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Abstract: Let R be a finite commutative chain ring with invariants p, n, r, k, m. The purpose of this
article is to study j-diagrams for the one group H = 1 + J(R) of R, where J(R) = (π) is Jacobson
radical of R. In particular, we prove the existence and uniqueness of j-diagrams for such one group.
These j-diagrams help us to solve several problems related to chain rings such as the structure of
their unit groups and a group of all symmetries of {πk′}, where k′ | k. The invariants p, n, r, k, m
and the Eisenstein polynomial by which R is constructed over its Galois subring determine fully the
j-diagram for H.
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1. Introduction

Suppose that Pm = {1, 3, . . . , m}, the function j : Pm → Pm is said to be admissible if
s < j(s) and if j(s) = j(i), then s = i. Admissible functions have been used as a significant
tool to determine the structure of abelian p-groups which have certain types of j-diagram
series [1–3]. Moreover, j-diagrams are used in classifying chain rings and in determining
their groups of automorphisms [4]. Motivated by the important role of j-diagrams in group
and ring theory, this article is aimed to investigate the existence and uniqueness of such j-
diagrams. We focus our attention on j-diagrams for finite abelian p-groups, and particularly
groups of units of finite commutative chain rings. Chain rings are associative rings that
have a lattice of ideals that creates a unique chain. A finite ring R can easily be shown to
be a chain ring if and only if its (Jacobson) radical J(R) = J is principal and R = R/J is a
field of order pr, p is prime. Every finite chain ring has five positive integers p, n, r, k, m
named the invariants. These rings occur in several applications, for details see [1,5–12]. For
instance, they have widely appeared in coding theory [13–17]. However, the class of Galois
rings is a distinguished class of finite chain rings, and every Galois ring is represented as:

GR(pn, r) = Zpn [x]/( f (x)), (1)

where f (x) is a monic irreducible polynomial of degree r.
Finite chain rings are constructed in at least two different ways. Suppose that R is a

finite chain ring that has the invariants p, n, r, k, m. First, R can be viewed as an Eisenstein
extension of GR(pn, r)

R = GR(pn, r)[x]/(g(x), xm), (2)

where g(x) is an Eisenstein polynomial over GR(pn, r), i.e.,

g(x) = xk − p
k−1

∑
i=0

sixi, (3)

where s0 is a unit of GR(pn, r). Another way to construct R involves Qp, the field of p-adic
numbers. Every chain ring R is a quotient ring of the integers ring of a certain finite
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extension of Qp, for more details see [6] and the references therein. The symmetry of invariants
of various chain rings injects more choice and flexibility into the theory of ring construction.

The group of units (multiplicative group) U(R) of R is defined by U(R) = R \ J, i.e.,
the set of all non-nilpotent elements of R. From Ayoub (1972) [2], U(R) ∼= U ⊗ H, where
U ∼= (R/J)∗ is cyclic of order pr − 1 and H = 1 + J which is a p-group. Thus, the structure
problem of U(R) is reduced to that of H. After Ayoub, we call H the one group. If p− 1 does
not divide k, the structure of H is given by Ayoub [2] based on the results in [3]. However,
the case when (p− 1) | k, the full structure of H is given by Alabiad and Alkhamees [1]. In
this paper, we aim to study the existence and uniqueness of j-diagrams for the one group H
of R.

In Section 2, we introduce the concept of j-diagrams, some notations and examples. In
Section 3, we study the existence and uniqueness of complete and incomplete j-diagrams
for the series H = H1 > H2 > H3 > · · · > Hm = 1 of the one group H, for any finite
commutative chain ring R with invariants p, n, r, k, m, where Hs = 1+ Js. Moreover, among
other results, we find an explanation of j-diagrams from a ring-theoretic point of view, see
Theorem 5.

2. Preliminaries

Unless otherwise mentioned, all considered groups are multiplicative abelian groups,
p denotes a fixed prime. See [2,3,18] for the details of this section.

Definition 1. If Pm = {1, 2, · · · , m}, j : Pm → Pm is called an admissible function if j satisfies
the following conditions:

(i) s < j(s), s 6= m;

(ii) I f j(i) = j(s) 6= m, then i = s.

The following example is direct.

