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Abstract: The automotive family design is known as one of the most complex engineering design
problems with multiple groups of stakeholders involved from different domains of interest and
contradictory attributes. Taking into account all stakeholders’ preferences, which are generally sym-
metrical, non-deterministic distributions around a mean value, and determining the right value of
attributes for each alternative are two basic challenges for these types of decision-making problems.
In this research, the possibility to achieve a robust-reliable decision by focusing on the two afore-
mentioned challenges is explored. In the proposed methodology, a random simulation technique
is used to elicit stakeholders’ preferences and determine the relative importance of attributes. The
decision space and values of attributes are determined using the Knowledge Discovery in Databases
(KDD) technique, and to achieve a robust-reliable decision, statistical and sensitivity analyses are
performed. By implementing this methodology, the decision-maker is assured that the preferences of
all stakeholders are taken into account and the determined values for attributes are reliable with the
least degree of uncertainty. The proposed methodology aims to select benchmark platforms for the
development of an automotive family. The decision space includes 546 automobiles in 11 different
segments based on 34 platforms. There are 6223 unique possible states of stakeholders’ preferences.
As a result, five platforms with the highest degree of desirability and robustness to diversity and
uncertainty in the stakeholders’ preferences are selected. The presented methodology can be imple-
mented in complex decision-making problems, including a large and diverse number of stakeholders
and multiple attributes. In addition, this methodology is compatible with many Multi-Attribute
Decision-Making (MADM) techniques, including SAW, AHP, SWARA, and TOPSIS.

Keywords: multi-attribute decision-making (MADM); simple additive weighting (SAW); stakeholders’
preferences simulation; knowledge discovery in databases (KDD); automotive platform; statistical
analysis

1. Introduction

MADM is an important component of modern decision science [1]. There are plenty
of applications of MADM methods, such as finding an optimal solution, selecting the best
alternative, or ranking alternatives [2]. MADM is used to solve discrete decision problems
with several attributes and a limited number of predetermined alternatives that are usually
conflicting [3].
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The MADM methods have been widely used in various fields of management, engi-
neering, economics, medicine, military, etc. Akbas et al. [4] proposed a hybrid algorithm
for stock portfolio selection. Hadikurniawati et al. [5] proposed a hybrid decision mak-
ing based on the technique for order preference by similarity to ideal solution (TOPSIS),
simple additive weighting (SAW), and analytic hierarch process (AHP) in order to make
the selection of the experts’ decision on an electrician through a competency test. Jiang
et al. [6] analyzed critical factors affecting emergency logistics system reliability using
MADM. Using the AHP technique, a decision model was developed for logistic facilities
and transport siting in urban environments by Fraile et al. [7]. Ziemba et al. [8] used a
PROMETHEE-based approach to evaluate enterprise resource planning (ERP) systems
supporting supply chain management. To select the best hospital supplier, Akcan et al. [9]
presented four integrated MADM methods. Naeem et al. [10] used the MADM under an m-
polar neutrosophic environment to classify blood disorder types. In a work by Adriyendi
et al. [11], a hybrid MADM approach based on a benefit–cost model was adopted for
sustainable fashion materials. Three MADM techniques: SAW, TOPSIS, and complex pro-
portional assessment (COPRAS), were applied by Dhiman et al. [12] in the process of the
hybrid operation selection of wind farms. Zavadskas et al. [13] performed an extensive
literature review on multi-criteria decision-making techniques suitable for the improvement
of sustainability engineering processes. Saghari et al. [14] employed the AHP method to
make optimal decisions in the selection of orbit transfer systems of a student micro-satellite.
Lafleur [15] used a combination of AHP and TOPSIS techniques for the selection of a
satellite orbit and launch vehicle. Saghari et al. [16] proposed a hybrid method based on
MADM and optimization techniques to find an optimal robust-reliable parameter of an
earth observation mission. Potential sites for the construction of a river bridge aimed at
suitability were ranked through the use of the fuzzy analytical hierarchy process (FAHP)
by Ardeshir et al. [17].

Particularly in the automotive industry, Ulkhaq et al. [18] used a combination of AHP
and TOPSIS for car selection problems. Sakthivel et al. [19] proposed two decision models
based on FAHP and PROMETHEE for evaluating an automobile purchase problem. A
review was conducted by Renzi et al. [20] on decision-making methods in the area of
automotive engineering design. Jamil et al. [21] studied MADM methods for supplier
selection in Malaysia’s automotive industry. Five decision-making tools were analyzed in
this study, namely, AHP, FAHP, TOPSIS, fuzzy TOPSIS, and FAHP integrated with FTOPSIS.
The research of Castro et al. [22] focused on energy efficiency using multi-criteria decision-
making in the automotive engineering field. Yousefi et al. [23] proposed an integrated model
based on AHP and TOPSIS to examine the performance of the Iran automobile industry.
Pu et al. [24] used the method of grey relational analysis (GRA) integrated with AHP to
solve the car body lightweight material selection problem. Shahanaghi et al. [25] proposed
an MODM-MCDM approach for partner selection in the automotive industry (Mazda of
Iran). The application of the AHP method to develop guidelines for preparing vendor
selection models (VSMs) was the work of Mohan et al. [26]. The FTOPSIS method was used
to solve the best automobile selection problem by Yildiz et al. [27]. Nguyen [28] utilized
multi-objective optimization ratio analysis (MOORA) and AHP to rank the car models
in the Vietnam market. To examine the improvement fields of the Indian automobile
industry, Raut et al. [29] proposed a combined model from the AHP and the quality
function deployment (QFD)-fuzzy technique. To solve the MADM problems, a wide range
of techniques have been extensively discussed in the literature [2,30–34]. The five most
frequently used methods are: SAW, weighted product model (WPM), AHP, TOPSIS, and
PROMETHEE, and a combination of these methods with fuzzy concepts [30–33,35].

