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Abstract: Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this
study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded
and Lipschitzian functions are proposed. The obtained results are based on a new identity and the
use of some standard techniques such as Holder as well as power mean inequalities. We give at the
end some applications to the estimation of quadrature rules and to particular means.
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1. Introduction

The concept of convexity and its variants plays a fundamental and important role in
the development of various fields of science and engineering in a direct or indirect way.
This concept has a closed relationship in the development of the theory of inequalities,
which is an important tool in the study of some qualitative properties of solutions for
differential and integral equations as well as in numerical analysis for estimating the errors
in quadrature formulas. Noting that the most used methods for evaluating the integrals
by a numerical approach is that of Newton—-Cotes, which comprises a group of formulas
involving a certain numbers of equally spaced points.

Definition 1 ([1]). A function A : I — R is said to be convex, if
Aie+ (1—1i)k) <iA(e)+ (1 —1i)A(k)
holds for all e,k € I and all i € [0, 1].

Bakula et al. [2], studied the following general form of three point Newton—Cotes
formula via weighted Montgomery identities:

Jo(DR()dj = COOMGY) +R(e+ f = 20) + (1 =2C0NNR (S ) + R(w X p), (D)

wheree < fand x € {e, #), R(w, R, x) is the remainder term and C(x) is an arbitrary

real function defined on [e, #) and gives the following results:

f i f
oG~ COOMRG) +R(e+f = 2)) + (1= 2000 () = gal)

e
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o n— - a
<2t (10wl (- + (=) + =21 (5)™),

where

”le("rl)(f) f ) . iq. f . . iq.
(X)) =C)| L= JA=-WGNG—-Hdji+ [ A-W(G)([—f)dj

x etf-x

”le(iH)(g) X ) . ig. etfx . . i,
- Y [(1—W(1))(1—6)d1+ { (1=W()(j—e)dj

n— i+1 f ]
+(1-2C(x)) (,z““ P J = W)G - £

X
with W(x) = [w(j)dj forall x € [e, f] and W(f) = 1. Additionally,

e

b
Jwl)N()dj = COORG) +Ne £ = x)) + (1= 2000 () =ral)

2B(a+1,n—1)L
(f—e)(a+n+1)(n—2)!

) (C(X)| (=)™ 4 (f = 20" + 1 —2C(x)|<fze>“+n+1>,

<

where

=l ((—)RED ()= fED () ) ((x—e) 2 4-(f-2)"*2
Tn (X) :C(X) Z ( ﬂ(H_z)gr(_g) )

oL (CDRED ()R (0)) (F-e)2
+ (1 - 2C(X)) ‘;0 ( il(i+2)2+2 ) .

Obviously, if C (362”[ ) = %, then identity (1) gives the weighted version of the dual Simpson
inequality. Moreover, if we choose w(j) = )%e, we obtain the classical dual Simpson type

inequality for functions whose " derivatives are a-L-Holderians.

In [3], Pecari¢ and Vukeli¢ used the Euler-type identities and gave some estimates of
the general dual Simpson quadrature formula for functions as well as first derivatives are
of bounded variation on [0, 1], L-Lipschitzian and R-integrable as follows.

In the case where X is L-Lipschitzian on [0, 1], we have

ZN(j)dj - ﬁ(uN(%> _UNG) "‘“N(%)) < 8(227;1;)L' )

If X is L-Lipschitzian on [0, 1], then

ZN(j)dJ' — gz (uv(F) - on(3) +uN<i>)‘

2u? (3v+\/ 2uv) +uv (50—\/ Zuv) +202 (v+3\/ 2140)

= 48(214727) (v«‘,»m) (2u+v+2\/%) L (3)

If XN is a continuous function of bounded variation on [0, 1], then
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TR0~ 5 (w4 () — o (3) +uN<Z))| < BV () @)

0

If W is a continuous function of bounded variation [O, 1], then

X0~ s (0 (1) (1) + @)

