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1. Introduction

Let M be a Riemannian manifold with a linear connection V. If the torsion tensor T
of V
T(t1,t2) = Vita — Vit — [t1, 1] (1)

satisfies
T(t1,t2) = h(tz)(ptl — h(tl)(Ptg, (2)

where & is a 1-form and ¢ is a (1, 1) tensor field, then the connection V is called a quarter-
symmetric connection [1,2]. In addition, if V holds the relation

(vtlg) (tz, t3) = 0/ (3)

V t1,ta, t3 € (M), the set of all smooth vector fields on M, then V refers to the quarter-
symmetric metric connection [3]. Many geometers such as [4-16] studied such connection
on M and discussed some geometric properties of it. The quarter-symmetric connec-
tion generalizes the semi-symmetric connection that plays a key role in the geometry of
Riemannian manifolds.

A Riemannian manifold M (dimM = n > 3) with respect to the Levi-Civita connection
V is said to be

e A generalized recurrent [17] if

(VyR)(t2, t3)ts = a(t1)R(t2, t3)ts + B(t1)[g(ts, ta)t2 — g(ta, ta)t3], 4)

where « and B are 1-forms of which  # 0. If in Equation (4), « is non-zero and § is
zero, then the manifold is named a recurrent manifold [18].
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* A pseudosymmetric [19] if
(VuR)(t2, t3)ta = 2a(t1)R(tp, t3)ts + a(t2)R(t, 3)ts
+ Dé(tg)R(tz,tl)t4+l’é(t4)R(t2,f3)t1
+  g(R(t2, t3)ts, t1)p, (5)

for @ # 0. The 1-forms a and § associated with the vector fields p and ¢ are defined
as follows:

g(t,p) = a(t), g(t,0) = B(t1). (6)

On the other hand, Yano and Ishihara [20] proposed the notion of the lifting of tensor
fields and connections to its tangent bundle and established the basic properties of curva-
ture tensors. In [21], Manev studied tangent bundles with a complete lift of the base metric
and almost hypercomplex Hermitian—Norden structure and characterized it. The metallic
structures on the tangent bundle of a Riemannian manifold by using complete and hori-
zontal lifts were studied by Azami [22]. Bilen [23] introduced the deformed Sasaki metric,
which is a Berger type, studied the metric connection to the tangent bundle, established
some curvature properties of this metric, and characterized the projective vector field. The
geometric structures and the connections from a manifold to its tangent bundle have been
studied by many authors such as [24-27] and many others.

Our main findings in the paper are as follows:

e Some results on the curvature tensor of a P-Sasakian manifold with respect to V¢ on
TM are obtained.

e A theorem on a semisymmetric P-Sasakian manifold with respect to V¢ on TM
is proved.

e Arelationship between one and the forms * and B¢ on TM of a generalized recurrent
P-Sasakian manifold is established.

e An expression of a pseudosymmetric P-Sasakian manifold with respect to V¢ on TM
is determined.

2. P-Sasakian Manifolds

Let M be a differentiable manifold (dimM = n) endowed with a tensor field ¢ of type
(1, 1), a characteristic vector field x, and a 1-form & such that

P*ty =t — h(t1)x, ¢k =0, h(x) =1, h(pt;) =0 7)

and let ¢ be a Riemannian metric satisfying

g, t1) = h(t1), g(pty, Pta) = g(t1,t2) — h(t1)h(t2); 8)

then, the structure (M, ¢, x, h, g) is said to be an almost para-contact metric manifold [28,29]
If M holds:

di] = 0, thKI(Pfl,
(Vt1¢)t2 = —g(tl,tz)K—h(tz)tl +21’](t1)h(t2)1{, (9)

then M is called a para-Sasakian manifold or, briefly, a P-Sasakian manifold [30-32]. More-
over, if M satisfies

(Vi h)(t2) = —g(t1, t2) + h(t1)h(t2), (10)
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then M is a called special para-Sasakian manifold or an SP-Sasakian manifold [33]. In a
P-Sasakian manifold, we have [32]:

S(ty,x) = —(n=1)h(t) < Q=—(m—-1), (11)
h(R(ty, ta)ts) = g(t1, ta)h(t2) — g(t2, t3)h(t1), (12)
R(t,x)ta = g(t, ta)x — h(t2)ty, (13)
R(ti,t2)c = h(t1)t —h(t2)ty, (14)
S(pt1, pt2) = S(t,ta) + (n—1)h(t1)h(t2), (15)
h(R(ty, ta)x) = 0, (16)

V t1, b, t3 € (M), where the curvature and the Ricci tensors are symbolized as R and S,
respectively.