Each of the MADM techniques has its strengths and weaknesses, discussed in [30,34,36–38].
One way to improve the performance of MADM techniques is to combine them with
other decision-making techniques when solving decision-making problems. For instance,
Sakthivel et al. [19] used a combination of FAHP and PROMETHEE to evaluate the best car.
Ulkhaq et al. [18] employed a combination of AHP and TOPSIS to evaluate car selection.
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A hybrid decision-making technique based on AHP, SAW, and TOPSIS was proposed by
Hadikurniawati et al. [5] for electrician selection. Matic et al. [37] developed a hybrid
model that integrates the rough COPRAS with the full consistency method (FUCOM) for
evaluating and selecting construction company suppliers in a sustainable supply chain.

MADM methods contain four main components [30,34]:

• Alternatives: solutions or options that should be evaluated based on attributes, and
ranked or selected according to the most appropriate.

• Attributes: properties, qualities, or features of the alternatives. Each attribute can have
several sub-attributes.

• The relative importance of attributes (an attribute’s weight of importance): The degree
of preference of an attribute over another attribute or sub-attribute.

• Evaluation function: final criterion for evaluating and ranking the alternatives.

One of the major challenges of MADM methods mentioned in [8,36,39–42] is their
dependence on the preferences, knowledge, and experience of stakeholder groups. As the
preferences, level of knowledge, and experience of stakeholder groups are different, stake-
holder preferences can be diverse and uncertain. Uncertainties in preferences are typically
symmetrically distributed around a value, especially in cases with multiple and different
stakeholders, such as automotive design problems as a product with a global market.
Inevitably, decision-makers will always face levels of unreliability and lack of knowledge,
which may result in different outcomes. Uncertainties and a lack of knowledge can be
observed in measuring the relative importance of attributes [16,40,41,43–45], determining
the values of attributes [43,45–47], and even identifying alternatives (decision space).

Several methods have been introduced to determine attribute weights: objective weight-
ing methods, subjective weighting methods, and hybrid weighting methods [34,39,48]. In
objective weighting methods, the preferences of stakeholders have no role in determining
attributes’ weights. Based on the difference in the values of the attributes in each alterna-
tive, each attribute’s weight is calculated. In contrast, in subjective methods, attributes are
weighted according to stakeholder preferences and judgments. A combination of different
objective and subjective weighting methods is used in hybrid methods.

There are different ways to determine the value of attributes and the decision space,
including expert judgment (linguistic statements) or numerical values. The linguistic nature
of human judgment, as well as the different levels of knowledge and experience that people
have, always causes ambiguity and uncertainty in making a final decision. Consequently,
enabling methods are required to handle such an uncertain decision space and reach a
reliable and desirable decision.

Different methods have so far been proposed to solve MADM problems under uncer-
tainty; Jiang et al. [49] proposed a decision-theoretic fuzzy rough set model in hesitant fuzzy
information systems and discussed its application in MADM. A large group of emergency
decision-making methods based on relative entropy, Bayesian theory, and Euclidean dis-
tance were proposed by Wang et al. [50], which were applied for a large-group emergency
decision making with expert weights, unknown attribute weights, and uncertain probabil-
ities of occurrence. Alkan et al. [51] proposed a model to evaluate the most appropriate
sustainable construction material by combining the Bayesian best–worst method (BWM)
with SAW. Darko et al. [52] developed a novel decision evaluation model that integrates
online consumer reviews (OCRs) and MADM with probabilistic linguistic information to
rank mobile payment services. They employed the probabilistic linguistic term set theory
and statistical analysis to convert the sentiment scores into probabilistic linguistic elements.
Akram et al. [53], to select the best industrial waste management technique by using the
linguistic Pythagorean fuzzy sets, introduced a dynamic MAGDM model by integrating
the evaluation based on distance from average solution method and the criteria impor-
tance through inter-criteria correlation method. A new Best–Worst MADM method under
probabilistic linguistic information was presented by Wu et al. [54], which was applied to
a practical example of selecting optimal green enterprises. Wu et al. [55] made a compre-
hensive overview of published papers in the field of cognitively inspired MADM methods
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under uncertainty. Piasecki et al. [56] examined the effect of the orientation of the ordered
fuzzy assessment on the SAW method. A novel MADM approach for the intuitionistic
fuzzy numbers environment was proposed by Dhankhar et al. [57]. Xu et al. [58] proposed
an MADM method based on interval-valued q-rung dual hesitant uncertain linguistic sets.
A novel MADM method was proposed under a probabilistic hesitant fuzzy environment
by Song et al. [59], which is based on the new distance measures of probabilistic hesitant
fuzzy elements and the COPRAS method. Zavadskas et al. [60] proposed an MADM model
by applying Grey numbers. An interactive decision-making approach was developed by
De et al. [61] to solve MAGDM problems with incomplete weight information by using a
probabilistic interval-valued intuitionistic hesitant fuzzy Set. Zhang et al. [62] proposed
a probabilistic hybrid linguistic approach for MAGDM with decision hesitancy and the
prioritization of attribute relationships. Peng et al. [63] developed a three-way MADM
method for an incomplete mixed information system, in which both utility functions and
the objective determination of conditional probabilities without a decision label are pivotal
issues. Ziemba et al. [8] evaluated the impact of various degrees of uncertainty in prefer-
ences in the supply chain management systems selection problem using the PROMETHEE
method. A method based on probability theory was presented by Saghari et al. [16] for
solving the MADM problem under uncertainty. The literature review indicates that four
theories have been used in MADM problems to handle uncertainties: fuzzy set, probability,
Grey systems, and Bayesian.