Example 1. Let j : Pm → Pm be an admissible function and let 1 ≤ m′ ≤ m. Define
(i) j1 : Pm′ → Pm′ , given by j1(i) = j(m−m′ + i)− (m−m′);
(ii) j2 : Pm′ → Pm′ , given by:

j2(i) =

{
j(i), if j(i) < m′,
m′, if j(i) ≥ m′.

Then, j1 and j2 are admissible functions.

Definition 2. Let p be a fixed prime and A an abelian p-group. Then, the series

A = A1 > A2 > · · · > Am = 1, (4)

is called a complete j−diagram for A of length m with respect to p if j : Pm → Pm is admissible and

(i) If j(s) = m, Ap
s = 1.

(ii) If j(s) 6= m, ηs : As/As+1 −→ Aj(s)/Aj(s)+1, given by:

ηs(xAs+1) = xp Aj(s)+1, (5)

defines an isomorphism.

In case when ηs, for some s ∈ Pm, is only homomorphism, the series is called incomplete j−diagram
at i = s.

Example 2. Let A =< a >, where o(a) = pm−1. Then,

A =< a >= A1 > A2 =< ap > · · · > Am = 1,
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is a j−diagram of length m if j defined by:

j(i) =

{
i + 1, if 1 ≤ i < m,
m, if i = m.

Example 3. Let A be an elementary abelian p−group and let

A = A1 > A2 · · · > Am = 1, (6)

be a chain of subgroups of A. Then if j(i) = m, 1 ≤ i ≤ m, the chain (6) is a j−diagram of length
m since Ap

i = 1, 1 ≤ i ≤ m. Thus, clearly a group need not have a unique j-diagram.

Notations and Terminologies

1. ν(s) is the smallest positive integer such that jν(s)(s) = m.
2. o(x) means the multiplicative order of x.
3. R(j) denotes the range of j.
4. β is always associated with Eisenstine polynomial g(x),, i.e., πk = pβh.
5. If a ∈ Ai \ Ai+1, we denote wt(a) = i.
6. rank(A) is the smallest number of generators of A.
7. dim(A) is the dimension of A as a vector space over Zp.

3. The J-Diagrams for One Group H

In what follows, R is a finite commutative chain ring with invariants p, n, r, k, m. We
focus on the following series of H = 1 + J ( J = J(R)),

H = H1 > H2 > H3 > · · · > Hm = 1, (7)

where Hs = 1 + Js.

Definition 3. We call R a complete (incomplete) chain ring if H has complete (incomplete at s∗)
j−diagram, where s∗ = b k

p−1c.

Lemma 1. If x is a unit in R. Then, x = y mod Hi if and only if x = y mod Ji.

Proof. This is true because

y− x ∈ Ji ⇔ x−1y− 1 ∈ Ji ⇔ x−1y ∈ Hi.

The following lemma is easy to prove.

Lemma 2. Let 1 ≤ s ≤ m.

(1) The map γs : Hs/Hs+1 −→ Js/Js+1 defined by:

γs(1 + x)Hs+1 = x + Js+1 (8)

is an isomorphism.
(2) Let δs : Js/Js+1 −→ Js+k/Js+k+1 defined by:

δs(x + Js+1) = px + Js+k+1. (9)

Then, δs is an isomorphism.

Remark 1. Note that Js/Js+1 is an elementary p-group.
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Theorem 1. Let R be complete, and let j(i) 6= m for some i.

(i) If k + i < pi, then j(i) = k + i.
(ii) If k + i = pi and j(i + 1) < m, then j(i) = k + i.
(iii) If pi < k + i, then j(i) = pi.

Proof. Consider 1 + x ∈ Hi \ Hi+1. Then, (1 + x)p ∈ Hj(i) \ Hj(i)+1. Moreover, (1 + x)p =
1 + py + xp with wt(y) = wt(x) = i. Suppose k + i < pi, then k + i = wt(py) < pi. As
wt(xp) = min{m, pi} > k + i, we get (1 + x)p ∈ Hk+i \ Hk+i+1. Hence, j(i) = k + i and
this ends (i). For (ii), assume that k + i = pi and j(i) < m. Then, k + (i + 1) < p(i + 1).
Now 1 + py + xp ∈ Hk+i. So j(i) ≥ k + i. However, k + i + 1 < p(i + 1). If j(i + 1) < m,
then j(i + 1) = k + i + 1 > j(i) gives j(i) = k + i. Similarly, one can prove (iii).