For further studies on P-Sasakian manifolds, we recommend the papers [31,32,34-37]
and many others. An almost paracontact Riemannian manifold M is said to be an h-Einstein
manifold if its Ricci tensor S(# 0) satisfies

S(i‘l,l‘z) = ag(tl, i‘z) + bh(tl)h(tz),

where a and b are smooth functions on the manifold M. In particular, if b = 0, then M is
named as an Einstein manifold.

Definition 1. In an n-dimensional differentiable manifold M, T,(M) is the tangent space at a
point p of M, i.e., the set of all tangent vectors of M at p. Then, the set TM = Upepm Tp(M) is the
tangent bundle over M.

Definition 2. Let us consider (x'),i = 1,...,n as a local co-ordinate system on M and let
(x,y'),i=1,...,n be an induced local co- ordmate system on TM. If t; = Xl =7 is a local vector
field on M, then zts vertical, complete, and horizontal lifts in terms of partial differential equations
are provided by

H = (17)

X!
ox/

X' o (18)

tc
oy’

i 9
oy’
i 9
! ox
Let f,h,t; and ¢ represent a function, the 1-form, the vector field, and the tensor
field type (1,1), respectively, on M. The complete and vertical lifts of such quantities are
fC,fV, he, Y, tlc, tY,(pC,(pV on the tangent bundle TM.
Let the mathematical operators V and V¢ be the Levi-Civita connections on M and
TM. Then, we have [38—40]:

(fr)" = £, (fh)© = o1 + V15, (19)

Hf =0t/ fC=1f" = (bf)", t5fC = (bf)S, (20)
hY(fY) =0, WV (t5) = k() = h(t1)¥, hE(£5) = h(tr)S, (21)
¢Vt = (pt1)", ¢S5 = (pt1)©, (22)

[t ta]Y =[5, 8] = [t £5], [t 12] =[5, £5), (23)

v t2 = (Vyh)S, vgctg’: (Vi ta)V. (24)
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Employing the complete lift on (1)—-(16), we acquire

(¢*t)C = t? HE(t5)k” —nY (#1)xS,
okC = ViV = kY = ¢VxC =0,
W) = n(x")=0, h(x")=h"(x") =1,
W (pt)© = Y (pt)Y =h"(pt)" = hV(pt)C = 0.

Let ¢© on TM be the complete lift of g on M, then

gEKC,17) = Ko,
gc((4>f1)c,(¢fz)) = gE(15) — hE ()Y (1)
— KV (D)R().
If (TM, g©) satisfies
(dn)© = 0, Vix© = (91)",
(VSIS =~ ) — g0, 1

— KUY — Y ()5 + 2{hC (1 RC (15 )x”

+ HC(ED)RY (8)6C + 1Y (1) hC (1),

(Vich)(t) = =g“(11,15) + hE (T )RV (1) + BV (E))h(15),

then the (TM, g©) is called an SP-Sasakian manifold. Furthermore, we have

SC(t5,6%) = —(n—DhE(), (Q4)° = —(n—1)xC
hE(RE(5,85)65) = g (7, #5)hY (85) + g“ (1, 15 )hC (15
— (5, )Y (1) — g (8, #5)hC (tF
RE(t, k)5 = ¢S (i1, 15)x" + g (H, 15)x€
— KE(5)H — RV (5)H,
RE(H7, 85)xC = hE(i7)ty + Y (#9)85
- hc(t%)t¥+hv(t§)t1c,
SC((pt)S, (1)) = SC(H],15) + (n = D{RC ()R (£5)
+ BV (E)RC(5)},
KE(RE(15,65)xC) = 0,

such that
§E((Qh)S, £5) = SC (5, £5),

SC(K5,£5) = ag= (15, £5) + b{hC (1)1 (£5) + hY (11)h“(£5)},

VIS, 5,15 € S(TM).

(25)
(26)
(27)
(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)
(38)

3. Expression of the Curvature Tensor of a P-Sasakian Manifold with Respect to V¢

on TM

Let V be a linear connection and V be the Levi-Civita connection of a P-Sasakian

manifold M such that
Vity = Vits + H(ty, ta),

where H is a (1, 1)-type tensor and is provided by [1]

H(ty, ) = S[T(t, t2) + T'(t1, t2) + T'(f2, 1)),

N =

(39)

(40)
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such that

g(T'(t1, t2), t3) = g(T(t3,t1), t2).

