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Abstract: This study is divided into two important axes; for the first one, a new symmetric analyt-
ical (approximate) solution to the Duffing–Helmholtz oscillatory equation in terms of elementary
functions is derived. The obtained solution is compared with the numerical solution using 4th
Range–Kutta (RK4) approach and with the exact analytical solution that is obtained using elliptic
functions. As for the second axis, we consider the time-delayed version for the same oscillator taking
the impact of both forcing and damping terms into consideration. Some analytical approximations
for the time delayed Duffing–Helmholtz oscillator are derived using two different perturbation
techniques, known as Krylov–Bogoliubov–Mitropolsky method (KBMM) and the multiple scales
method (MSM). Moreover, these perturbed approximations are analyzed numerically and compared
with the RK4 approximations.

Keywords: time delay Duffing–Helmholtz oscillator; elliptic and elementary functions;
Krýlov–Bogoliúbov–Mitropólsky method; multiple scales method; analytical approximations

1. Introduction

In many scientific domains, especially solid-state physics, plasma waves, fluid mechan-
ics, biology, and robotics motion, nonlinear evolution equations (NLEEs) are frequently
employed as models to represent engineering and physical processes. Therefore, it is
crucial to find the exact (if possible), analytical and numerical solutions to these NLEEs.
Generally, the NLEEs are difficult to solve exactly, and only in a small number of excep-
tional circumstances, can their solutions be unambiguously recorded in writing. However,
during the past few decades, significant progress has been made, and numerous potent
and successful methods and techniques for getting the exact and approximate solutions
of NLEEs have been proposed in the literature. Some important methods and techniques
found in the literature that have been used for solving and analyzing different types of
NLEEs and oscillatory equations include the family of the homotopy perturbation tech-
nique (HPT) [1–7], Krylov–Bogoliubov–Mitropolsky method (KBMM) [7–15], multiple
scales method (MSM) [14–19], He’s MSM [20], the equivalent linearized method [21], the
non-perturbative approach [22], Galerkin method and ansatz method [23], energy balance
method (BM) [24,25], harmonic BM [26–29], Hamiltonian technique [30,31], and many
other methods.

In linear oscillators, the presence of friction and an external periodic force can only
produce a periodic response, while in a nonlinear oscillator, the response may become
chaotic for a certain range of values of some characteristic parameter that we modify.
Accordingly, in this investigation and for the first goal, we present the solution to the
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Duffing–Helmholtz oscillator (D-HO) for a given arbitrary initial conditions using both
elliptic (exact solution) and trigonometric functions (approximate solution). The D-HO,
sometimes called mixed-parity Duffing oscillator, which is given by the following form{

q̈ + α + βq + γq2 + δq3 = 0,
q(0) = q0 and q̇(0) = q̇0 ,

(1)

where q ≡ q(t) denotes the displacement of the system, β is the natural frequency, γ and δ
are nonlinear parameters and α is a system parameter independent of the time while q0
and q̇0 denote the initial position and velocity of the oscillator. Equation (1) has a diversity
of applications [32–35]. The standard D-HO (1) can be interpreted as a particle moving
in a quadratic potential field, and it has also been studied in a nonlinear circuit theory as
well as is related to many nonlinear phenomena that arise in plasma physics. Moreover,
the D-HO (1) is a completely integrable equation that contains an abundance of significant
properties that occurs in many physical and engineering areas. This equation and some of
its extensions have been solved using many different approaches. For instance, the standard
D-HO (1) has been solved using the improved harmonic BM [32]. Moreover, some new
periodic analytical approximations for the standard D-HO (1) has been derived using the
quadrature rules [33]. Some periodic approximations for the D-HO (1) have been obtained
via He’s Energy BM and He’s Frequency Amplitude Formulation [34]. Moreover, the exact
solutions to the D-HO (1) with frictional force has been obtained in the framework of Jacobi
elliptic functions (JEFs) [35]. It is known that evaluating JEFs is a hard task. Thus, the
advantage of solving the standard D-HO using elementary functions allows one to evaluate
the obtained solutions using only trigonometric functions, which may be performed using a
simple calculator. Moreover, the period of the solution is approximated with high accuracy
using the period of a trigonometric function. On the other hand, there are perturbative
approaches for solving Duffing and many other weakly nonlinear oscillators. However, the
obtained solutions are quite complicated. However, our obtained formulas are short and
highly accurate.