Lemma 3. Let R be complete.

(i) Let e be the smallest positive integer such that j(e) = m. Then either k + e = pe or k + e ≥ m,
pe ≥ m.

(ii) Any homomorphic image of R is complete.

Proof. (i) As j(e) = m, by definition Hp
e = 1. For any x ∈ J, (1 + x)p = 1 + py + xp for

some y ∈ R with wt(y) = wt(x). Consider any 0 6= x ∈ Je, then 1 = (1+ x)p = 1+ py + xp,
py + xp = 0. If py = 0, then xp = 0, k + e ≥ m, pe ≥ m. Suppose that py 6= 0. Then,
py = −xp gives k + wt(x) = pwt(x). (ii) Let I be a non-zero ideal of R, I = Js for some
1 ≤ s ≤ m. For T = R/I, J(T) = J/Js, Hi(T) = 1 + Ji(T) and Hi(T)/Hi+1(T) ∼= Hi/Hi+1
for 1 ≤ i ≤ s. Thus, whenever i < s and j(i) < s,

Hi(T)/Hi+1(T) ∼= Hj(i)(T)/Hj(i)+1(T).

For some i < s suppose that j(i) ≥ s. Then, Hj(i) ⊆ Hs. However, either Hp
i = 1 or

Hi/Hi+1
∼= Hj(i)/Hj(i)+1 under the mapping (1 + x)Hi+1 → (1 + x)p Hj(i)+1. Hence, Hp

i ⊆
1 + Js. This shows that HP

i (T) = 1, and thus T is complete with the admissible function j′

defined on Ps as follows: j′(i) = j(i) if j(i) < s, otherwise j′(i) = s.

Lemma 4. Let R be complete, and let (p− 1) | k, i.e., k + s = ps < m. If j(s) > k + s, then the
followings hold

(i) m = k + s + 1.
(ii) | R |= p.
(iii) There exists a unit v ∈ R such that px0 = xp

0 v and 1 + v ∈ J, where wt(x0) = s.

Conversely, if there exists x0 ∈ J with wt(x0) = s, k + s = ps < m, and if R satisfies (i), (ii) and
(iii), then there exists an admissible function j on Pm for which R is complete.

Proof. Now k + s + 1 < p(s + 1). If k + s + 1 < m, by Theorem 1, j(s + 1) = k + s + 1.
As j(s) < j(s + 1), we get j(s) = k + s. This is a contradiction. Hence, m = k + s + 1 and
j(s) = m. For any x ∈ R, the binomial expansion gives (1 + x)p = 1 + px + xp + pz for
some z ∈ R with wt(z) ≥ min{m, 2wt(x)}. Consider any unit u ∈ R. As px2

0 = 0, then,

(1 + ux0)
p = 1 + pux0 + upxp

0 = 1.

So, pux0 + upxp
0 = 0, and in particular px0 + xp

0 = 0. It follows that p(u− up)x0 = 0, and
hence u− up ∈ J. This proves | R |= p. The hypothesis gives that px0 = xp

0 v for some unit
v ∈ R. Then, px0 + xp

0 = 0 gives that 1 + v ∈ J.
For the converse, define j such that j(i) = pi for i < s, and j(i) = m for i ≥ s. Then for

any unit u ∈ R, (1 + ux0)
p = 1 + pux0 + upxp

0 . As u− up ∈ J, 1 + u ∈ J,

pux0 + upxp
0 = p(u− up)x0 + upxp

0 (1 + u) = 0.
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Hence, (1 + ux0)
p = 1. By using this, and the argument in [2], it can be easily verified that

j is an admissible function and that R is complete.

Theorem 2. Let R be a finite commutative chain ring with invariants p, n, r, k, m, πk = pβh, and
for some s ∈ Pm, k + s = ps < m. Then there exists an admissible function j on Pm such that
j(s) > k + s, and R is complete if and only if R satisfies the following conditions:

(i) m = k + s + 1.
(ii) | R |= p.
(iii) β = −1 in R.

Proof. Let R be complete and j(s) > k + s. Let x0 ∈ J such that wt(x0) = s. By Lemma 4,
(i) and (ii) hold, and there exists a unit u ∈ R such that px0 = xp

0 u and 1 + u ∈ J. Now
x0 = πsw for some unit w. Then,

pπsw = πpswpu = πk+swpu = pπswpuy.