In solving real decision problems under uncertainties, simulation tools are used
to consider different conditions and analyze the sensitivity of the output against these
uncertainties [64–66]. Monte Carlo simulation is the most common tool to simulate uncer-
tainties [44,65,67]. Bertsch et al. [68] presented a Monte Carlo approach to cope with the
decision-makers’ preferential uncertainties to facilitate the process of weight elicitation. A
Monte Carlo simulation was used by Jimenez et al. [67] to investigate the sensitivity of a
decision support system’s output to the weights of attributes. To eliminate the limitations
of deterministic and fuzzy MAGDM methods, Bayram et al. [69], based on a Monte Carlo
simulation of triangular data and TOPSIS, presented a probabilistic methodology. Tervonen
et al. [70] applied a Monte Carlo simulation to describe the share of parameter values
assigned to different categories for each alternative. Mateos et al. [71] used a Monte Carlo
simulation for group decision making with incomplete information. Lafleur [15] presented
a probabilistic methodology based on a Monte Carlo simulation to facilitate such decision-
making processes, particularly those with an uncertainty in decision-maker preferences.

One idea to reduce the level of uncertainty and lack of knowledge to determine
the value of attributes and the decision space is to utilize the knowledge contained in
the database of produced products instead of using the vague and uncertain linguistic
statement of human judgment. Especially in decisions related to product design, it is
a smart approach to reduce the uncertainty and lack of knowledge by using the data
from successful previous products [72–74]. Progress in data collection and analysis tools
makes it possible to collect a large amount of data on various topics and store them in
the form of databases. KDD techniques can be used to extract knowledge from these
databases. In 1996, Fayyad et al. introduced the concept of KDD [75], according to which:
“knowledge discovery in databases is the non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data” [72,75,76]. In many
decision-making problems, utilizing KDD techniques to extract the knowledge contained
in the database will significantly reduce the level of complexity and uncertainties caused
by the lack of knowledge. Liou et al. [77] developed a data-driven MADM model that
utilizes potential rules/patterns derived from a large amount of historical data to support
decision-makers objectively selecting proper green suppliers and providing systematic
improvement strategies to reach the desired level. A human-centered design approach for
developing a dynamic decision support system based on knowledge discovery in databases
was proposed by Ltifi et al. [78]. Mosavi [79] introduced the classification task of data
mining as a functional option to identify the most effective variables of the MCDM systems.
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The automotive family design is known as a complex engineering design problem
engaging multiple groups of stakeholders from different domains of interest with contra-
dictory attributes. The right selection of an automotive platform benchmark to develop an
automotive family enables designers to make the right trade-offs in the early stages of the
development process. It also helps designers to efficiently identify the characteristics and
levels expected for the objectives, attributes, and design constraints. Finally, convergence
on the optimal design point can be achieved faster by considering all design constraints,
attributes, and objectives. The main objective of this research is to provide a robust-reliable
decision-making methodology to select a set of automotive platform benchmarks. To this
end, there are two main research questions:

1. How to ensure the reliability of the decision?
2. How to ensure the robustness of the decision?

Choosing an appropriate and reliable MADM method, along with providing access
to reliable sources for evaluating alternatives, is vital to achieving a desirable and reliable
decision. In this research, the SAW method has been chosen to evaluate alternatives and
make decisions. According to the literature [2,32,80–82], the SAW method is the simplest,
oldest, and most widely used MADM method. As a result, we can ensure that the decision-
making method is reliable and proven.

In this study, instead of determining the decision space and the values of the attributes
based on human judgment (which always contains some degrees of imprecision and uncer-
tainty), using KDD techniques, the decision space and values of the attributes are elicited
from the database. This leads to the elimination of the uncertainties and inaccuracies caused
by human judgments. On the other hand, given that the database contains information
about successful products that have been tested and proved, the values of attributes will be
quite reliable. As a result, it increases the reliability of the decision-making process.

The robustness of a decision refers to its insensitivity to uncertain variables and
parameters involved in a decision-making process. The main source of uncertainty in
MADM problems with multiple groups of stakeholders is attributable to the weight of
attributes. In the real decision-making problem of engineering design, the opinion of
stakeholders, which could include suppliers, design and development teams, assembly and
manufacturing teams, quality control, standards and environment, sales and after-sales
services, government and upstream organizations, and the end users, should be considered.
Therefore, due to the involvement of multiple entities, the weight of attributes should
be determined subjectively. In this research, to achieve a robust decision considering all
possible states of stakeholders’ judgments, the simulation of stakeholders’ judgments is
performed using probability theory and Monte Carlo simulation. The decision-maker can
measure the sensitivity of the output by using this simulation and can determine a robust
decision by analyzing the statistical data.

The main novelty of this research is to suggest a multidisciplinary methodology
to solve engineering design decision-making problems based on different techniques.
Although some techniques have been used alone in the literature, such a combination of
techniques in the form of the integrated methodology under one umbrella has no record
in the literature. In addition, the utilization of the previous products’ database and KDD
technique to determine the value of the attributes and decision space, simulating all the
possible states of the stakeholders’ preferences, and using the statistical techniques to
determine the desirable-robust alternatives, as well as the defined problem (selection of
benchmark platforms for the development of the automotive family), have no history in
the literature (to the best of the author’s knowledge).

This paper as an extended version of [83] is organized as follows: the next section ad-
dresses the proposed method. The implementation in the automotive platform benchmark
selection is given in Section 3. The discussion about the results is given in Section 4, and
conclusions appear in Section 5.
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2. The Proposed Methodology

The proposed methodology includes the following steps:
Step (A)—Problem Inputs: In this step, certain statements of stakeholders’ preferences

as well as the required database are compiled.
Step (B)—Elicitation of attributes and constraints: In this step, based on certain state-

ments of stakeholders’ preferences, problem constraints and effective attributes in decision-
making are determined.