Moreover, and for the second goal of this investigation, the following time delayed
D-HO is considered{

ẍ + r0 + r1x + r2x2 + r3x3 = ε(Qx(t− τ) + f (t)− ẋ),
x(0) = x0 and ẋ(0) = ẋ0 ,

(2)

where x ≡ x(t) and (r0, r1, r2, r3, ε, Q, τ) are non-zero parameters.
Some limited studies have addressed some different Duffing oscillators using several

techniques with delayed feedbacks [36–38]. For example, the chaotic behavior of both the
classical Duffing oscillator system without time delay

(
ẍ + cẋ− kx + γx3 = f cos(λt)

)
and

the Duffing oscillator system with time delay
(
ẍ + cẋ− kx + γx3 = f cos(λt) + αx(t− τ)

)
have been investigated [36]. Moreover, the chaotic dynamics of a delayed Duffing oscil-
lator having harmonic excitation and with delayed displacement and velocity feedbacks(

ẍ + δẋ + ω2
0x + αx3 = f cos(ωt) + ux(t− τ1) + vẋ(t− τ2)

)
have been investigated [37].

The periodic solutions to the time delay autonomous Duffing oscillatory equations have
been reported [38]. In this context, both KBMM and MMS [14,15] are introduced for ana-
lyzing to provide approximate analytical solutions of the delayed D-HO (2). Moreover, this
problem will solve numerically using 4th-order Range–Kutta (RK4) scheme. Both analyt-
ical and numerical approximations will numerically compare with each other. It should
be noted that the proposed methods (KBMM and MSM) succeeded in analyzing many
different nonlinear oscillators. For instance, both unforced and forced Duffing Van-der Pol
(VdP) oscillators were solved using KBMM [13]. The authors made a comparison between
the obtained approximations using both KBMM, HPM, and RK4 approach [13]. Moreover,
both KBMM and MSM succeeded in solving and analyzing a generalized complex Duff-
ing oscillator in the presence of fractional force, and some high-accurate approximations
have been derived and compared with the numerical solutions [15]. Both unforced and
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forced jerk VdP oscillators were analyzed using both KBMM and MSM. Using the KBMM,
both first-order approximation and second-order approximation for (un)forced jerk VdP
oscillators have been derived [16]. On the contrary, the authors contented themselves with
deriving the first-order approximation using MSM, and the obtained results were compared
with the numerical approximation and the second-order approximation of KBMM. Further-
more, the KBMM was implemented in analyzing two different formulas for damped forced
complex Duffing oscillators [39]. Motivated by these investigations, thus, we will apply
these perturbative methods for analyzing the delayed D-HO (2).

This paper is organized as follows: In Section 2, the exact symmetric solutions to the
D-HO (1) are derived and discussed based on the concept of a discriminant of the Duffing
equation. In Section 3, a symmetric approximation to the D-HO (1) in the framework
of a trigonometric function is derived and compared with Jacobi elliptic exact solution
and numerical approximation. In Section 4, the delayed D-HO (2) is solved and analyzed
using both KBMM and MSM. Note that in the delayed D-HO (2), the impact of time
delay, frictional force, and excited periodic force is considered. Thus, this equation is
not completely integrable and does not support an exact solution. Consequently, the
obtained approximations using both KBMM and MSM will be compared with RK numerical
approximations.

