42) -1

a3~ as| <t (35)
The inequality (35) is sharp for the function y3 given in (29).

Proof. From (17) and (18), consider

1
g b L (@) —a-1) | ow

S = (N G W e ) e e

= 9 ‘bz —ob?

where
) () —a-1 a1
2 ! + I 2
(2,) —1 (([z]q) —1>

Since, 0 < g < 1, therefore v € (0,1). Now, using Lemma 9, for n = 2, i = 1, we obtain (35).
For sharpness, consider the function 73 such that

n3(z) =z + ql 24
(18],) -1
Now, ]
a, =0, and az = (ETET2ESY
O

Considering I = 1 in Theorem 2, we obtain the result which is proved in [33].

Corollary 4. If n € S5 (q) is of the form (1), then

-] <

Considering | = 1 and g — 1— in Theorem 2, we have the following known corollary
proved in [37]:

Corollary 5. If 5 € S; is of the form (1), then

N =

EE

Take n = 3, i = 2, in the inequality (34), then we have |a4 — a2a3| < 2. Now we discuss
it as follows:
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Theorem 3. Ify € S (1,q) is the form (1), then

q
— 3| < , 0<q<0.8651682.
4 = aa0a| < o T T 1

The inequality is sharp for the function y4 given in (31).

Proof. From (17)-(19), consider

ag — ﬂ2ﬂ3| =

() -1)] (o LG

Assuming the values

1(+0)' -1)((a+)' = +a+@) ) —2) +a(((+q+a+0)) -1)

P 20+ 1) (A g+ —1) '

. . q( )(2 [Z}q)l—q—l)
() (0

o < (14+q)'+ 1+q+q) 2}—{(1+q+q2+q3)’—1}>

1+q —1)2((l+q+q2)l—l>

2
T N
4((1g) 1) ( 12 )
We see that,
B(2B—1) — D <0, when 0 < g < 0.8651682,
which shows that

B(2B—1) < D <B.

Thus, using Lemma 2, we obtain

q
A+q+q*+4°) -

lag — axaz| =

The equality holds for the extremal function

O

Considering | = 1 in Theorem 3, we obtain the following known corollary, proved
in [33]:
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Corollary 6. If 7 € SF(q), has the series of the form as given in (1), then

1

ag — arazy| < ———.
|4 23|_1+q+q2

Considering ! = 1 and 4§ — 1— in Theorem 3, we obtain the following known corollary,
proved in [37]:

Corollary 7. If y € S; has the series of the form as given in (1), then
1
|ag — azaz| < 3
In the following result, we prove the second Hankel determinant H > (7).
Theorem 4. If 7 € S; (1,q) is of the form (1), then

q2

Q1+q+%ﬂ—1f'

‘a2a4 — a%‘ <

Proof. Making use of (17)-(19), we obtain

Q2.2 Q3 Q4,2
—b} — =2b3by + =byby — <-b
O N TRt O TR

~

2
‘012014 - 613’ =0

where

Q1 =Q3D(l,q) -

Q2 = Q3B(l,q) —

By using Lemma 3, we assume that b = by, (0 < b < 2), so that
’a2a4 — a%‘

a bt — ap (4 — b2 b —az(4 — b2)2x2

g (4= 0)b5 (1~ [x*) + a5 (4 — 12)b2x | (36)

= O
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where
n = 1—%4—042—043,
Qs Q4
&y = ==, A3 = ——, &4 = 203,
4Q Tol
_ Q2 204
N5 =

2ay — 22— =t
2720 O

Using |§] < 1 and |x| < 1, and applying the triangle inequality, if we take b € [0,2],
we obtain

’a2a4 — ﬂ%‘

a b4 + oy (4 — D) b2x% + a3 (4 — b?) 22

IN

Q1
+ag(4—b2)b(1—x2) +as(4 — b?)b?x
= Q(bx).

Now, trivially we have Q' (b, x) > 0 on [0,1]. Therefore, Q(b, x) is an increasing function in
the interval [0, 1]. The maximum value occurs at x = 1,

max Q(b,1) = Q(b).
Hence,
2
Qb) = (Mb“ tar (400 as (4= 17) +as (4 12) b2>_
As ,
Q(b) <0,

then Q(b) is a decreasing function of b, so that it gives the maximum value atb =0 :

o2y 3| < 16Q1a5

qz
1 2°
(1+q+)'-1)

The result is sharp for the function #3 given in (28). O

Considering I = 1 in Theorem 4, we obtain the result which is proved in [33].

Corollary 8. If 7 € S (q) has the series of the form as given in (1), then

1
(1+9)*

‘ﬂ2ﬂ4 - ﬂ%‘ <

Considering, | = 1 and 4 — 1—, in Theorem 4, we get the result which is proved
in [37].

Corollary 9. If 5 € S; has the series of the form as given in (1), then

N

’ﬂzﬂz; - ﬂ%‘ <
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Theorem 5. If y € S} (1,q) is of the form (1), and 0 < g < 0.8651682, then

(1+q+4% +q +q) (1+q+4% —1

*( )( e
(1+q+q”+q> 1+q+72+) -1

2
q q
(1+g+q%) -1 «1+q+ql+¢)—1)

Proof. We know that
| ()] < las][a5 — a3 + laallay — azas| + [as][az04 — a].

Using Theorems 1-4, we have the required result when 0 < g < 0.8651682. [

Considering I = 1 in Theorem 5, we obtain the result which is proved in [33].

Corollary 10. Ify € S(1,q) is of the form (1), and 0 < g < 0.8651682, then

1 1
H <
] = <1+q+q1+¢)<1+q)
1 1
(rrere) (e
T+q+a)\T+q+q
(o
e/ \(+a+g2)")

In this work, we introduced a new subclass S(1, q) of g-starlike functions related to the
g-analogue of the hyperbolic tangent function through subordination relation. This class
generalized a number of known subclasses of starlike functions. For this class, we have
investigated the Fekete-Szegd type functional, and estimates of the second- and third-order
Hankel determinant. We also considered Zalcman and generalized Zalcman inequalities
and found sharp estimates. We have shown that all the results of this article are sharp.

Moreover, for future work, the class S(1,q) can be further investigated for finding the
upper bounds of higher-order Hankel and Toeplitz determinants.

4. Conclusions
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