Article

On J-Diagrams for the One Groups of Finite Chain Rings

Sami Alabiad * (D) and Yousef Alkhamees (D)
Department of Mathematics, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; ykhamees@ksu.edu.sa
* Correspondence: ssaif1@ksu.edu.sa

check for updates

Citation: Alabiad, S.; Alkhamees, Y. On J-Diagrams for the One Groups of Finite Chain Rings. Symmetry 2023, 15, 720. https: / /doi.org/10.3390/ sym15030720

Academic Editor: Alexei Kanel-Belov
Received: 3 February 2023
Revised: 9 March 2023
Accepted: 10 March 2023
Published: 14 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Let R be a finite commutative chain ring with invariants p, n, r, k, m. The purpose of this article is to study j -diagrams for the one group $H=1+J(R)$ of R, where $J(R)=(\pi)$ is Jacobson radical of R. In particular, we prove the existence and uniqueness of j-diagrams for such one group. These j-diagrams help us to solve several problems related to chain rings such as the structure of their unit groups and a group of all symmetries of $\left\{\pi^{k^{\prime}}\right\}$, where $k^{\prime} \mid k$. The invariants p, n, r, k, m and the Eisenstein polynomial by which R is constructed over its Galois subring determine fully the j-diagram for H.

Keywords: chain rings; j-diagrams; p-groups; Galois rings

1. Introduction

Suppose that $P_{m}=\{1,3, \ldots, m\}$, the function $j: P_{m} \rightarrow P_{m}$ is said to be admissible if $s<j(s)$ and if $j(s)=j(i)$, then $s=i$. Admissible functions have been used as a significant tool to determine the structure of abelian p-groups which have certain types of j-diagram series [1-3]. Moreover, j-diagrams are used in classifying chain rings and in determining their groups of automorphisms [4]. Motivated by the important role of j-diagrams in group and ring theory, this article is aimed to investigate the existence and uniqueness of such j diagrams. We focus our attention on j-diagrams for finite abelian p-groups, and particularly groups of units of finite commutative chain rings. Chain rings are associative rings that have a lattice of ideals that creates a unique chain. A finite ring R can easily be shown to be a chain ring if and only if its (Jacobson) radical $J(R)=J$ is principal and $\bar{R}=R / J$ is a field of order p^{r}, p is prime. Every finite chain ring has five positive integers p, n, r, k, m named the invariants. These rings occur in several applications, for details see [1,5-12]. For instance, they have widely appeared in coding theory [13-17]. However, the class of Galois rings is a distinguished class of finite chain rings, and every Galois ring is represented as:

$$
\begin{equation*}
G R\left(p^{n}, r\right)=\mathbb{Z}_{p^{n}}[x] /(f(x)), \tag{1}
\end{equation*}
$$

where $f(x)$ is a monic irreducible polynomial of degree r.
Finite chain rings are constructed in at least two different ways. Suppose that R is a finite chain ring that has the invariants p, n, r, k, m. First, R can be viewed as an Eisenstein extension of $G R\left(p^{n}, r\right)$

$$
\begin{equation*}
R=G R\left(p^{n}, r\right)[x] /\left(g(x), x^{m}\right), \tag{2}
\end{equation*}
$$

where $g(x)$ is an Eisenstein polynomial over $G R\left(p^{n}, r\right)$, i.e.,

$$
\begin{equation*}
g(x)=x^{k}-p \sum_{i=0}^{k-1} s_{i} x^{i} \tag{3}
\end{equation*}
$$

where s_{0} is a unit of $G R\left(p^{n}, r\right)$. Another way to construct R involves \mathbb{Q}_{p}, the field of p -adic numbers. Every chain ring R is a quotient ring of the integers ring of a certain finite
extension of \mathbb{Q}_{p}, for more details see [6] and the references therein. The symmetry of invariants of various chain rings injects more choice and flexibility into the theory of ring construction.

The group of units (multiplicative group) $U(R)$ of R is defined by $U(R)=R \backslash J$, i.e., the set of all non-nilpotent elements of R. From Ayoub (1972) [2], $U(R) \cong U \otimes H$, where $U \cong(R / J)^{*}$ is cyclic of order $p^{r}-1$ and $H=1+J$ which is a p-group. Thus, the structure problem of $U(R)$ is reduced to that of H. After Ayoub, we call H the one group. If $p-1$ does not divide k, the structure of H is given by Ayoub [2] based on the results in [3]. However, the case when $(p-1) \mid k$, the full structure of H is given by Alabiad and Alkhamees [1]. In this paper, we aim to study the existence and uniqueness of j-diagrams for the one group H of R.

In Section 2, we introduce the concept of j-diagrams, some notations and examples. In Section 3, we study the existence and uniqueness of complete and incomplete j-diagrams for the series $H=H_{1}>H_{2}>H_{3}>\cdots>H_{m}=1$ of the one group H, for any finite commutative chain ring R with invariants p, n, r, k, m, where $H_{s}=1+J^{s}$. Moreover, among other results, we find an explanation of j-diagrams from a ring-theoretic point of view, see Theorem 5.

2. Preliminaries

Unless otherwise mentioned, all considered groups are multiplicative abelian groups, p denotes a fixed prime. See $[2,3,18]$ for the details of this section.

Definition 1. If $P_{m}=\{1,2, \cdots, m\}, j: P_{m} \rightarrow P_{m}$ is called an admissible function if j satisfies the following conditions:

$$
\text { (i) } s<j(s), s \neq m ;
$$

(ii) If $j(i)=j(s) \neq m$, then $i=s$.