Step (C)—Identification of decision alternatives and valuing the attributes for each
alternative: In this step, according to the constraints of the problem, the KDD techniques
are utilized to elicit the decision alternatives and quantitative models for attributes from
the database.

Step (D)—Determination of the relative importance of attributes: In this step, the
process of determining the relative importance of attributes by considering all possible
stakeholders’ preferences is simulated.

Step (E)—Evaluating, ranking, and storing alternatives: In this step, the final score
of each alternative is calculated using the evaluation function, and the alternatives are
prioritized accordingly. Generated rankings are stored for later analysis.

Step (F)—Statistical analysis and sensitivity assessment of outputs: In this step, statis-
tical analysis and sensitivity assessment of iterative problem-solving outputs are discussed.
Determining the frequency of positions occupied in ranking, the standard deviation, the
number of positions occupied by each alternative, and other statistical characteristics is
examined in this step.

Step (G)—Finally, after statistical analysis and sensitivity assessment of the stored
outputs, a robust-reliable decision is made to select five platforms as a benchmark.

Figure 1 shows the steps required to achieve a robust-reliable decision. In Section 3,
the proposed methodology is applied to solve the automotive platform benchmarks deci-
sion problem.
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3. Implementation

The decision-making problem addressed in this section is the selection of the five
most fitted platforms as benchmarks for the development of an automotive family. The
motivation to propose this methodology could be first related to the importance of the
under-decision case and then to the utilization of existing potentials to solve the deci-
sion problem.

As mentioned earlier, the automotive family design is known as one of the most
complex engineering design problems with multiple groups of stakeholders in different
domains of interest and contradictory attributes. The right choice of automotive platform
benchmarks for the development of an automotive family allows designers to make the
right trade-offs in the early stages of the design and development process. It also helps them
to efficiently identify the characteristics and levels expected for the attributes, objectives,
and design constraints. Finally, convergence on the optimal design point can be achieved
faster by considering all design constraints, attributes, and objectives.

Many automobiles in different models and segments have been produced and launched
on the market based on different platforms. With the progress in data collection techniques
and tools, it is possible to create an enriched database of information about the cars in
the market. The database contains valuable information that can be utilized as a reliable
source for a decision-making process. By using this database, a logical relationship be-
tween the characteristics of the automobiles and the characteristics of the platforms can be
achieved. It allows a more accurate determination of decision attributes and the decision
space, consequently minimizing the uncertainty and lack of knowledge in decision-making.
Furthermore, it is possible to model the possible states of stakeholders’ judgment by us-
ing simulation tools. Then, by using statistical analysis techniques, a robust and reliable
decision can be achieved by considering all the possible preferences of stakeholders.

3.1. Problem Inputs

The inputs consist of two main parts: stakeholders’ preferences and the database.
As can be seen in Figure 1, the stakeholders’ preferences contained certain and uncertain
statements. Certain statements will determine the type of decision attributes and problem
constraints/requirements. Uncertain statements will determine the attributes’ degree of
importance. A database of automobiles and platforms worldwide was collected to elicit
quantitative models for attributes and determine their values. Information such as types
of platforms, automobile segments, models, manufacturers, prices, years of production,
annual production numbers, and platform manufacturers was included in the database.

The statements of stakeholders’ preferences are defined below:

1. The selected automotive platform should support the automotive family in segments
B, C, and SS (Small SUV).

2. The automobiles developed based on the platforms must be less than 25 years old.
3. It is desirable to develop low-cost automobiles using the platforms.
4. It is desirable to develop automobiles in various price classes based on the platforms.
5. It is desirable to develop different segments of automobiles based on the platforms.
6. It is desirable to develop different models of automobiles based on the platforms.
7. More popular and trustworthy platforms are desirable.

3.2. Elicitation of Constraints and Decision Attributes

According to the statements of stakeholders’ preferences, the constraints and attributes
of the decision problem were determined.

The constraints for defining the decision space are as follows:

1. The automotive family developed based on the platform must include at least one of
the B or C or SS segments.

2. All the automobiles manufactured based on each of the platforms must be under
25 years old.
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By analyzing the stakeholders’ preferences, four attributes that meet the stakeholders’
preferences were defined. Based on models and values elicited from the database, the
defined attributes were quantified. The four decision attributes were as follows:

1. Segment adaptation: This attribute is vital in defining the degree of compatibility of
the platform within the segments that were defined for the development of the automotive
family. The valuing was performed based on the degree of resemblance between the
stakeholder’s expected segments and developed segments from each platform alternative
in the database.

2. Price: The price attribute itself consists of two sub-attributes, the minimum price
and the price range of the automobiles developed based on each platform alternative. It is
worth noting that as automobiles were manufactured in different countries over various
periods of time, all prices should be standardized based on an underlying currency. The
2019 value of the U.S. dollar was chosen here.

3. Platform flexibility: This attribute contains two sub-attributes, the number of seg-
ments covered by each platform and the number of models produced based on each
platform. A greater number of models as well as the number of segments indicate a more
flexible platform.

4. Platform popularity: This is an attribute describing the level of popularity and
reliance on a platform. Here, the attribute was divided into two sub-attributes, the annual
production rate of the automobiles based on the platform and the number of manufacturers
using the platform.

3.3. Valuation of the Attributes and Alternatives Definition

By using KDD techniques, the decision space was narrowed down to 34 alternatives for
the benchmark automotive platforms. Overall, the design space included 546 automotive
models in 11 automotive segments that were developed based on 34 platforms. The
hierarchical structure of the decision-making problem is shown in Figure 2.
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In Figure 2, (W1 to W4) are the weights of importance of the attributes, (w2.1, w2.2,
w3.1, w3.2, w4.1, w4.2) are the weights of importance of the sub-attributes, and (P1 to P34)
indicate the number of platform alternatives.