It follows that w − wpuy ∈ Jm−k−s = J. In R, u = −1, by (ii), wp−1 = 1, so y = −1,,
i.e., β = −1. Conversely, let R satisfy (i), (ii) and (iii). By (iii), −y−1 ∈ H = Hp−1.
Hence, −y−1 = wp−1 for some w ∈ H. Consider x = πsw, u = −1. Then, px = xpu and
1 + u = 0 ∈ J. By Lemma 4, the desired j exists.

Theorem 3. Let R be a finite commutative chain ring with invariants p, n, r, k, m, and for some
s ∈ Pm, k + s = ps < m. Then there exists an admissible function j on Pm such that j(s) = k + s
and R is complete if and only if −β /∈ Rp−1.

Proof. Suppose that R is complete and j(s) = k + s. For any 0 6= y ∈ J, (1 + y)p =
1 + py + yp + pz for some z ∈ R with wt(z) ≥ min{m, 2wt(y)}. Fix an x ∈ Hs \ Hs+1.
As (1 + x)p ∈ Hk+s \ Hk+s+1, then we get wt(px + xp) = k + s. Moreover, px = xpu for
some unit u ∈ R. So xp(u + 1) ∈ Jk+s \ Jk+s+1, and thus 1 + u is a unit. For any c ∈ R, as
(1+ cx)p ∈ Hk+s \ Hk+s+1, pcx + cpxp = xp(cu + cp) has weight k + s, so u + cp−1 is a unit.
Thus, in R, u /∈ Rp−1. Now, x = πsw for some unit w. Then, xpu = πk+swpu, and px =

πk+swy−1, so wp−1 − (yu)−1 ∈ Jm−k−s. Thus, yu ∈ Rp−1. As u /∈ Rp−1, we get y /∈ Rp−1.
Consequently, −β /∈ Rp−1. Conversely, let −β /∈ Rp−1. Consider u = −y−1, then for any
unit c ∈ R, cp−1 + u is a unit. It follows that for x = πs, px = xpu, pcx + cpxp = xp(cu+ cp)
has weight k + s, (1 + cx)p ∈ Hk+s \ Hk+s+1, and thus

Hs/Hs+1
∼= Hs+k/Hs+k+1.

For i < s, pi < k + i, define j(i) = pi, and for i ≥ s, define j(i) = min{m, k + i}. By
using ([2], Propositions 1 and 2), it follows that j is the desired admissible function.

Theorem 4. Let R be a finite commutative chain ring with invariants p, n, r, k, m. If R is complete,
then there exists only one admissible function j on Pm.

Proof. Suppose that k = m. Then, char R = p, (x + y)p = xp + yp. Using this it follows
that any finite chain ring R of characteristic p is complete and the underlying admissible
function j on Pm is such that j(i) = pi, whenever pi < m, and j(i) = m otherwise. Suppose
k < m, and j, j′ are two different admissible functions on Pm such that R is complete
with respect to j as well as j′. It follows from the proof of Theorem 1 that if for some
i < m, k + i 6= pi and min{k + i, pi} < m, then j(i) = min{k + i.pi} = j′(i). If for some
i < m and min{k + i.pi} ≥ m, then j(i) = m = j′(i). So, there exists an s < m such that
k + s = ps < m and j(s) 6= j′(s). It follows from Lemma 4 that | R |= p, and we can take
j(s) = s + k, j′(s) = s + k + 1 = m. Let J1 and J2 be the restriction of j and j′, respectively,
to Ls = {i : s ≤ i ≤ m}. Set X = {i : s ≤ i ≤ s + k}. By applying (Theorem 1 (4) [3]), we get
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two sets of cyclic p−subgroups {Ui : 1 ≤ i ≤ m}, {U′i : 1 ≤ i ≤ m} of H corresponding
to j and j′, respectively. By Proposition 6, Hs = ⊕i∈XUi, so rank(Hs) = k. Furthermore,
Hs = ⊕i∈YU′i gives rank(Hs) = k+ 1. This is a contradiction, and thus proves the result.

Remark 2. By a similar discussion, the above results hold if we assume that R is incomplete.