The following example is direct.
Example 1. Let $j: P_{m} \rightarrow P_{m}$ be an admissible function and let $1 \leq m^{\prime} \leq m$. Define
(i) $j_{1}: P_{m^{\prime}} \rightarrow P_{m^{\prime}}$, given by $j_{1}(i)=j\left(m-m^{\prime}+i\right)-\left(m-m^{\prime}\right)$;
(ii) $j_{2}: P_{m^{\prime}} \rightarrow P_{m^{\prime}}$, given by:

$$
j_{2}(i)= \begin{cases}j(i), & \text { if } j(i)<m^{\prime} \\ m^{\prime}, & \text { if } j(i) \geq m^{\prime} .\end{cases}
$$

Then, j_{1} and j_{2} are admissible functions.
Definition 2. Let p be a fixed prime and A an abelian p-group. Then, the series

$$
\begin{equation*}
A=A_{1}>A_{2}>\cdots>A_{m}=1 \tag{4}
\end{equation*}
$$

is called a complete j-diagram for A of length m with respect to p if $j: P_{m} \rightarrow P_{m}$ is admissible and
(i) If $j(s)=m, A_{s}^{p}=1$.
(ii) If $j(s) \neq m, \eta_{s}: A_{s} / A_{s+1} \longrightarrow A_{j(s)} / A_{j(s)+1}$, given by:

$$
\begin{equation*}
\eta_{s}\left(x A_{s+1}\right)=x^{p} A_{j(s)+1} \tag{5}
\end{equation*}
$$

defines an isomorphism.
In case when η_{s}, for some $s \in P_{m}$, is only homomorphism, the series is called incomplete j-diagram at $i=s$.

Example 2. Let $A=\langle a\rangle$, where $o(a)=p^{m-1}$. Then,

$$
A=<a>=A_{1}>A_{2}=<a^{p}>\cdots>A_{m}=1,
$$

is a j-diagram of length m if j defined by:

$$
j(i)= \begin{cases}i+1, & \text { if } 1 \leq i<m \\ m, & \text { if } i=m\end{cases}
$$

Example 3. Let A be an elementary abelian $p-g r o u p$ and let

$$
\begin{equation*}
A=A_{1}>A_{2} \cdots>A_{m}=1 \tag{6}
\end{equation*}
$$

be a chain of subgroups of A. Then if $j(i)=m, 1 \leq i \leq m$, the chain (6) is a j-diagram of length m since $A_{i}^{p}=1,1 \leq i \leq m$. Thus, clearly a group need not have a unique j-diagram.

Notations and Terminologies

1. $\quad v(s)$ is the smallest positive integer such that $j^{v(s)}(s)=m$.
2. $\mathrm{o}(x)$ means the multiplicative order of x.
3. $R(j)$ denotes the range of j.
4. $\quad \beta$ is always associated with Eisenstine polynomial $g(x)$,, i.e., $\pi^{k}=p \beta h$.
5. If $a \in A_{i} \backslash A_{i+1}$, we denote $w t(a)=i$.
6. $\operatorname{rank}(A)$ is the smallest number of generators of A.
7. $\operatorname{dim}(A)$ is the dimension of A as a vector space over \mathbb{Z}_{p}.

3. The J-Diagrams for One Group \mathbf{H}

In what follows, R is a finite commutative chain ring with invariants p, n, r, k, m. We focus on the following series of $H=1+J(J=J(R))$,

$$
\begin{equation*}
H=H_{1}>H_{2}>H_{3}>\cdots>H_{m}=1, \tag{7}
\end{equation*}
$$

where $H_{s}=1+J^{s}$.
Definition 3. We call R a complete (incomplete) chain ring if H has complete (incomplete at s^{*}) j-diagram, where $s^{*}=\left\lfloor\frac{k}{p-1}\right\rfloor$.

Lemma 1. If x is a unit in R. Then, $x=y \bmod H_{i}$ if and only if $x=y \bmod J^{i}$.
Proof. This is true because

$$
y-x \in J^{i} \Leftrightarrow x^{-1} y-1 \in J^{i} \Leftrightarrow x^{-1} y \in H_{i} .
$$

The following lemma is easy to prove.
Lemma 2. Let $1 \leq s \leq m$.
(1) The map $\gamma_{s}: H_{s} / H_{s+1} \longrightarrow J^{s} / J^{s+1}$ defined by:

$$
\begin{equation*}
\gamma_{s}(1+x) H_{s+1}=x+J^{s+1} \tag{8}
\end{equation*}
$$

is an isomorphism.
(2) Let $\delta_{s}: J^{s} / J^{s+1} \longrightarrow J^{s+k} / J^{s+k+1}$ defined by:

$$
\begin{equation*}
\delta_{s}\left(x+J^{s+1}\right)=p x+J^{s+k+1} . \tag{9}
\end{equation*}
$$

Then, δ_{s} is an isomorphism.
Remark 1. Note that J^{s} / J^{s+1} is an elementary p-group.

Theorem 1. Let R be complete, and let $j(i) \neq m$ for some i.
(i) If $k+i<p i$, then $j(i)=k+i$.
(ii) If $k+i=p i$ and $j(i+1)<m$, then $j(i)=k+i$.
(iii) If $p i<k+i$, then $j(i)=p i$.