The values of attributes and sub-attributes were obtained using the KDD technique as
shown in Table 1.

Table 1. Values of each attribute/sub-attribute for 34 alternative platforms.

Alternative
Number Platform Name

Segment
Adaptation

Price (USD) Platform Flexibility Platform Popularity

Minimum
Price Price Range Segment

Score Model Score Annual
Production

Number of
Manufacturers

P1 BMW CLAR 82 39,587 147,152 6 13 686,606 2

P2 BMW Life-Drive 42 41,508 121,792 2 2 31,258 1

P3 BMW UKL 90 20,026 79,872 4 13 680,465 3

P4 Fiat Compact 108 16,110 38,511 5 7 329,759 5

P5 Fiat Mini 40 8839 17,012 2 5 548,969 3

P6 Fiat-GM Small 120 11,256 37,080 6 18 914,152 5

P7 Ford Global B 65 12,260 21,893 3 8 760,270 1

P8 Ford Global C 65 18,455 33,582 3 8 1,475,409 2

P9 Ford C2 50 24,885 19,945 2 4 321,196 2

P10 GM Delta 83 16,137 59,150 4 23 1,457,551 6

P11 GM Epsilon 65 21,548 51,218 5 20 748,907 7

P12 GM Gamma 105 9758 20,146 5 11 941,542 3

P13 GM Lambda 33 29,371 18,919 2 4 240,138 4

P14 GM Theta 33 17,122 38,056 2 10 341,423 8

P15 Hyundai-Kia J 65 13,642 74,790 3 27 2,196,539 2

P16 Hyundai-Kia Small 90 12,771 23,139 4 18 1,127,852 2

P17 Hyundai-Kia Y 75 19,146 39,405 5 17 1,385,195 2

P18 Mercedes-Benz MFA 50 30,228 44,207 2 3 472,036 1

P19 Mercedes-Benz W176 50 25,250 42,883 2 4 226,943 2

P20 Mitsubishi GS 91 14,925 43,940 5 21 798,688 8

P21 PSA CMP EMP1 50 20,888 21,683 2 4 295,487 3

P22 PSA EMP2 83 23,803 47,552 4 17 805,299 5

P23 PSA PF1 90 10,040 22,624 4 16 994,922 3

P24 PSA PF2 100 14,689 32,478 5 21 760,777 4

P25 Renault-Nissan B 122 8919 35,325 6 48 2,372,822 6

P26 Renault-Nissan C 65 11,614 29,373 3 16 976,126 4

P27 Renault-Nissan CMF 116 16,760 31,599 6 15 1,294,809 2

P28 Toyota B 83 10,774 18,851 4 16 858,857 2

P29 Toyota MC 116 16,864 46,570 6 23 1,959,953 3

P30 Toyota TNGA 125 19,600 38,528 7 15 2,029,559 3

P31 VW A 107 13,525 38,988 5 29 1,643,290 4

P32 VW A0 90 9310 29,389 4 26 1,227,147 5

P33 VW MLB 65 28,843 267,499 5 21 936,248 5

P34 VW MQB 133 18,745 59,112 7 41 3,253,274 5

As can be seen in Table 1, the range and unit of the obtained values for the attribute/sub-
attribute had different ranges and units. These values must be normalized for a correct eval-
uation. Different methods were proposed to normalize the values of attributes [82,84–87].
Some of the most widely used normalization methods in MADM are presented in Table 2.

In Table 2, (Vij) is the value of each attribute for each alternative, (n) is the number
of alternatives, (j) is the alternative number, and (i) is the attribute number. Based on the
experiment result, Chakraborty et al. [87] confirmed that vector normalization and linear
normalization methods outperform other normalization methods in the SAW method. In
this study, the vector normalization method was used for attribute normalization. Table 3
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presents the normalized values of each attribute/sub-attribute. Weights of importance
of the sub-attributes in calculating the values of the second to fourth attributes were
considered as follows: (w2.1 = 0.5, w2.2 = 0.5 w3.1 = 0.3, w3.2 = 0.7, w4.1 = 0.5, w4.2 = 0.5).

Table 2. The most widely used normalization methods in MADM.

Normalization Methods Equation

Max (Linear normalization)

(
Vij
)

Normalized =
Vij

Max(Vi)
(for Benefit)(

Vij
)

Normalized = 1 − Vij

Max(Vi)
(for Cost)

Max-Min (Linear normalization)

(
Vij
)

Normalized =
Vij−Min(Vi)

Max(Vi)−Min(Vi)
(for Benefit)(

Vij
)

Normalized =
Max(Vi)−Vij

Max(Vi)−Min(Vi)
(for Cost)

Sum (Linear normalization)

(
Vij
)

Normalized =
Vij

∑n
j=1 Vij

(for Benefit)(
Vij
)

Normalized =
1

Vij

∑n
j=1

1
Vij

(for Cost)

Vector normalization

(
Vij
)

Normalized =
Vij√
n
∑
j=1

Vij
2

(for Benefit)

(
Vij
)

Normalized = 1 − Vij√
n
∑
j=1

Vij
2

(for Cost)

Logarithmic normalization

(
Vij
)

Normalized =
ln Vij

ln(∏n
j=1 Vij)

(for Benefit)

(
Vij
)

Normalized =

1−
ln Vij

ln
(

∏n
j=1 Vij

)
n−1 (for Cost)

Table 3. Normalized values of each attribute/sub-attribute for 34 alternative platforms.