2u+30-+2u—5
: 64252u| uz;) iy v (R). ®)

IN

By taking # = 2 and v = 1, inequalities (2)—(5) will be reduced to the classical dual Simpson
inequality, of which the general form is as follows:

() -8 () + 24 (45)) — P <

Y2

, (6)

where X is a four-times continuously differentiable function on (e, f), and HNM) H =

sup ‘N
x€(e,f)

In [7], Dragomir gave the following Simpson inequality for mapping of bounded
variation:

%(N(e) +4N(#) + N(f)) - fl_ezN(j)df

f
where V (N(”)) is the total variation of function N.
e

Pecari¢ and Varosanec [8] discussed the Simpson inequality for derivatives of bounded
variation

%(N(e)jum(#)jm ) %f d]<cnf—e)”\j;/(N(”)),

f
where n € {0,1,2,3} with ¢y = 3,¢1 24/C2 = %337,C3 1152 and \e/(N is the total

variation of function X(").

Regarding some papers dealing with three-point Newton-Cotes, we refer readers
to [9-14] and references therein.

In this paper, by adopting a novel approach, we establish some dual Simpson-type
inequalities for functions whose first derivatives are s-convex. The cases where the first
derivatives are bounded as well as Lipschitzian functions are also discussed. Applications
of the results are given.

2. Main Results

We recall that a non-negative function A : I C [0,00) — R is said to be s-convex in
the second sense for some fixed s € (0, 1], if

Alie+ (1 —i)k) < #A(e) + (1— i) A(k),

holds for all e,k € I'and i € [0,1] (see [15]).
Now, we prove the following identity, which is basic to establish our main results.

Lemma 1. Let X : [0, k] — R be a differentiable function on [8,x], with ¢ < x and X' € L'[9, ],
then the following equality holds
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L(2w(3) - n(0) + (22 - KlﬂZN(J)dJ

1 1
—rt (fiN’((l = i)19+i3194j>di+£(i— DN (1 - 128 4 i04x )i

1

1
N EDEEY 1913K)dz+f(i—1)&’((1—i)l’t3”+ix)di>.
0

0

Proof. Let

sz’( 19+z3‘9+")d1,

1

b= g@—%)w(u—i)%w%)dn
1

I = {(i—k DN (1 - )55 + 420 ) ai,
1

Iy = {(i - 1)&’((1 — i) B3 +iK)di.

Integrating by parts I, we obtain

4 30 4 30
= HN( 4+K> - m{N((l —i)0+i *")dl
30+x
4\ (30+x 16 |
:mN( 1 )— oy { R(j)dj
Similarly, we obtain
Otk
=z
— 4 . .
L= _3(1{53—19)&(%) + 3(k— 19)N(3 IK) o (Kiég)z SIJHCN(])d]/
4
l9+3K
—_ 9 2
I3 = 3(3919)N( TK) - 3(;<8_19)N<%) . 0[}( R(j)dj,
and
14:%2\2(%)_ () f N(j

19+3K

Adding (7)—(10), multiplying the result by %, we obtain the desired result.

@)

®)

©)

(10)

Theorem 1. Let X be as in Lemma 1 with 0 < ¢ < «. If |[N'| is s-convex in the second sense for

some fixed s € (0, 1], then we have
() - (452) +an(2)) - e NG

5 (m (IN'(@)| + [N (©)]) + 551551

<
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+ 3(si3145(150+2) ( ))

Proof. From Lemma 1, properties of modulus, and s-convexity in the second sense of |X'|,
we have

/(3194+K)

)

B(an(2) - n(442) + 20 () - Ly TG
i+ [(3-1)
0

N (1 —i)o+ i) W (1) 28 4 i) | i

R((1— i) 2 +i1<)’di>

di+}(1—i)
0

)di

N’((1—i)%+i%)
<)
N’(3 )