Proof. Consider $1+x \in H_{i} \backslash H_{i+1}$. Then, $(1+x)^{p} \in H_{j(i)} \backslash H_{j(i)+1}$. Moreover, $(1+x)^{p}=$ $1+p y+x^{p}$ with $w t(y)=w t(x)=i$. Suppose $k+i<p i$, then $k+i=w t(p y)<p i$. As $\omega t\left(x^{p}\right)=\min \{m, p i\}>k+i$, we get $(1+x)^{p} \in H_{k+i} \backslash H_{k+i+1}$. Hence, $j(i)=k+i$ and this ends (i). For (ii), assume that $k+i=p i$ and $j(i)<m$. Then, $k+(i+1)<p(i+1)$. Now $1+p y+x^{p} \in H_{k+i}$. So $j(i) \geq k+i$. However, $k+i+1<p(i+1)$. If $j(i+1)<m$, then $j(i+1)=k+i+1>j(i)$ gives $j(i)=k+i$. Similarly, one can prove (iii).

Lemma 3. Let R be complete.
(i) Let e be the smallest positive integer such that $j(e)=m$. Then either $k+e=p e$ or $k+e \geq m$, $p e \geq m$.
(ii) Any homomorphic image of R is complete.

Proof. (i) As $j(e)=m$, by definition $H_{e}^{p}=1$. For any $x \in J,(1+x)^{p}=1+p y+x^{p}$ for some $y \in R$ with $w t(y)=w t(x)$. Consider any $0 \neq x \in J^{e}$, then $1=(1+x)^{p}=1+p y+x^{p}$, $p y+x^{p}=0$. If $p y=0$, then $x^{p}=0, k+e \geq m, p e \geq m$. Suppose that $p y \neq 0$. Then, $p y=-x^{p}$ gives $k+w t(x)=p w t(x)$. (ii) Let I be a non-zero ideal of $R, I=J^{s}$ for some $1 \leq s \leq m$. For $T=R / I, J(T)=J / J^{s}, H_{i}(T)=1+J^{i}(T)$ and $H_{i}(T) / H_{i+1}(T) \cong H_{i} / H_{i+1}$ for $1 \leq i \leq s$. Thus, whenever $i<s$ and $j(i)<s$,

$$
H_{i}(T) / H_{i+1}(T) \cong H_{j(i)}(T) / H_{j(i)+1}(T)
$$

For some $i<s$ suppose that $j(i) \geq s$. Then, $H_{j(i)} \subseteq H_{s}$. However, either $H_{i}^{p}=1$ or $H_{i} / H_{i+1} \cong H_{j(i)} / H_{j(i)+1}$ under the mapping $(1+x) H_{i+1} \rightarrow(1+x)^{p} H_{j(i)+1}$. Hence, $H_{i}^{p} \subseteq$ $1+J^{s}$. This shows that $H_{i}^{P}(T)=1$, and thus T is complete with the admissible function j^{\prime} defined on P_{s} as follows: $j^{\prime}(i)=j(i)$ if $j(i)<s$, otherwise $j^{\prime}(i)=s$.

Lemma 4. Let R be complete, and let $(p-1) \mid k$, i.e., $k+s=p s<m$. If $j(s)>k+s$, then the followings hold
(i) $m=k+s+1$.
(ii) $|\bar{R}|=p$.
(iii) There exists a unit $v \in R$ such that $p x_{0}=x_{0}^{p} v$ and $1+v \in J$, where $w t\left(x_{0}\right)=s$.

Conversely, if there exists $x_{0} \in J$ with $w t\left(x_{0}\right)=s, k+s=p s<m$, and if R satisfies (i), (ii) and (iii), then there exists an admissible function j on P_{m} for which R is complete.

Proof. Now $k+s+1<p(s+1)$. If $k+s+1<m$, by Theorem $1, j(s+1)=k+s+1$. As $j(s)<j(s+1)$, we get $j(s)=k+s$. This is a contradiction. Hence, $m=k+s+1$ and $j(s)=m$. For any $x \in R$, the binomial expansion gives $(1+x)^{p}=1+p x+x^{p}+p z$ for some $z \in R$ with $w t(z) \geq \min \{m, 2 w t(x)\}$. Consider any unit $u \in R$. As $p x_{0}^{2}=0$, then,

$$
\left(1+u x_{0}\right)^{p}=1+p u x_{0}+u^{p} x_{0}^{p}=1
$$

So, $p u x_{0}+u^{p} x_{0}^{p}=0$, and in particular $p x_{0}+x_{0}^{p}=0$. It follows that $p\left(u-u^{p}\right) x_{0}=0$, and hence $u-u^{p} \in J$. This proves $|\bar{R}|=p$. The hypothesis gives that $p x_{0}=x_{0}^{p} v$ for some unit $v \in R$. Then, $p x_{0}+x_{0}^{p}=0$ gives that $1+v \in J$.

For the converse, define j such that $j(i)=p i$ for $i<s$, and $j(i)=m$ for $i \geq s$. Then for any unit $u \in R,\left(1+u x_{0}\right)^{p}=1+p u x_{0}+u^{p} x_{0}^{p}$. As $u-u^{p} \in J, 1+u \in J$,

$$
p u x_{0}+u^{p} x_{0}^{p}=p\left(u-u^{p}\right) x_{0}+u^{p} x_{0}^{p}(1+u)=0 .
$$

Hence, $\left(1+u x_{0}\right)^{p}=1$. By using this, and the argument in [2], it can be easily verified that j is an admissible function and that R is complete.

Theorem 2. Let R be a finite commutative chain ring with invariants $p, n, r, k, m, \pi^{k}=p \beta h$, and for some $s \in P_{m}, k+s=p s<m$. Then there exists an admissible function j on P_{m} such that $j(s)>k+s$, and R is complete if and only if R satisfies the following conditions:
(i) $m=k+s+1$.
(ii) $|\bar{R}|=p$.
(iii) $\beta=-1$ in \bar{R}.