Remark 3. Consider a finite commutative chain ring R with p, n, r, k, m. Let πk = pβh be an
Eisenstein polynomial of R. By looking at the invariants p, k and the element β, one knows whether
a given R is complete or incomplete using Theorems 2 and 3. In any case, the form of the underlying
admissible function j on Pm is well defined by:

j(i) =

{
min{pi, m}, if i ≤ s∗,
min{i + k, m}, if i > s∗,

(10)

where k = (p− 1)s∗ + q, where 0 ≤ q < p− 1.

Example 4. Let R be a chain ring with invariants 2, 3, 5, 1, 3 and suppose that j(1) = 2, j(2) = 3
and j(3) = 3. Then, R is clearly a complete j-diagram with unique admissible function j. This
means if there is another admissible function j’ such that R is also a complete j’-diagram, then j = j′.
For the converse, note that if j1(1) = j1(2) = j1(3) = 3 which is an admissible function but R is
not j1−diagram. This means the existence of an admissible function j on Pm is not enough to say R
is j-diagram (either complete or not), see Definition 2. Thus, in general, the converse is not true.

Proposition 1. Let R be a finite commutative chain ring with p, n, r, k, m. If (p − 1) - k or
m ≤ k + s∗, then R is complete.

Proof. Note that for x ∈ U(R),

(1 + πs∗x)p =

{
1 + pπs∗u + πs∗pxp, if m > k + s∗,
1, if m ≤ k + s∗,

(11)

where u ∈ U(R). Thus, if m ≤ k + s∗, then clearly the series (7) is a complete j-diagram,
and hence R is complete. Now, assume that m > k + s∗. If (p− 1) - k, q 6= 0, and hence
s∗p < k + s∗. It follows from Equation (11) that

(1 + πs∗x)p = 1 + πs∗px1 mod Hs∗p+1,

for some x1 ∈ U(R). Furthermore, when s > s∗, ηs = γ−1
s+k · δs · γs, where γs and δs are

defined in Lemma 2 Thus, ηs is an isomorphism. In case of s ≤ s∗, consider the map

βs : Js/Js+1 −→ Jsp/Jsp+1

x + Js+1 7−→ xp + Jsp+1

One can prove easily that βs is well-defined, and moreover, is a monomorphism.
For epimorphism, note that since R is a finite field, then Rp

= R, a basic field. That is, if
y ∈ Jsp \ Jsp+1, then y = πspy0 mod Jsp+1 where y1 ∈ R∗. Then, there is y2 such that y1 = yp

2
and then β(xsy2) = y mod Nps+1. Therefore, βs is an isomorphism and ηs = γ−1

sp · βs · γs,
which means ηs is an isomorphism.

Corollary 1. Any finite commutative chain ring R with characteristic p is complete.

Proof. Since n = 1, then k = m which means that m < k + s∗, and by Proposition 1, R is
complete.
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Remark 4. By Proposition 1, when q 6= 0 ((p− 1) - k) the j-diagram for H is independent of the
Eisenstein polynomial πk = pβh. However, this is not true when q = 0, i.e., k + s∗ = ps∗. Let
x ∈ U(R), by Equation (11),

(1 + πs∗x)p = 1 + pπs∗x + πs∗pxp mod Hj(s∗)+1

= 1 + πs∗+k((βh)−1x + xp) mod Hj(s∗)+1.

Thus, (1 + πs∗x)p = 1 mod Hj(s∗)+1 if and only if (βh)−1x + xp = 0 mod J, i.e., xp−1 + β = 0
in R∗.

Proposition 2. If m > k + s∗, then ηs∗ is an isomorphism if and only if −β 6∈ R∗p−1.

Proof. If ηs∗ is an isomorphism, then ker ηs∗ = {Hs∗+1}, which means that (1+ πs∗ a)p 6= 1
mod Hj(s∗)+1, for any a ∈ R∗. Hence, xp−1 + β has no zeros in R∗ and thus −β 6∈ R∗p−1.
The converse is direct by Theorem 3.

The following theorem gives a characterization of incomplete chain rings.

Theorem 5. Suppose that R has invaraints p, n, r, k, m with m > k + s∗. Therefore, the subsequent
hypotheses are equivalent:

(i) R is incomplete.
(ii) There is α ∈ R such that αp−1 + p = 0.
(iii) p− 1 divides k and there exists α ∈ R∗ such that −β = α(p−1).