Alternative
Number Platform Name

Segment
Adaptation

Price Platform Flexibility Platform Popularity

Minimum
Price Price Range Segment

Score Model Score Annual
Production

Number of
Manufacturers

P1 BMW CLAR 0.1646 0.6628 0.3695 0.2339 0.1172 0.0946 0.0841

P2 BMW Life-Drive 0.0843 0.6465 0.3058 0.078 0.018 0.0043 0.0421

P3 BMW UKL 0.1806 0.8294 0.2006 0.1559 0.1172 0.0938 0.1262

P4 Fiat Compact 0.2168 0.8628 0.0967 0.1949 0.0631 0.0454 0.2104

P5 Fiat Mini 0.0803 0.9247 0.0427 0.078 0.0451 0.0757 0.1262

P6 Fiat-GM Small 0.2409 0.9041 0.0931 0.2339 0.1623 0.126 0.2104

P7 Ford Global B 0.1305 0.8956 0.055 0.117 0.0722 0.1048 0.0421

P8 Ford Global C 0.1305 0.8428 0.0843 0.117 0.0722 0.2034 0.0841

P9 Ford C2 0.1004 0.788 0.0501 0.078 0.0361 0.0443 0.0841

P10 GM Delta 0.1666 0.8626 0.1485 0.1559 0.2074 0.2009 0.2524

P11 GM Epsilon 0.1305 0.8165 0.1286 0.1949 0.1804 0.1032 0.2945

P12 GM Gamma 0.2107 0.9169 0.0506 0.1949 0.0992 0.1298 0.1262

P13 GM Lambda 0.0662 0.7498 0.0475 0.078 0.0361 0.0331 0.1683

P14 GM Theta 0.0662 0.8542 0.0956 0.078 0.0902 0.0471 0.3366

P15 Hyundai-Kia J 0.1305 0.8838 0.1878 0.117 0.2435 0.3027 0.0841

P16 Hyundai-Kia Small 0.1806 0.8912 0.0581 0.1559 0.1623 0.1554 0.0841

P17 Hyundai-Kia Y 0.1505 0.8369 0.0989 0.1949 0.1533 0.1909 0.0841

P18 Mercedes-Benz MFA 0.1004 0.7425 0.111 0.078 0.0271 0.0651 0.0421

P19 Mercedes-Benz W176 0.1004 0.7849 0.1077 0.078 0.0361 0.0313 0.0841

P20 Mitsubishi GS 0.1826 0.8729 0.1103 0.1949 0.1894 0.1101 0.3366

P21 PSA CMP EMP1 0.1004 0.8221 0.0544 0.078 0.0361 0.0407 0.1262

P22 PSA EMP2 0.1666 0.7973 0.1194 0.1559 0.1533 0.111 0.2104
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Table 3. Cont.

Alternative
Number Platform Name

Segment
Adaptation

Price Platform Flexibility Platform Popularity

Minimum
Price Price Range Segment

Score Model Score Annual
Production

Number of
Manufacturers

P23 PSA PF1 0.1806 0.9145 0.0568 0.1559 0.1443 0.1371 0.1262

P24 PSA PF2 0.2007 0.8749 0.0816 0.1949 0.1894 0.1049 0.1683

P25 Renault-Nissan B 0.2449 0.924 0.0887 0.2339 0.4329 0.327 0.2524

P26 Renault-Nissan C 0.1305 0.9011 0.0738 0.117 0.1443 0.1345 0.1683

P27 Renault-Nissan CMF 0.2328 0.8572 0.0793 0.2339 0.1353 0.1785 0.0841

P28 Toyota B 0.1666 0.9082 0.0473 0.1559 0.1443 0.1184 0.0841

P29 Toyota MC 0.2328 0.8564 0.1169 0.2339 0.2074 0.2701 0.1262

P30 Toyota TNGA 0.2509 0.8331 0.0967 0.2729 0.1353 0.2797 0.1262

P31 VW A 0.2148 0.8848 0.0979 0.1949 0.2615 0.2265 0.1683

P32 VW A0 0.1806 0.9207 0.0738 0.1559 0.2345 0.1691 0.2104

P33 VW MLB 0.1305 0.7543 0.6717 0.1949 0.1894 0.129 0.2104

P34 VW MQB 0.2669 0.8403 0.1484 0.2729 0.3698 0.4484 0.2104

3.4. Generation of the Relative Importance of Attributes

The attributes’ degree of importance is a function of stakeholders’ preferences. Due to
the existence of different stakeholders with diverse preferences and judgments about the
attributes, in this study, the process of determining the attributes’ degree of importance by
stakeholders was simulated. To consider all possible stakeholders’ judgment scenarios, the
following constraints were considered:

• A scale of 1 to 9 was used to quantify the relative importance of each attribute.
• Uniform and symmetric probability distributions were used to determine the relative

importance of the attributes.
• There was no similarity between any of the sets of attributes’ relative importance.

Given that there were four main attributes, and the relative importance value of each
attribute was determined with numbers 1 to 9, based on the Thomas L. Saaty method [88],
the number of possible non-repetitive states was equal to 6561. The 6223 unique sets of
relative importance remained after removing sets of weights that were multiples of each
other. Finally, the simulated weights of importance were normalized so that the total
weight of the values in each set was equal to one. In Figure 3, the normalized values of the
simulated weights of importance are shown.

3.5. Evaluating, Ranking, and Storing the Alternatives

Following the determination of the attributes’ values as well as the attributes’ relative
importance simulation, the evaluation process of each alternative began. This process
was iterated as many times as the number of unique sets of the relative importance of
attributes (6223 times), and finally, the obtained rankings were stored for further analysis
and identification of the robust-reliable decisions.

Decision-making methods must be chosen carefully to ensure a reliable solution
while being as simple as possible. For this study, the SAW method was selected because,
considering the type of the decision problem, i.e., a decision-making problem with a large
number of decision alternatives under uncertain conditions, this method was superior
to others in terms of reducing computational complexity. In this method, the evaluation
function of each alternative was calculated using Equation (1).