1
<xc? {i((l—i)sm’(ﬂﬂ +if

+
o—r O— = O~—r
+
/\

+
7
v

/(3194+K)

Il
ol
VR
VR
O%»—\
;_\
|
E~

O%H SN——
z\
+
VR
oo
I
U
=
+
Ks
\
;_\
|
=N
~—

) )

N, l9+3K

(} (1 —1)i Sdl)’N |>

()

_ 4s+14
3(s+1)(5+2)

)

Kk—9

T (m(m(ﬁ H\N

319+K

(i+3)i°di+ f S“m)
)+
9+

*)

)
+ (%

8s+10
+ s (N
where we have used the fact that

1

1
{i(l —i)’di = {is(l —i)di = Ty (11)
1 1
{i”ldi = {(1 — i) i = L, (12)
1 5 . NS 7° 1 S [ 7
{(g—z)(l—z)dlzgz (i+3)di= W’ (13)
and ) :
{iﬁ(g i)di {( D —iydi= 55 (14)

The proof is completed. O

Corollary 1. Fors =1, Theorem 1 gives

() () - ]
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)| +ol( z)|+6|w<”+f“)|+m’<r<>>
20 :

- N/ 6 N/ 30+K
<5c9) ( )|+H6['(

Theorem 2. Let X be as in Lemma 1 with 0 < ¢ < . If |N'|7 is s-convex in the second sense for
some fixed s € (0,1] where g > 1 with % + % =1, then we have

%(2&(%)—N(ﬂ+")+m< x)) - %Z dj
<oty ((meseen) (s

1 1
5p+1_op+l W/ (30K qu W (1) |7 N/ (£ ‘7+ NI AR
+ () <(| ) T T (I )Y 7))

Proof. From Lemma 1, properties of modulus, Holder’s inequality, and s-convexity in the
second sense of |N|7, we have

1
SW(([((l_i) W (@0)|7+# X
16(p+1)7 0
1 1
(25 (o)
1
» (Jo-oeC) e
1
1 q q
+ (f((l—i)s +iS\N’(K)yq)di> )
0
1 1
~see () (v
16(p+1)% I+s 1+s
o 5 N3&+xq+N/iql NLHN’Mq%
+(5p3p+2lp+>p<<| ) m) +(| () (% >|) _

The proof is completed. O

()
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Corollary 2. For s = 1, Theorem 2 gives

s(an() - n(8) + 2(2)) - Lo [R0)4)

1 1

croo((MOTRCEIT (e P
16(p+1)F

() ((m ()"l <w>1 o (e <z>|q+2|w<%3“>|")5>>_

Theorem 3. Let X be as in Lemma 1 with 0 < ¢ < . If |N'|7 is s-convex in the second sense for
some fixed s € (0,1] where q > 1, then we have

;@Nwrk)—N<ﬂ+'<>+m<ﬁ+3k>>—uz
(0 (2o (e
> S (s (s

)1 ( (55+7) [N/ (2% | "+ (25+7) | W/ (;)|q>

N—=

=

+

AN

3(s+1)(s+2)

+

AN

e (e 5s+7>|w<”+fk>|q>3>.

3(s+1)(s+2)

Proof. From Lemma 1, properties of modulus, power mean inequality, and s-convexity in
the second sense of |X/|7, we have

() (o) +2n(25)) - o o

==

qdi)

c(Josna) (Je oot sag)a)

)
o) s ()
N/(%) q N/(&ZSK) q)di)

=

+ i

=

+i°

' (Jer (oo
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ot e

1
_1 1 1 q
=" ((%)1 ! <|N’(19)|q£i(1 —i)°di+ N’(&%) q{i”ldi)

By

z( i)(1—1i)°di +

¢(05) 16 -

0
N ((25) ‘q}(i + %)i%li)
0

v (23] f i+2)(1-i)
f —i)*hdi + R'( )|q}(1i)isdi>q)
0

1
q

943K
¥ ()]
1 1
Ceco () (eI (e ()P
1 2 (s4+1)(s+2) (s+1)(s+2)