Proof. Let (i) be satisfied, thus ker ηs∗ 6= 1 because ηs∗ is surjective. In this case, there is
1 + απs∗ in ker ηs∗ with

(1 + απs∗)p = 1 + αpπs∗p − βαπs∗+kξ = 1

mod Hs∗p+1, where ξ ∈ H. However, the above equation holds when ps∗ = s∗ + k and
αp + βα = 0 mod π. Now, assume that (p − 1) | k, then ker ηs∗ ∼= ker f , where f is
a homomorphism; f : R → R and f (α) = αp + βα. Moreover, ker f = 1 if and only
if xp + βx has only zero solution. Thus, (β1h1π)s∗ is a root of xp−1 + p in R, where
β1 = α−1 and hp−1

1 = h. The remaining hypotheses follow immediately by Proposition 2
and Theorem 3.

Corollary 2. If R is an incomplete chain ring, then ker ηs∗ is of rank p.

Proof. Since any element in ker ηs1 is of the form 1 + απs∗ , where α is a zero of the
polynomial xp + βx. Thus, the order of ker ηs∗ is exactly p since there are p distinct zeros of
xp + βx in R.

Lemma 5. Let R be a finite commutative chain ring with invaraints p, n, r, k, m.

(a) If n > 2 or n = 2 and t > s∗. Then, m > k + s∗.
(b) If n ≤ 2, t ≤ s∗. Then, m ≤ k + s∗.

Proof. Part (b) is obvious; note that if n = 1, then m = k = t. For part (a),



Symmetry 2023, 15, 720 8 of 10

m = (n− 1)k + t = (n− 1)((p− 1)s∗ + q) + t

= (n− 1)(ps∗ − s∗ + q) + t

= (n− 1)(ps∗ + q))− (n− 1)s∗ + t

= (n− 1)(k + s∗) + t− (n− 1)s∗

= (k + s∗) + (n− 2)k + t− (n− 1)s∗

= (k + s∗) + (n− 2)k ++(n− 2− n + 1)s∗

= (k + s∗) + (n− 2)k + t− s∗.

However, s∗ < k and n > 2, then (n− 2)k− s∗ > 0, thus, m > k + s∗.

Proposition 3. If s > k + s∗, then s ∈ R(j). Furthermore,

c0 =| Pm \ R(j) |=
{

m− bm
p c, if m < k + s∗,

k, otherwise,
(12)

where bxc means the greatest integer that is less than or equal to x.

Proof. Lets = k + s∗ + e, for some e > 0, then clearly s = j(s∗ + e), which means s ∈ R(j).
If m ≥ k + s∗, then it is clear that Pm \ R(j) = {s ∈ Pm : p - s, 1 ≤ s ≤ k + s∗}. Thus,

c0 = k + s∗ − b k + s∗

p
c = b (p− 1)s∗ + q + s∗

p
c = b ps∗ + q

p
c = k + s∗ − s∗ = k.

For the case m < k + s∗, Pm \ R(j) = {s ∈ Pm : p - s, s < m}, and thus,

c0 = m− bm
p
c.

Proposition 4. Assume the admissible function j satisfies: if j(s) ≥ p, then s ∈ R(j) for all s.

Then, Hpi

s = Hji(s), in particular, Hpi
= Hji(1).

Proof. The proof is conducted by induction on i. First, let i = 1, and note that Hp
s ⊆ Hj(s).

If y ∈ Hj(s), then y = uj(s)y1, where uj(s) ∈ Uj(s) and y1 ∈ Hj(s)+1. Moreover, uj(s) = up
s for

some us ∈ Us, and y1 = uj(s)+1y2, where uj(s)+1 ∈ Uj(s)+1 and y1 ∈ Hj(s)+2. Since

j(j(s) + 2) ≥ j(j(s) + 1) ≥ j(1) = p, (13)

it follows that j(s) + 2, j(s) + 1 are elements of R(j). This means uj(s)+1 = up
s1 . As we

proceed, we get y = yp
0 , and thus Hj(s) ⊆ Hp

s . Therefore, Hj(s) = Hp
s . If i > 1, observe that

Hpi

s = (Hpi−1

s )p, and hence the conclusion is drawn from the induction step.

Next, we give an important result; that is useful in capturing the structure of the
subgroups Hs of H via the following j-subdiagram:

Hs > Hs+1 > · · · > Hm = 1.

Which in turn helps us to investigate the group of automorphisms of R, for more details
see Remark 4.2.10 in [4].

The following result for finite abelian groups can be easily proved.