Applying the complete lift on (1), (2), (6), and using (39)—(41), we infer

C(4C Cy _ &C,C_ oV ,C_ [,C (C
T=(t1,t3) = Victs = Viett = [t 151,

which satisfies

TE(t7, 1) = hE(t5) (9h) " — h(£9) (912)

(Vg )(t5,15) =0,

t
gE(15,p%) = aC (1),

&C 4 C C,C CrC ,C
Vtgjtz :thctz +t5(t1,t2>,
where

HO(H,15) = S[TC( 1) + T (15, £5) + T (15, 47)],

NI~

and
§E(T' (17, 45),£5) = g (T (15, 1), 15).
From (43) and (48), we lead to

T'C(5, ) = BE() (@) + Y (#) (ph2)

— §5((pt)S, £5)K” — g ((pt1) Y, £5)xC.

Using (43) and (49) in (47), we have

HE(t1,15) = hE()(@h)Y + Y (15) (¢h)C

§E(p)S 15k + g ((ph) ", 15)x".

Therefore, a quarter-symmetric metric connection V¢ on TM is provided by

VG = VSSRGS (ph)Y + Y () (1)

Gy
8 ((pt) <, £5)k” + g ((pt1) ", £5)xC.

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

Let RC and RC be the curvature tensors in respect of the connections V¢ and V¢ on

T M, respectively. Then, from (51), we have
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RE(,5)15 = RE(L, 15)85
+ 3{g5((p1) % 1) (9ha) + g ((91) ", £5) (ph2) “}
- 3{8C((¢fz) t5)(¢t1)" — g ((¢t2)",15) (¢t1)“}
+ K5 (i )fz +hC(t5)hY (17)t5
+ ()R () C(tg)hc(tg) H
— KE()RY (1567 — BV (#5)nC (15) 15 (52)
- hc(ff)gc(fzf%)KV hE ()8 (8, 15 )k©
— hV(H7)gC (43, 15 )xC + HE (1) g (1, 15"
+ C(fg)gc(flffs)K
+ (tzc)gc( /t5)7€ ,

RC(+C C\+C _ Cx/C(C 7/C v7C +C 7 C C C +C C
where R™(t7,t5)ts = thcvtg% _Vtzcvtlc’% —V[t%tg]ts,and t7.t5,t5 € S(TM). By

using an appropriate contraction, from (52), we obtain that
SE(65,15) = SC(15,15) +28°(t5, 15)
(n+D{H(E)RY (t5) + " (¢5)h(15)}
3trace¢gC ((pt2)C, tS), (53)

where S¢ and S€ are the Ricci tensors of VC and V¢ on TM, respectively. This leads to the
following theorem:

Theorem 1. Let TM be the tangent bundle of the P-Sasakian manifold with V. Then, we have

(1) (52) provides RS;
2) € is symmetric;
Y

(3) RE(H5, 5,45, £5) + RE(15,£5,t5,15) = 0
(4) R¢ (tg tz,tg, t%) +Rc(t2C, tf,tg, t$) =0
(5) RE(5, 45,45, 45) = RE(65, 15,15, 15);

(6) §C(t2C, KC) =-2(n— 1)hC(t2C);
for all 5,15, 15 € S(TM).

With the help of (25)—(28), (35) and (36) from (52) we obtain

RE(kC, )5 = 2[hC(#5)ty +hY (£5)t5
— gC(t§, t5)KY — g (15, 15)xC], (54)
and
RE(HS, 656 = 2(nC(i)e) +n¥ ()85
— KE(5) — hV(£5)15), (55)

where 1§, 15 € S(TM).

4. Expression of Semi-Symmetric P-Sasakian Manifolds with Respect to V¢ on TM

In 2015, Mandal and De [41] characterized semisymmetric P-Sasakian manifolds with
respect to the quarter-symmetric metric connection, that is, the curvature tensor satisfies
the condition:

R(x,t) - R(ts, te)ty = 0.