1
11 (5s47) R (38 | T (2547) [ W (22| T\ @
+(6) q( )N (%) [+ )N (%3]

(s+1)(s+2)

+

AN

3(s+1)(s+2)

)1_;(@5” \w(%” +(5547) |w(&+31<)|q> )

where we have used (11)—(14). The proof is achieved. O

Corollary 3. Fors =1, Theorem 3 gives
K
}(an(2) () 20 (22) - ey
1
- ((wwmzwamw) T (zwwz%)r'ﬂww)%
32 3 3
1 1

+7 <<4rw<w>|ﬂsw (N)‘f + (sw <;>V+4|w<0z3x>|q> ))

3 7 7 .

3. Further Results

In the following results, we will discuss the cases where X' (x) is bounded as well as
N'(x) of L-Lipschitzian functions.

| /\

Theorem 4. Let R be as in Lemma 1. If there exist constants —oo < m < M < 400 such that
m < N(x) < M forall x € [9,x], then we have

F(an(3) - n (%) +an(4)) - Klﬂzn(j)dj < SE=0)(M=m)

48

Proof. From Lemma 1, we have
J(2n(2) - n(2r) +2n( ) - @ZN(;)d

1 1
—xt ({m’(u —i)19+i3‘94ﬂ>di+£(i— DN (1 - 128 4 i24x )i
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1 1
+ {(i+ %)N’((l — i) 2K +i%)di+{(i—1)w((1 )b +iK)di>

+

+
—_— O—~ O—~
- .
+
WIN

—~
~
\
Wyl
~—
4
<
/N
—~
—_
~.
~
@
<
+
=
-~
3
+
=
N—
\

M .
M+ %)dl

(

(
)(N’((l — i) 84 +z'l9§3f<) M m-&z-M)di
(

= {Jie (0o ) -2

# L0 (a -t itge) o

LB (0 (0 4 2) — gt

L= (¢ (=85 i) - ), 15)

where we have used the fact that
1 1 1
fidi+ [(i—3)di+ [(i+3 )dz—l—fz—ldz f(4z =0.
0 0 0

Applying the absolute value in both sides of (15), we obtain
K
(e (2) () 20 (52) - ey

1
<%%ﬁw
0

(1= iyo + 30 ) — g

1
HIE =D (-2 i) - oo
1
+[+3) R (1) 2 4 520 ) — mpM g
1
+{(1—i)(&’((1—i)1&f’f+ix)—mgM’)di) (16)
Since m < W (x) < M for all x € [8,«|, we have
NI((l _ Z)l9+1319;r1<) _ mJEM < M*Wl, (17)
K ((1— )20 4 ) — M| < Mo, (18)
K((1— i) 2g 20 — M| < Mo (19)

and

R (1 i) 2428 4 i) — 28| < Mo, (20)
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Using (17)—(20) in (16), we obtain

() (o) £ 2 (42)) - el

o) (M) 1 1 1 1
<EMom) ( fidi 4 [ (3 —i)dt+ [ (i +2)dt + [(1—i)dt
0 0 0 0
_ 5(k—08)(M—m)
= 48 .
The proof is completed. [

Theorem 5. Let N be as in Lemma 1. If X' is L-Lipschitzian function on [9, x|, then we have

< 13(k—8)? L

o0 () ~(25) < () - s

Proof. From Lemma 1, we have
K
e () (%) + 28(25)) - o oo
1 1
—xt (fm’(a —i)0+ 2 ) di 4 [ (i = PN (1 — i) 2 4 i85 )i
0 0
1 1
+ [+ BN (10— i) B i )di 4 [ (- 1N (1 i) 2+ iK)di)
0 0