Proof. Let R be complete and $j(s)>k+s$. Let $x_{0} \in J$ such that $w t\left(x_{0}\right)=s$. By Lemma 4, (i) and (ii) hold, and there exists a unit $u \in R$ such that $p x_{0}=x_{0}^{p} u$ and $1+u \in J$. Now $x_{0}=\pi^{s} w$ for some unit w. Then,

$$
p \pi^{s} w=\pi^{p s} w^{p} u=\pi^{k+s} w^{p} u=p \pi^{s} w^{p} u y .
$$

It follows that $w-w^{p} u y \in J^{m-k-s}=J$. In $\bar{R}, \bar{u}=-1$, by (ii), $\bar{w}^{p-1}=1$, so $\bar{y}=-1$, i.e., $\beta=-1$. Conversely, let R satisfy (i), (ii) and (iii). By (iii), $-y^{-1} \in H=H^{p-1}$. Hence, $-y^{-1}=w^{p-1}$ for some $w \in H$. Consider $x=\pi^{s} w, u=-1$. Then, $p x=x^{p} u$ and $1+u=0 \in J$. By Lemma 4, the desired j exists.

Theorem 3. Let R be a finite commutative chain ring with invariants p, n, r, k, m, and for some $s \in P_{m}, k+s=p s<m$. Then there exists an admissible function j on P_{m} such that $j(s)=k+s$ and R is complete if and only if $-\beta \notin \bar{R}^{p-1}$.

Proof. Suppose that R is complete and $j(s)=k+s$. For any $0 \neq y \in J,(1+y)^{p}=$ $1+p y+y^{p}+p z$ for some $z \in R$ with $w t(z) \geq \min \{m, 2 w t(y)\}$. Fix an $x \in H_{s} \backslash H_{s+1}$. As $(1+x)^{p} \in H_{k+s} \backslash H_{k+s+1}$, then we get $w t\left(p x+x^{p}\right)=k+s$. Moreover, $p x=x^{p} u$ for some unit $u \in R$. So $x^{p}(u+1) \in J^{k+s} \backslash J^{k+s+1}$, and thus $1+u$ is a unit. For any $c \in R$, as $(1+c x)^{p} \in H_{k+s} \backslash H_{k+s+1}, p c x+c^{p} x^{p}=x^{p}\left(c u+c^{p}\right)$ has weight $k+s$, so $u+c^{p-1}$ is a unit. Thus, in $\bar{R}, u \notin \bar{R}^{p-1}$. Now, $x=\pi^{s} w$ for some unit w. Then, $x^{p} u=\pi^{k+s} w^{p} u$, and $p x=$ $\pi^{k+s} w y^{-1}$, so $w^{p-1}-(y u)^{-1} \in J^{m-k-s}$. Thus, $\overline{y u} \in \bar{R}^{p-1}$. As $\bar{u} \notin \bar{R}^{p-1}$ we get $\bar{y} \notin \bar{R}^{p-1}$. Consequently, $-\beta \notin \bar{R}^{p-1}$. Conversely, let $-\beta \notin \bar{R}^{p-1}$. Consider $u=-y^{-1}$, then for any unit $c \in R, c^{p-1}+u$ is a unit. It follows that for $x=\pi^{s}, p x=x^{p} u, p c x+c^{p} x^{p}=x^{p}\left(c u+c^{p}\right)$ has weight $k+s,(1+c x)^{p} \in H^{k+s} \backslash H^{k+s+1}$, and thus

$$
H_{s} / H_{s+1} \cong H_{s+k} / H_{s+k+1} .
$$

For $i<s, p i<k+i$, define $j(i)=p i$, and for $i \geq s$, define $j(i)=\min \{m, k+i\}$. By using ([2], Propositions 1 and 2), it follows that j is the desired admissible function.

Theorem 4. Let R be a finite commutative chain ring with invariants p, n, r, k, m. If R is complete, then there exists only one admissible function j on P_{m}.

Proof. Suppose that $k=m$. Then, char $R=p,(x+y)^{p}=x^{p}+y^{p}$. Using this it follows that any finite chain ring R of characteristic p is complete and the underlying admissible function j on P_{m} is such that $j(i)=p i$, whenever $p i<m$, and $j(i)=m$ otherwise. Suppose $k<m$, and j, j^{\prime} are two different admissible functions on P_{m} such that R is complete with respect to j as well as j^{\prime}. It follows from the proof of Theorem 1 that if for some $i<m, k+i \neq p i$ and $\min \{k+i, p i\}<m$, then $j(i)=\min \{k+i . p i\}=j^{\prime}(i)$. If for some $i<m$ and $\min \{k+i . p i\} \geq m$, then $j(i)=m=j^{\prime}(i)$. So, there exists an $s<m$ such that $k+s=p s<m$ and $j(s) \neq j^{\prime}(s)$. It follows from Lemma 4 that $|\bar{R}|=p$, and we can take $j(s)=s+k, j^{\prime}(s)=s+k+1=m$. Let J_{1} and J_{2} be the restriction of j and j^{\prime}, respectively, to $L_{s}=\{i: s \leq i \leq m\}$. Set $X=\{i: s \leq i \leq s+k\}$. By applying (Theorem 1 (4) [3]), we get
two sets of cyclic p-subgroups $\left\{U_{i}: 1 \leq i \leq m\right\},\left\{U_{i}^{\prime}: 1 \leq i \leq m\right\}$ of H corresponding to j and j^{\prime}, respectively. By Proposition $6, H_{s}=\oplus_{i \in X} U_{i}$, so $\operatorname{rank}\left(H_{s}\right)=k$. Furthermore, $H_{s}=\oplus_{i \in Y} U_{i}^{\prime}$ gives $\operatorname{rank}\left(H_{s}\right)=k+1$. This is a contradiction, and thus proves the result.