Lemma 6. Let G be a finite direct product of cyclic groups, each of order pe for some e ≥ 1.
Let U′ be a subgroup of G which is a direct product of cyclic groups Bi, each of order pe′ , and



Symmetry 2023, 15, 720 9 of 10

for which rank(U′) = rank(G). Then, G = A1 ⊗ A2 ⊗ · · · ⊗ As such that each Ai is a cyclic

group and Bi = U′ ∩ Ai. Moreover, for any s ≥ 1, Gpe−e′−c
= {g ∈ G : gps ∈ U′}, where

c = min{e− e′, s}.

Theorem 6. Let A = A1 > A2 > · · · > Am = 1 be a complete j−diagram for an abelian p-group
A, 0 ≤ s < m and Lm−s = {i : m− s ≤ i ≤ m}. Let j′ = j |Lm−s and Xs = {i ∈ Lm−s : i /∈
R(j′)}. Then,

(a) Am−s = ⊗i∈Xs Ui.
(b) Xs = B ∪ C satisfying the following conditions:

(i) B ∩ R(j) = φ,
(ii) There exists a subset D of Pm \R(j) disjoint form B and a one to one mapping j1 : D → C

such that for any i ∈ D, j1(i) = jei (i) for some ei ≥ 1. Suppose P′ = (Pm \ R(j)) \
(D ∪ B), E = ⊗i∈P′Ui and F′ = ⊗i∈(B∪D)Ui.

(iii) A = E⊗ F′, Am−s = (⊗i∈BUi)⊗ (⊗i∈DUi
pei ) ⊆ F and rank(Am−s) = rank(F′).

(iv) Let c ≥ 0 and P1 = {i ∈ P′ : ν(i) ≤ c}. Then,

G = {x ∈ A : xpc ∈ Am−s} = (⊗i∈P1Ui)⊗ (⊗i∈BUi)⊗ (⊗i∈DUpei−min{ei ,c}

i ). (14)

Proof. (a) Put Ki = Am+i−s−1, 1 ≤ i ≤ s + 1. Then, Am−s = K1 > K2 > · · · > Ks+1 = 1 is a
complete j∗−diagram, where j∗ : Ps+1 → Ps+1 is given by j∗(i) = j(m− s− 1− i)− (m−
s− 1). Note that Ki = Ki+1 ×Um−s−1+1. By [Theorem 1 [3]],

Am−s = ⊗i/∈R(j∗)Um−s−1+i = ⊗i∈Xs Ui. (15)

(b) Write Xk = B ∪ C with B ⊆ Pm \ R(j) and C ⊆ R(j). It is clear that m /∈ C. Suppose that
all Ui have the same rank. For each i ∈ C, there exists a positive integer ei, and a unique

i′ such that i = jei (i′). Thus, Ui = Ujei (i′) = Upei

i′ ⊆ Ui′ . It follows that from the definition
of j, D = {i′ : i ∈ C} is disjoint from B and there exists a bijection j1 : D → C, such that
j1(i) = jei (i). This proves (ii). Hence,

Am−s = ⊗i∈BUi ⊗i∈D pei Ui ⊆ F′.

This proves (iii). Finally, consider c ≥ 0 and G = {x ∈ A : xpc ∈ Am−s}. Observe that any
x ∈ A is in G if and only if each of its components in the decomposition A = E⊗ F′ is in G.
For any x ∈ E, xpc ∈ Am−s implies xpc

= 1. For any i ∈ P′, Upc

i = 1, whenever ν(i) ≤ c. So

E ∩ G = ×i∈P1Ui. Consider any i ∈ D. Now, Ui ∩ G = {x ∈ Ui : xpc ∈ Upei

i }. As the order

of Ui is pν(i) and the order of Upei

i is pν(i)−ei , then by Lemma 6,

Ui ∩ G = Upei−min{ei ,c}

i .

Thus,

G = (⊗i∈P1Ui)⊗ (⊗i∈BUi)⊗ (⊗i∈DUpei−min{ei ,c}

i ).

4. Conclusions

In this article, we have investigated j-diagrams for one group of finite commutative
chain rings. Under certain conditions concerning the invariants p, n, r, k, m and Eisenstein
polynomials, we proved the existence and uniqueness of such j-diagrams. These j-diagrams
have been found helpful tools in investigating finite chain rings.
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