—x-0 zi(w(a —i)9+ 25 ) —N/(9) + N/(9) )di

n z(i— (-2 4 ityr) —w () 1w (2420) )di
B (w00t i) - () ()
(im0 ) - (25 oo (252
=£8 (21'(&’((1 — )8 +i35) — N/(8) )di
+Z(1_g)(N/<(1 1)319+K +i%)—N/(3ﬂZK>)dl
+ z(z+ %) (N’((l — i) o +i%> - N'(%))dl
+z(z 1) (N (1= ) i) - (#20) )ai
() 3 () - (25))). @

Applying the absolute value in both sides of (21), and by using the fact that X’ is L-
Lipschitzian on [0, k|, we obtain

B(an(2t2) —n(242) + 20 ()) - Ly TG
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1

O

N ((1 =)0+ i) — N’(ﬁ)‘di

IA
A
2l
[+
N

+
—
[e8]6))

—i)
(i+3)

(0= it - (45
(o)
(-9 o) - ()
V(%) - (%))
(“‘ L | di+WZ(§ —i)idi + (“4ﬁ)Lz(i+§)idi

0
a+b _ 3a+b
2 4

N’((l —i)2gx +i%) -

_|_

(1-1)

N'(8) —N’(%)( +7

_|_

+
N~ O%—r O%—r O

A
5\
<

1
+ & l“{l—zldl—l— |o — 52| + 2

13(k—19
= (192) L.

The proof is completed. [J

4. Applications

Dual Simpson’s quadrature formula
Let A be the partition of the points ¢ = ¢y < e; < ... < e, = « of the interval [9,«],
and consider the quadrature formula

TRG)] = A%, A) + R(%, A),
o4

where
n—1

A A) = s (an () - () e an (),

i=0

and R(X, A) denotes the associated approximation error.

Proposition 1. Let n € N and X : [9,x] — R be a differentiable function on (9,x) with
0 <9 <xand W € L'[8,«]. If |N'| is s-convex function with s € (0,1], we have

< T 455 gl (V)] + ¥ ) + st

_ (=)

Proof. Using Theorem 1 on [e;, ¢;11] (i =0,1,...,n — 1), we obtain

1 ( eiteit1
2

/(361'26”1 )

+

8s5+10
+ 3(s+1J)r(s+2) (

i1 ‘

() - ) o () - b T
Sei+fgei ((s+1 512) (IR (e; |+ N (€1 ’) + 3(sisf)r(1§+2) N/(Ei+§i+1)‘
« ek e (525 ). 2

s+1)(s+2)
Multiplying both sides of (22) by (e;+1 — e;), summing the obtained inequalities for all
i =0,1,..,n —1and using the triangular inequality, we obtain the result. [

( 331“'Zl+1 )

Application to special means
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For arbitrary real numbers e, ey, ey, ..., €, f we have:
The Arithmetic mean: A(ey, e, ...,€,) = W

fp+1 —ept1

1
The p-Logarithmic mean: Ly (e, f) = (W) ".e,f>0,e# fand p € R\{-1,0}.

Proposition 2. Lete, f € R with 0 < e < f, then we have

15(f—e) (V/F-Ve)

243 (e,ee, f) — Ad(e, f) +2A% (e, f, f, f) — 3L -

(NSNS
IN

)

Proof. Applying Theorem 4 to the function R(j) = j 2 on e, f]. O

5. Conclusions

Many practical studies and engineering problems often lead to calculations of inte-
grals, most of which cannot be solved directly, requiring us to evaluate them by different
quadrature rules, hence the need to estimate the error made to better circumvent and
manage the problem. Thus, in this work, we have considered the dual Simpson quadrature
rule. We have firstly established a novel identity. Based on this identity, we have derived
some new dual Simpson type integral inequalities for functions whose first derivatives are
-convex. We have also discussed the above-mentioned inequality when the first derivatives
lie in the classes of bounded and Lipschitzian functions. We have provided at the end some
applications to quadrature formulas and special means. We hope that the obtained results
stimulate further research, as well as generalizations in various other types of calculus in
this interesting field.
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