Remark 2. By a similar discussion, the above results hold if we assume that R is incomplete.
Remark 3. Consider a finite commutative chain ring R with p, n, r, k, m. Let $\pi^{k}=p \beta h$ be an Eisenstein polynomial of R. By looking at the invariants p, k and the element β, one knows whether a given R is complete or incomplete using Theorems 2 and 3. In any case, the form of the underlying admissible function j on P_{m} is well defined by:

$$
j(i)= \begin{cases}\min \{p i, m\}, & \text { if } i \leq s^{*}, \tag{10}\\ \min \{i+k, m\}, & \text { if } i>s^{*},\end{cases}
$$

where $k=(p-1) s^{*}+q$, where $0 \leq q<p-1$.
Example 4. Let R be a chain ring with invariants $2,3,5,1,3$ and suppose that $j(1)=2, j(2)=3$ and $j(3)=3$. Then, R is clearly a complete j-diagram with unique admissible function j. This means if there is another admissible function j^{\prime} such that R is also a complete j^{\prime}-diagram, then $j=j^{\prime}$. For the converse, note that if $j_{1}(1)=j_{1}(2)=j_{1}(3)=3$ which is an admissible function but R is not j_{1}-diagram. This means the existence of an admissible function j on P_{m} is not enough to say R is j-diagram (either complete or not), see Definition 2. Thus, in general, the converse is not true.

Proposition 1. Let R be a finite commutative chain ring with p, n, r, k, m. If $(p-1) \nmid k$ or $m \leq k+s^{*}$, then R is complete.

Proof. Note that for $x \in U(R)$,

$$
\left(1+\pi^{s^{*}} x\right)^{p}= \begin{cases}1+p \pi^{s^{*}} u+\pi^{s^{*}} x^{p}, & \text { if } m>k+s^{*} \tag{11}\\ 1, & \text { if } m \leq k+s^{*}\end{cases}
$$

where $u \in U(R)$. Thus, if $m \leq k+s^{*}$, then clearly the series (7) is a complete j-diagram, and hence R is complete. Now, assume that $m>k+s^{*}$. If $(p-1) \nmid k, q \neq 0$, and hence $s^{*} p<k+s^{*}$. It follows from Equation (11) that

$$
\left(1+\pi^{s^{*}} x\right)^{p}=1+\pi^{s^{*} p} x_{1} \bmod H_{s^{*} p+1}
$$

for some $x_{1} \in U(R)$. Furthermore, when $s>s^{*}, \eta_{s}=\gamma_{s+k}^{-1} \cdot \delta_{s} \cdot \gamma_{s}$, where γ_{s} and δ_{s} are defined in Lemma 2 Thus, η_{s} is an isomorphism. In case of $s \leq s^{*}$, consider the map

$$
\begin{aligned}
& \beta_{s}: J^{s} / J^{s+1} \longrightarrow J^{s p} / J^{s p+1} \\
& x+J^{s+1} \longmapsto x^{p}+J^{s p+1}
\end{aligned}
$$

One can prove easily that β_{s} is well-defined, and moreover, is a monomorphism. For epimorphism, note that since \bar{R} is a finite field, then $\bar{R}^{p}=\bar{R}$, a basic field. That is, if $y \in J^{s p} \backslash J^{s p+1}$, then $y=\pi^{s p} y_{0} \bmod J^{s p+1}$ where $y_{1} \in \bar{R}^{*}$. Then, there is y_{2} such that $y_{1}=y_{2}^{p}$ and then $\beta\left(x^{s} y_{2}\right)=y \bmod N^{p s+1}$. Therefore, β_{s} is an isomorphism and $\eta_{s}=\gamma_{s p}^{-1} \cdot \beta_{s} \cdot \gamma_{s}$, which means η_{s} is an isomorphism.

Corollary 1. Any finite commutative chain ring R with characteristic p is complete.
Proof. Since $n=1$, then $k=m$ which means that $m<k+s^{*}$, and by Proposition $1, R$ is complete.

Remark 4. By Proposition 1, when $q \neq 0((p-1) \nmid k)$ the j-diagram for H is independent of the Eisenstein polynomial $\pi^{k}=p \beta$ h. However, this is not true when $q=0$, i.e., $k+s^{*}=p s^{*}$. Let $x \in U(R)$, by Equation (11),

$$
\begin{aligned}
\left(1+\pi^{s^{*}} x\right)^{p} & =1+p \pi^{s^{*}} x+\pi^{s^{*}} x^{p} \bmod H_{j\left(s^{*}\right)+1} \\
& =1+\pi^{s^{*}+k}\left((\beta h)^{-1} x+x^{p}\right) \bmod H_{j\left(s^{*}\right)+1} .
\end{aligned}
$$

Thus, $\left(1+\pi^{s^{*}} x\right)^{p}=1 \bmod H_{j\left(s^{*}\right)+1}$ if and only if $(\beta h)^{-1} x+x^{p}=0 \bmod J$, i.e., $x^{p-1}+\beta=0$ in \bar{R}^{*}.

Proposition 2. If $m>k+s^{*}$, then $\eta_{s^{*}}$ is an isomorphism if and only if $-\beta \notin \bar{R}^{*} p-1$.
Proof. If $\eta_{s^{*}}$ is an isomorphism, then ker $\eta_{s^{*}}=\left\{H_{s^{*}+1}\right\}$, which means that $\left(1+\pi^{s^{*}} a\right)^{p} \neq 1$ $\bmod H_{j\left(s^{*}\right)+1}$, for any $a \in \bar{R}^{*}$. Hence, $x^{p-1}+\beta$ has no zeros in \bar{R}^{*} and thus $-\beta \notin \bar{R}^{* p-1}$. The converse is direct by Theorem 3.