This implies

R(x, t2)R(ts5,te)ts — R(R(x,t2)ts, te)ts — R(t5, R(K, t2)te)ts
— R(t5, t6)R(K, tz)t4 =0. (56)
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Applying the complete lift on (56), we infer

(R(x, t2)R(ts, te)ta)©  — (R(R(x, t2)ts, t6)ts) — (R(ts, R(x, t2)te)ta)C
—  (R(ts, te)R(x, t2)t4)C = 0. (57)

Using (54) and (57) yields

WE(R(ts, te)ta)“t5  — 2{g°(t5, (R(ts, te)ta) )" + g (t5, (R(ts, te)ts) )k}
— 2{hC(t5) (R(ta, te)ta)V + 1" (£5) (R(tz, t6)ts) < }
+ 2{g° (15, 15) (R(x, te)ta) + 8 (13, £5) (R(x, £6)t4) "}
— 2{hC(t5) (R(ts, t2)ts)” +hv(f6)(R(f5,f2)t4)C} (58)
+ 2{g°(VE ) (R(ts, 1)ta) " + g (1, 15) (R(ts, 1)ts) <}
— 2{hC(t5) (R(ts, te)t2) ¥ +hv(t )(R(ts, t)t2) <}
+ 2{8 (5, £5) (R(ts, te)x)"
+ 8°(t) 1) (R(ts, te)x)“} = 0.

Using the inner product of (58) with x and then using (52), (54) and (55), we obtain
from (58) that

S ((R(ts, te)ts)<, £5) ¢

(9te)",15)
te)<,15)}
(¢t )C t5)
t

%/

3{g"((¢t5)" ¢
8 ((¢te)", t )
3{g"((¢te)" 1
8 ((¢te)C, t 4)

_|_

+
Q

O\_/

e

S ~ S
‘S—

=
—~

+ 4+ +
O‘\(‘)U:F')U“

=

@)

~

—

=
0

—

[~
o0

=
0

-

+

=
0
[

(59)

—_ — — — — — —

= =

@) <

/—\AA/—\/—\/-\A
~

~

%Nm SO N RO S0 S0

a1
OQ \_/\_/\_/\_/\_/\_/\_/\—/

mmmcr'hmﬁ

+2{g°(#5,5)8 (1 £5)
C(t5,t4)g (t6/t2)

+ 4+ +

) —

6, 5)

~
[@X
~

|
O‘QOQOQ%GOQOQOQOQ
A~ N N N N N~/
O o= 5

l..

ol e}
\_/V\_/\—/\_/\—/\—/\_/\—/
=
@)
~ o~ N~~~ o~ T
~~

- &
By contracting the above equation over t4 and t4, we infer

SC(t5,15) = —2ng"(t5,15) + (n+ 1){n" (15)h(#5)
+ BCERY (E5)} + Btrace¢CgC ((9ts)C, £5). (60)

In view of (53) and (60), we obtain
SE(t5,15) = —2(n = 1)g" (85, 17). (61)
By contracting (61), we obtain
¢ = —2n(n—1). (62)
This leads to the following theorem:

Theorem 2. The tangent bundle TM of a quarter-symmetric P-Sasakian manifold M is an Eien-
stein manifold with0 respect to VC and ¥ = —2n(n — 1).
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5. Expression of Generalized Recurrent P-Sasakian Manifolds in Respect of V¢
on TM

In this section, we consider generalized recurrent P-Sasakian manifolds with respect
to the quarter-symmetric metric connection V. Equation (4) with respect to V can be
expressed as

(Vi R) (a2, t3)ty = a(t1)R(to, t3)ts + B(t1)[g(t3, ta) b2 — g(t2, t4)t3]. (63)

Applying the complete lift on (63), we infer

(Ve R)(t2, t3)ts)C = (alt)
+ BO(tf
A G
- BV

for t1,ty, t3,t4 € S(M). Substituting t, = t4 = « in (64),

(Vi R)(k, t3)x)C = aS(t7)(R(x, t3)x)" +a" (£5) (R(x, t3)x)©
C(ETIHC(t5)” + BE(ET)RY (£5)xC (65)
V(ERE(15)xC — BE(£5)tY — BV (£5)15.

(R(ta, t3)ta)< + BE(H5)8° (15, £5) 1Y
C(H] 5 + BY ()8 (5, £5)t5
C(t5, 1)ty — BE(£5)8C (1, 1085
(

)g
)8
)< (15, )85 (64)

+ B
- P
Using (55) in (65), we obtain
(F4R) (12, 13)0)C = 2A((TEHYE NS — (TEROYE)) (66)
On the other hand, using (9), (44) and (51) we obtain
(Vich)ts =28 (15, (91) ). (67)
Thus, from the differential Equations (66) and (67), we have