Ej =
m

∑
i=1

(Wi)Normalized
(
Vij
)

Normalized (1)

Ej: The value of the evolution function for each alternative.
Wi: Attributes weight of importance.
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3.6. Statistical Analysis and Sensitivity Assessment of Outputs

By looking at the 6223 stored data of rankings, it was possible to identify the different
positions occupied by each alternative and to begin the process of analysis and sensitivity
assessment accordingly. Figure 4 shows the positions occupied by each alternative in
6223 repetitions of the decision-making problem.
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As can be seen in Figure 4, by changing the attributes’ weights of importance, the
ranking order of alternatives changed and the alternatives occupied different positions in
the ranking. Considering that five benchmark platforms are needed in the definition of the
problem, and to reduce the computational load, only the alternatives that at least once had
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occupied positions 1 to 5 were considered for further analysis (P6, P10, P15, P20, P25, P29,
P30, P31, P33, and P34). Figure 5 illustrates the diversity of the order of these alternatives
in the first five positions of the ranking order.
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In Table 4, the frequency of occupation of each position in the ranking order is shown.

Table 4. The position occupied by each alternative and the frequency of its occurrence.

Position in Ranking
Alt. No.

P6 P10 P31 P20 P25 P29 P30 P33 P34

Rank 1 0 0 0 0 0 0 0 16 6207

Rank 2 0 0 0 6197 0 0 0 10 16

Rank 3 0 25 80 26 0 5499 0 593 0

Rank 4 160 104 210 0 5207 442 0 100 0

Rank 5 2162 104 528 0 726 162 2190 351 0

Rank 6 1498 171 955 0 184 96 3039 199 0

Rank 7 958 497 2142 0 106 17 784 577 0

Rank 8 685 1701 1524 0 0 5 210 875 0

Rank 9 584 1606 603 0 0 2 0 932 0

Rank 10 52 616 75 0 0 0 0 492 0

Rank 11 46 175 88 0 0 0 0 635 0

Rank 12 78 319 18 0 0 0 0 455 0

Rank 13 0 387 0 0 0 0 0 241 0

Rank 14 0 384 0 0 0 0 0 377 0

Rank 15 0 134 0 0 0 0 0 185 0

Rank 16 0 0 0 0 0 0 0 43 0
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Table 4. Cont.

Position in Ranking
Alt. No.

P6 P10 P31 P20 P25 P29 P30 P33 P34

Rank 17 0 0 0 0 0 0 0 57 0

Rank 18 0 0 0 0 0 0 0 45 0

Rank 19 0 0 0 0 0 0 0 20 0

Rank 20 0 0 0 0 0 0 0 8 0

Rank 21 0 0 0 0 0 0 0 12 0

Rank 22 0 0 0 0 0 0 0 0 0

Rank 23 0 0 0 0 0 0 0 0 0

Rank 24 0 0 0 0 0 0 0 0 0

Rank 25 0 0 0 0 0 0 0 0 0

Rank 26 0 0 0 0 0 0 0 0 0

Rank 27 0 0 0 0 0 0 0 0 0

Rank 28 0 0 0 0 0 0 0 0 0

Rank 29 0 0 0 0 0 0 0 0 0

Rank 30 0 0 0 0 0 0 0 0 0

Rank 31 0 0 0 0 0 0 0 0 0

Rank 32 0 0 0 0 0 0 0 0 0

Rank 33 0 0 0 0 0 0 0 0 0

Rank 34 0 0 0 0 0 0 0 0 0

To make the most robust decision, the sensitivity of the positions occupied by the al-
ternatives in the ranking should be analyzed. The abundance of positions is not necessarily
a reliable criterion for making the most robust decision. The distribution parameters of
the occupied positions and the occupation frequency of each position should determine
the sensitivity of the position of an alternative in the ranking to changes in the relative
importance of the attributes. The concept of standard deviation is a suitable criterion for
analyzing the sensitivity of the occupied position of each alternative to the uncertainties of
the relative importance of the attributes. Table 5 presents the statistical parameters related
to the position of each alternative in the ranking.

Table 5. Statistical status of the alternatives in the ranking.

Alt. No.
The Most Frequented
Occupied Position in
the Ranking (Mode)

The Percentage of
Maximum Repetition

in the Ranking

The Mean Value of
Occupied Positions in

the Ranking (Mean
Rank Number)

The Number of
Occupied Positions in

the Ranking

The Standard
Deviation of

Occupied Positions in
the Ranking

P6 Rank 5 34.70% 6.4023 9 positions 1.5801

P10 Rank 8 27.30% 9.3054 13 positions 2.3584

P20 Rank 7 34.40% 7.07 10 positions 1.4271

P25 Rank 2 99.50% 2.0042 2 positions 0.0645

P29 Rank 4 83.70% 4.2269 4 positions 0.5803

P30 Rank 3 88.40% 3.1862 7 positions 0.5955

P31 Rank 6 48.80% 5.8415 4 positions 0.7667

P33 Rank 9 15% 9.0633 21 positions 3.5196

P34 Rank 1 99.70% 1.0026 2 positions 0.0506



Symmetry 2023, 15, 750 16 of 22

Box diagrams better represent the diversity and distribution of occupied positions in
the ranking. Figure 6 shows a diagram for each of the alternatives listed in Table 5.
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Figure 6. Box diagram of the positions occupied by the alternatives in 6223 solutions of the deci-
sion problem.

In Figure 6, the black dots represent the mean position numbers occupied by each
alternative. The red lines indicate the median value, the lower side of the blue boxes indicates
the value of the first quadrant (Q1), and the upper side indicates the value of the third quadrant
(Q3). Red plus signs indicate outliers. Horizontal black lines represent the minimum and
maximum values, which are defined based on Equations (2) and (3), respectively.