The following theorem gives a characterization of incomplete chain rings.
Theorem 5. Suppose that R has invaraints p, n, r, k, m with $m>k+s^{*}$. Therefore, the subsequent hypotheses are equivalent:
(i) R is incomplete.
(ii) There is $\alpha \in R$ such that $\alpha^{p-1}+p=0$.
(iii) $p-1$ divides k and there exists $\alpha \in \bar{R}^{*}$ such that $-\beta=\alpha^{(p-1)}$.

Proof. Let (i) be satisfied, thus ker $\eta_{s^{*}} \neq 1$ because $\eta_{s^{*}}$ is surjective. In this case, there is $1+\alpha \pi^{s^{*}}$ in ker $\eta_{s^{*}}$ with

$$
\left(1+\alpha \pi^{s^{*}}\right)^{p}=1+\alpha^{p} \pi^{s^{*} p}-\beta \alpha \pi^{s^{*}+k} \xi=1
$$

$\bmod H_{s^{*} p+1}$, where $\xi \in H$. However, the above equation holds when $p s^{*}=s^{*}+k$ and $\alpha^{p}+\beta \alpha=0 \bmod \pi$. Now, assume that $(p-1) \mid k$, then ker $\eta_{s^{*}} \cong \operatorname{ker} f$, where f is a homomorphism; $f: \bar{R} \rightarrow \bar{R}$ and $f(\alpha)=\alpha^{p}+\beta \alpha$. Moreover, ker $f=1$ if and only if $x^{p}+\beta x$ has only zero solution. Thus, $\left(\beta_{1} h_{1} \pi\right)^{s^{*}}$ is a root of $x^{p-1}+p$ in R, where $\beta_{1}=\alpha^{-1}$ and $h_{1}^{p-1}=h$. The remaining hypotheses follow immediately by Proposition 2 and Theorem 3.

Corollary 2. If R is an incomplete chain ring, then ker $\eta_{s^{*}}$ is of rank p.
Proof. Since any element in ker $\eta_{s_{1}}$ is of the form $1+\alpha \pi^{s^{*}}$, where α is a zero of the polynomial $x^{p}+\beta x$. Thus, the order of ker $\eta_{s^{*}}$ is exactly p since there are p distinct zeros of $x^{p}+\beta x$ in \bar{R}.

Lemma 5. Let R be a finite commutative chain ring with invaraints p, n, r, k, m.
(a) If $n>2$ or $n=2$ and $t>s^{*}$. Then, $m>k+s^{*}$.
(b) If $n \leq 2, t \leq s^{*}$. Then, $m \leq k+s^{*}$.

Proof. Part (b) is obvious; note that if $n=1$, then $m=k=t$. For part (a),

$$
\begin{aligned}
m & =(n-1) k+t=(n-1)\left((p-1) s^{*}+q\right)+t \\
& =(n-1)\left(p s^{*}-s^{*}+q\right)+t \\
& \left.=(n-1)\left(p s^{*}+q\right)\right)-(n-1) s^{*}+t \\
& =(n-1)\left(k+s^{*}\right)+t-(n-1) s^{*} \\
& =\left(k+s^{*}\right)+(n-2) k+t-(n-1) s^{*} \\
& =\left(k+s^{*}\right)+(n-2) k++(n-2-n+1) s^{*} \\
& =\left(k+s^{*}\right)+(n-2) k+t-s^{*} .
\end{aligned}
$$

However, $s^{*}<k$ and $n>2$, then $(n-2) k-s^{*}>0$, thus, $m>k+s^{*}$.
Proposition 3. If $s>k+s^{*}$, then $s \in R(j)$. Furthermore,

$$
c_{0}=\left|P_{m} \backslash R(j)\right|= \begin{cases}m-\left\lfloor\frac{m}{p}\right\rfloor, & \text { if } m<k+s^{*}, \tag{12}\\ k, & \text { otherwise },\end{cases}
$$

where $\lfloor x\rfloor$ means the greatest integer that is less than or equal to x.
Proof. Lets $=k+s^{*}+e$, for some $e>0$, then clearly $s=j\left(s^{*}+e\right)$, which means $s \in R(j)$. If $m \geq k+s^{*}$, then it is clear that $P_{m} \backslash R(j)=\left\{s \in P_{m}: p \nmid s, 1 \leq s \leq k+s^{*}\right\}$. Thus,

$$
c_{0}=k+s^{*}-\left\lfloor\frac{k+s^{*}}{p}\right\rfloor=\left\lfloor\frac{(p-1) s^{*}+q+s^{*}}{p}\right\rfloor=\left\lfloor\frac{p s^{*}+q}{p}\right\rfloor=k+s^{*}-s^{*}=k .
$$

For the case $m<k+s^{*}, P_{m} \backslash R(j)=\left\{s \in P_{m}: p \nmid s, s<m\right\}$, and thus,

$$
c_{0}=m-\left\lfloor\frac{m}{p}\right\rfloor .
$$

Proposition 4. Assume the admissible function j satisfies: if $j(s) \geq p$, then $s \in R(j)$ for all s. Then, $H_{s}^{p^{i}}=H_{j^{i}(s)}$, in particular, $H^{p^{i}}=H_{j^{i}(1)}$.