(Vi R)(t2, 1)) = 4[g°(t5, (pt)HY + g (13, (pt) 15
8E(t5, (9pt) ) — g(15, (1) “85],

which, by putting t, = «, yields
(VaR)(k t3)0)C = —4g°(t5, (9t1)“¢" — g“ (], (9t1) " (68)
Again, from (55), we have
(R(x, t3)k)C = 2[t§ — K (£5)kV — hY (£5)x"]. (69)
Thus, from (65) and (69), we obtain
(Vo R)(k, ta)x)C = aC(#9)[t5 —hE(15)xY — R (£5)xC)
+ BEUD ()Y + BV (55)KC — £5]. (70)
In view of (68) and (70), we obtain
—4{gC (15, (pt) )"+ g1, (1) )k}
= 2a°()[5 — HE(15)x" — Y (5)x
BE(ED) 15 — hC(15)xY — R (£5)xC]. (71)
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By applying ¢ on (71) and using (25)—(28), we infer
BE(tT) = 20(H). (72)
This leads to the following theorem:

Theorem 3. The 1-forms a© and B¢ on TM of a generalized recurrent P-Sasakian manifold are
related by B¢ = 2aC.

Next, applying the complete lift on (4), we infer

(Ve R)(t2, t3)ta)" = aC(#7) (R(t2, t3)ta)Y + &V (£7) (R(tp, t3)ts)©
+ ﬁc(tf)gc(t3,t4)t2 +,3C( D)8C (1, )5
+ BV ()8 (15, 19)t5 — B ()8 (15, )ty
— B (DS
— BY()8° (5, t9)15, (73)

where V¢ is the complete lift of V. From the above equation, it follows that
(Ve R)(t2, 13)14)" = a (1)) (R(t2, t3)14)Y + & (1) (R k2, 13)t4), (74)
Vi§, 65,65, 65 € S(TM).
Thus, in view of Theorem 3, we obtain a€ (tlc) = 0. Hence, we have the following corollary:
Corollary 1. The 1-form a on TM of a generalized recurrent P-Sasakian manifold vanishes.

6. Expression of Pseudosymmetric P-Sasakian Manifolds with Respect to V€ on TM

In this section, we prove the following theorem:
Theorem 4. There is no pseudosymmetric P-Sasakian manifold with respect to V' on TM.

Proof. Let us suppose that TM is the tangent bundle of a pseudosymmetric P-Sasakian
manifold with respect to V. Using the complete lift on (5), we obtain

(VuR)(t2, t3)ts)C = 2(a(t 1)R(f2rf3)t4) + (a(t2)R(ty, t3)ts)©
+ (a(t3)R(to, t1)t4)C + (a(ts)R(ta, t3)t1)C
+ (g(R(ta, t3)ts, t1)p)C. (75)

By contracting t; in (75) and substituting t4 = x, we have

(Vi S)(t3,x)C = 2(a(t1)S(ts, k) + (a(R(ty, t3)x)C
+  (a(t3)S(t, )) ( (K)g(tfirtl))c
+  (8(R(p,t3)x, tr) (76)

In view of Theorem 1, we acquire
§C(t§, KC) =-2(n-— 1)hc(t3c).
In consequence of (67), we infer

VieSE(t5,6) = —4(n = 1) (15, (91)°)- (77)
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Next, the consequences of (25)—-(28) and Theorem 1, we infer
W%SC(ta‘?, k) = —an{aC(t7)nY (15) + aC (F)RC (1)}
+ 2{hC()aY (85) + hE (1) (1)}
= 2(n—1{a"(5)RV (17) + fxc(tg)hc(tf)}
+ 2 () g (#,15) + ¥ (x)gC (7, 15) )}
+ aS(x OS5 + ¥ (k) S5, £5). (78)

References

Equating the differential Equations (77) and (78) and then using t; = x, we obtain

—4(n —1)g° (15, (¢x)©) = —4n{aC(xKO)nY (£5) + (k)R (1)}
+ 2{nC(x)aV (15) + h (KC)“C(%/)} (79)
— 2(n = D){a"(5)hY () + a (55" (")}
+ 2{aC (kKR (E5) + oV (KOO (£5)
+ & (xS (kY £5) + a¥ (k©)SC (xC, £5).

By using (25)—(30), (45), and Theorem 1 in (79), we lead to
(2= 3m) {aC ()Y (£5) + aC (KON (EY)} + (2 — m)aC(5) = 0. (80)
By replacing t; by « in (80), we obtain a“x© = 0, which, used in (80), provides
aCtf =0=a" =0.
This goes against what we assumed. This completes the proof. [
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