Maximum =

{
Max(positionnumber)ifMax(positionnumber) ≤ Q3 + 1.5 × (Q3 − Q1)
Q3 + 1.5 × (Q3 − Q1)ifMax(positionnumber) > Q3 + 1.5 × (Q3 − Q1)

(2)

Minimum =

{
Min(positionnumber)ifMin(positionnumber) > Q1 − 1.5 × (Q3 − Q1)
Q1 − 1.5 × (Q3 − Q1)ifMin(positionnumber) ≤ Q1 − 1.5 × (Q3 − Q1)

(3)

3.7. Identification of the Robust-Reliable Decision

In order to determine the most robust-reliable decision, two criteria were introduced:

1. Achieving the best relative position (mean position number) in all rankings with the
different relative importance of attributes (desirability criterion)

As there is a possibility of a change in the positions occupied by the alternatives for
different attributes’ weights of importance—and, on the other hand, for two alternatives—
the highest repetitions may occur for the same ranking positions, considering that the
mean of the position numbers occupied by each alternative is a more reliable criterion for
comparing the desirability of the alternatives.

2. The lowest standard deviation in the occupied positions in the ranking (robustness criterion)

An alternative with a lower standard deviation indicates a higher focus on a given
position in the ranking, which means it is more robust to changes in the relative importance
of the attributes. In Table 6, the first five alternatives were selected based on each of the
two criteria.

As seen in Table 6, the alternatives P34 and P25 in both criteria had a higher priority
than the other alternatives. The P30 alternatives were in the third priority of desirability,
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while in terms of robustness, the alternative P29, which was in the fourth desirability
priority, was better than the alternative P30, but this superiority was not enough to affect
the final prioritization of the alternatives. The P30 alternative was 28% better than that of
the P29 alternative in the desirability criterion, while the P29 alternative was only 2.6%
better than that of the P30 alternative in the robustness criterion.

Table 6. Prioritization of alternatives based on the two criteria of desirability and robustness.

Prioritization Based on the Desirability Prioritization Based on the Robustness

Prioritized
Alternatives Alt. No. Mean Position in

the Ranking
Prioritized

Alternatives Alt. No. The Standard Deviation
of Occupied Positions

The first
(The most desirable) P34 1.0026 The first

(The most robust) P34 0.05064086

The second P25 2.0042 The second P25 0.06450266

The third P30 3.1862 The third P29 0.58030464

The fourth P29 4.2269 The fourth P30 0.59554597

The fifth P31 5.8416 The fifth P31 0.76667009

The most robust-reliable decisions on benchmark platforms to develop an automo-
tive family according to the defined attributes that considered all possible stakeholders’
preferences can be seen in Table 7.

Table 7. The most robust-reliable decision in choosing the benchmark platforms.

Prioritized Alternatives Alt. No. Platform Name

The first
(The most robust-reliable decision) P34 VW MQB

The second P25 Renault-Nissan B

The third P30 Toyota TNGA

The fourth P29 Toyota MC

The fifth P31 VW A

Finally, the most robust-reliable ranking order in the first five positions is obtained as
shown in Figure 7.
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4. Discussion

As seen in Tables 5 and 6, the platforms P34 and P25 were significantly superior to the
other alternatives, both in terms of the frequency of occupying a particular position and in
terms of the standard deviation. As for the alternatives P29 and P30, from the desirability
point of view, P30 had a superiority of almost 28% over P29. Meanwhile, in terms of
robustness, the superiority of P29 over P30 was only 2.6%. The fifth priority for both criteria
was P31. However, it was important to consider that, according to Tables 4 and 5, alternative
P31 occupied the sixth position in 48.8% of cases. As a result, position 6 was considered
the position with the highest frequency for alternative P31. For the alternative P6, the
fifth position was considered the position with the highest frequency (34.7%). In addition,
alternative P31 ranked fifth in 35.2% of cases. In such circumstances, considering the most
frequent position as a criterion for evaluating alternatives led to choosing alternative P6 as
the fifth priority. Meanwhile, as shown in Figure 8, alternative P31 was on average better
than alternative P6.
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5. Conclusions

A robust-reliable decision-making methodology was developed for selecting auto-
motive platform benchmarks for the development of an automotive family in this study.
There was a combination of techniques included in this methodology, each contributing to
a specific part of the process of reaching a robust and reliable decision solution:

• As the most widely used, reliable, and proven MADM method, the SAW decision-
making method was used to reduce the level of computational complexity for problems
containing a large number of decision options.

• Building a database for the product and using KDD techniques instead of relying solely
on the vague and uncertain statements of the experts, led to a precise determination of
the attribute values and decision space. As a result, the level of uncertainty and lack
of knowledge in decision-making processes were greatly reduced.

• The simulation of the preferences of all stakeholders provided a comprehensive view of
possible changes in the priority of alternatives over changes in the relative importance
of attributes.

• Statistical analysis and sensitivity assessment were used to determine which alterna-
tives were the most robust and reliable.

This is the first time that this kind of methodology has been proposed, that integrates
the SAW method as the evaluation core, the KDD technique to determine the value of
attributes and the decision space, the probabilistic theory for simulating stakeholder prefer-
ences, and a statistical technique to determine the most robust-reliable alternatives in the
decision space. Incorporation of these techniques into a methodology as an innovative con-
cept simultaneously reduces uncertainty sources and manages unavoidable uncertainties
to achieve a reliable and robust decision.

The presented methodology can be implemented in complex decision-making prob-
lems, including a large number of stakeholders and multiple attributes, particularly engi-
neering product design problems.

The use of different MADM techniques, such as SAW, AHP, SWARA, and TOPSIS, and
different normalization methods within this methodology can be evaluated.

As an immediate next step to improve the performance of the proposed methodology,
real linguistic statements of stakeholders with different probability distribution functions
will be used to simulate the relative importance of attributes.
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