Proof. The proof is conducted by induction on i. First, let $i=1$, and note that $H_{s}^{p} \subseteq H_{j(s)}$. If $y \in H_{j(s)}$, then $y=u_{j(s)} y_{1}$, where $u_{j(s)} \in U_{j(s)}$ and $y_{1} \in H_{j(s)+1}$. Moreover, $u_{j(s)}=u_{s}^{p}$ for some $u_{s} \in U_{s}$, and $y_{1}=u_{j(s)+1} y_{2}$, where $u_{j(s)+1} \in U_{j(s)+1}$ and $y_{1} \in H_{j(s)+2}$. Since

$$
\begin{equation*}
j(j(s)+2) \geq j(j(s)+1) \geq j(1)=p, \tag{13}
\end{equation*}
$$

it follows that $j(s)+2, j(s)+1$ are elements of $R(j)$. This means $u_{j(s)+1}=u_{s_{1}}^{p}$. As we proceed, we get $y=y_{0}^{p}$, and thus $H_{j(s)} \subseteq H_{s}^{p}$. Therefore, $H_{j(s)}=H_{s}^{p}$. If $i>1$, observe that $H_{s}^{p^{i}}=\left(H_{s}^{p^{i-1}}\right)^{p}$, and hence the conclusion is drawn from the induction step.

Next, we give an important result; that is useful in capturing the structure of the subgroups H_{s} of H via the following j-subdiagram:

$$
H_{s}>H_{s+1}>\cdots>H_{m}=1
$$

Which in turn helps us to investigate the group of automorphisms of R, for more details see Remark 4.2.10 in [4].

The following result for finite abelian groups can be easily proved.
Lemma 6. Let G be a finite direct product of cyclic groups, each of order per fome $e \geq 1$. Let U^{\prime} be a subgroup of G which is a direct product of cyclic groups B_{i}, each of order $p^{e^{\prime}}$, and
for which $\operatorname{rank}\left(U^{\prime}\right)=\operatorname{rank}(G)$. Then, $G=A_{1} \otimes A_{2} \otimes \cdots \otimes A_{s}$ such that each A_{i} is a cyclic group and $B_{i}=U^{\prime} \cap A_{i}$. Moreover, for any $s \geq 1, G^{p^{e-e^{\prime}-c}}=\left\{g \in G: g^{p^{s}} \in U^{\prime}\right\}$, where $c=\min \left\{e-e^{\prime}, s\right\}$.

Theorem 6. Let $A=A_{1}>A_{2}>\cdots>A_{m}=1$ be a complete j-diagram for an abelian p-group $A, 0 \leq s<m$ and $L_{m-s}=\{i: m-s \leq i \leq m\}$. Let $j^{\prime}=\left.j\right|_{L_{m-s}}$ and $X_{s}=\left\{i \in L_{m-s}: i \notin\right.$ $\left.R\left(j^{\prime}\right)\right\}$. Then,
(a) $A_{m-s}=\otimes_{i \in X_{s}} U_{i}$.
(b) $X_{s}=B \cup C$ satisfying the following conditions:
(i) $B \cap R(j)=\phi$,
(ii) There exists a subset D of $P_{m} \backslash R(j)$ disjoint form B and a one to one mapping $j_{1}: D \rightarrow C$ such that for any $i \in D, j_{1}(i)=j^{e_{i}}(i)$ for some $e_{i} \geq 1$. Suppose $P^{\prime}=\left(P_{m} \backslash R(j)\right) \backslash$ $(D \cup B), E=\otimes_{i \in P^{\prime}} U_{i}$ and $F^{\prime}=\otimes_{i \in(B \cup D)} U_{i}$.
(iii) $A=E \otimes F^{\prime}, A_{m-s}=\left(\otimes_{i \in B} U_{i}\right) \otimes\left(\otimes_{i \in D} U_{i} p^{p_{i}}\right) \subseteq F$ and $\operatorname{rank}\left(A_{m-s}\right)=\operatorname{rank}\left(F^{\prime}\right)$.
(iv) Let $c \geq 0$ and $P_{1}=\left\{i \in P^{\prime}: v(i) \leq c\right\}$. Then,

$$
\begin{equation*}
G=\left\{x \in A: x^{p^{c}} \in A_{m-s}\right\}=\left(\otimes_{i \in P_{1}} U_{i}\right) \otimes\left(\otimes_{i \in B} U_{i}\right) \otimes\left(\otimes_{i \in D} U_{i}^{p^{e_{i}-m i n}\left\{e_{i}, c\right\}}\right) \tag{14}
\end{equation*}
$$

Proof. (a) Put $K_{i}=A_{m+i-s-1}, 1 \leq i \leq s+1$. Then, $A_{m-s}=K_{1}>K_{2}>\cdots>K_{s+1}=1$ is a complete j^{*}-diagram, where $j^{*}: P_{s+1} \rightarrow P_{s+1}$ is given by $j^{*}(i)=j(m-s-1-i)-(m-$ $s-1)$. Note that $K_{i}=K_{i+1} \times U_{m-s-1+1}$. By [Theorem 1 [3]],

$$
\begin{equation*}
A_{m-s}=\otimes_{i \notin R\left(j^{*}\right)} U_{m-s-1+i}=\otimes_{i \in X_{s}} U_{i} \tag{15}
\end{equation*}
$$

(b) Write $X_{k}=B \cup C$ with $B \subseteq P_{m} \backslash R(j)$ and $C \subseteq R(j)$. It is clear that $m \notin C$. Suppose that all U_{i} have the same rank. For each $i \in C$, there exists a positive integer e_{i}, and a unique i^{\prime} such that $i=j^{e_{i}}\left(i^{\prime}\right)$. Thus, $U_{i}=U_{j^{e_{i}}\left(i^{\prime}\right)}=U_{i^{\prime}}^{p_{i}} \subseteq U_{i^{\prime}}$. It follows that from the definition of $j, D=\left\{i^{\prime}: i \in C\right\}$ is disjoint from B and there exists a bijection $j_{1}: D \rightarrow C$, such that $j_{1}(i)=j^{e_{i}}(i)$. This proves (ii). Hence,

$$
A_{m-s}=\otimes_{i \in B} U_{i} \otimes_{i \in D} p^{e_{i}} U_{i} \subseteq F^{\prime}
$$

This proves (iii). Finally, consider $c \geq 0$ and $G=\left\{x \in A: x^{p^{c}} \in A_{m-s}\right\}$. Observe that any $x \in A$ is in G if and only if each of its components in the decomposition $A=E \otimes F^{\prime}$ is in G. For any $x \in E, x^{p^{c}} \in A_{m-s}$ implies $x^{p^{c}}=1$. For any $i \in P^{\prime}, U_{i}^{p^{c}}=1$, whenever $v(i) \leq c$. So $E \cap G=\times_{i \in P_{1}} U_{i}$. Consider any $i \in D$. Now, $U_{i} \cap G=\left\{x \in U_{i}: x^{p^{c}} \in U_{i}^{p^{p_{i}}}\right\}$. As the order of U_{i} is $p^{v(i)}$ and the order of $U_{i}^{p_{i}}$ is $p^{\nu(i)-e_{i}}$, then by Lemma 6,

$$
U_{i} \cap G=U_{i}^{p_{i}^{e_{i}-\min \left\{e_{i}, c\right\}}}
$$

Thus,

$$
G=\left(\otimes_{i \in P_{1}} U_{i}\right) \otimes\left(\otimes_{i \in B} U_{i}\right) \otimes\left(\otimes_{i \in D} U_{i}^{p_{i}^{e_{i}-\min \left\{e_{i}, c\right\}}}\right) .
$$

4. Conclusions

In this article, we have investigated j -diagrams for one group of finite commutative chain rings. Under certain conditions concerning the invariants p, n, r, k, m and Eisenstein polynomials, we proved the existence and uniqueness of such j-diagrams. These j-diagrams have been found helpful tools in investigating finite chain rings.

Abstract

Author Contributions: Conceptualization, S.A. and Y.A.; Methodology, S.A. and Y.A.; Formal analysis, S.A.; Investigation, S.A.; Writing-original draft, S.A.; Writing-review and editing, S.A. and Y.A.; Supervision, Y.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Researchers Supporting Project number (RSPD2023R545), King Saud University, Riyadh, Saudi Arabia.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to acknowledge the Researchers Supporting Project number (RSPD2023R545), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alabiad, S.; Alkhamees Y. Recapturing the structure of group of units of any finite commutative chain rings. Symmetry $2021,13,307$. [CrossRef]
2. Ayoub, C. On the group of units for certain rings. J. Number Theory 1972, 4, 383-403. [CrossRef]
3. Ayoub, C. On diagrams for abelian groups. J. Number Theory 1970, 2, 442-458. [CrossRef]
4. Alabiad, S.; Alkhamees, Y. On automorphism groups of finite chain rings. Symmetry 2021, 13, 681. [CrossRef]
5. Hou, X. Finite commutative chain rings. Finite Fields Appl. 2001, 7, 382-396. [CrossRef]
6. Clark, W.; Liang, J. Enumeration of finite commutative chain rings. J. Algebra 1973, 27, 445-453. [CrossRef]
7. Clark, W.; Drake, D. Finite chain rings. Abh. Math. Sem .Uni. Hambg. 1973, 29, 147-153. [CrossRef]
8. Clark, W. A coefficient ring for finite non-commutative rings. Proc. Amer. Math. Soc. 1972, 33, 25-28. [CrossRef]
9. Hou, X. Bent functions, partial difference sets and quasi-Frobenius local rings. Des. Codes Cryptogr. 2000, 20, 251-268. [CrossRef]
10. Klingenberg, W. Projective und affine Ebenen mit Nachbarelementen. Math. Z. 1960, 60, 384-406. [CrossRef]
11. Ma, S.; Schmidt, B. Relative ($p^{a}, p^{b}, p^{a}, p^{a-b}$)-relative difference sets: a unified exponent bound and a local ring construction. Finite Fields Appl. 2000, 6 1-22. [CrossRef]
12. Artman, B.; Dorn, G.; Drake, D.; Törner, G. Hjelmslev'sche Inzidenzgeometrie und verwandte Gebiete—Literaturverzeichnis. J. Geom. 1976, 7, 175-191. [CrossRef]
13. Sălăgean, A. Repeated-root cyclic and negacyclic codes over finite chain rings. Discret. Appl. Math. 2006, 154, 413-419. [CrossRef]
14. Dinh, H.; López-Permouth, S. Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 2004, 50, 1728-1744. [CrossRef]
15. Dinh, H. Negacyclic codes of length 2^{s} over Galois rings. IEEE Trans. Inform. Theory 2005, 51, 4252-4262. [CrossRef]
16. Lui, X.; Lui, H. LCD codes over finite chain rings. Finite Fields Appl. 2015, 43, 1-19.
17. Greferath, M. Cyclic codes over finite rings. Discret. Math. 1997, 177, 273-277. [CrossRef]
18. Luis, M. Incomplete j-diagrams fail to capture group structure. J. Algebra 1991, 144, 88-93. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