2. Exact Solution for D-HO

In the beginning, we should mention that the case for α = γ = 0, was discussed in
Ref. [40] but in our case, |α| + |γ| 6= 0 is considered. Accordingly, the solution of the
problem (1) can be assumed in the ansatz form

q ≡ q(t) = A +
B

1 + v
, (3)

where the function v ≡ v(t) indicates a solution of the following normal Duffing equation{
v̈ + av + bv3 = 0,

v(0) = v0 := q0−A−B
A−q0

and v̇(0) = v̇0 := − Bq̇0
(A−q0)2 . (4)

Moreover, we get {
v̇2 = D− av2 − b

2 v4,
R1 ≡ 1

2 q̇2 + αq + 1
2 βq2 + 1

3 γq3 + 1
4 δq4 − C = 0,

(5)

with {
D = v̇2

0 + av2
0 +

b
2 v4

0,
C = 1

2 q̇2
0 + αq0 + 1

2 βq2
0 + 1

3 γq3
0 + 1

4 δq,
(6)

where (a, b, A, B) are undetermined variables.
Inserting ansatz (3) into the second equation of system (5) and taking into account the

first equation in the system (5), we get

12(1 + v4)R1 = Y0 +
4

∑
i=1

Yivi, (7)
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with

Y0 = 12AB3δ + 12AB2γ + 12ABβ + 12Aα + 3B4δ

+4B3γ + 6B2D + 6B2β ++12Bα− 12C + 3A4δ
+12A3Bδ + 4A3γ + 18A2B2δ + 12A2Bγ + 6A2β,

Y1 = −4

 −3A4δ− 9A3Bδ− 4A3γ− 9A2B2δ− 9A2Bγ
−6A2β− 3AB3δ− 6AB2γ− 9ABβ
−12Aα− B3γ− 3B2β− 9Bα + 12C

,

Y2 = −6
(

aB2 − 3A4δ− 6A3Bδ− 4A3γ− 3A2B2δ− 6A2Bγ
−6A2β− 2AB2γ− 6ABβ− 12Aα− B2β− 6Bα + 12C

)
,

Y3 = −4
(
−3A4δ− 3A3Bδ− 4A3γ− 3A2Bγ− 6A2β

−3ABβ− 12Aα− 3Bα + 12C

)
,

Y4 = −
(
−3A4δ− 4A3γ− 6A2β− 12Aα + 3bB2 + 12C

)
.

By solving the algebraic system Yi = 0 (i, 0, 1, 2, 3, 4), we obtain

a = 1
2
(
−3A2δ− 3ABδ− 2Aγ− Bγ− β

)
,

b = 1
6
(
9A2δ + 3ABδ + 6Aγ + Bγ + 3β

)
,

B = −3A4δ−4A3γ−6A2β−12Aα+12C
3(A3δ+A2γ+Aβ+α)

,

C = q0α +
q2

0β
2 +

q3
0γ
3 +

q4
0δ
4 +

q̇2
0

2 ,

(8)

whereas the number A must obey the following equation

(9βγδ− 27αδ2 − 2γ3)A6 + 3
(
36Cδ2 − 6αγδ + 9β2δ− 2βγ2)A5

−15
(
−12Cγδ− 9αβδ + 2αγ2)A4 + 30

(
4Cγ2 + 9α2δ

)
A3

+90
(
−6Cαδ + 2Cβγ + α2γ

)
A2 + 18

(
24C2δ− 4Cαγ + 6Cβ2 + 3α2β

)
A

+18
(
8C2γ + 6Cαβ + 3α3) = 0.

3δA4 + 4γA3 + 6βA2 + 12αA− (12q0α + 6q2
0β + 4q3

0γ + 3q4
0δ + 6q̇2

0) = 0. (9)

Thus, the solution to the normal Duffing Equation (4) can be constructed based on the
following discriminant of Equation (4)

∆ = (a + bv2
0)

2 + 2bv̇2
0.

Based on this discriminant ∆, three cases can be discussed and investigated as illustrated below.

2.1. First Case: For Positive Discriminant (∆ > 0)

In this case, the solution of problem (4) reads

v =
v0cn

(√
ωt
∣∣m)+ v̇0√

ω
sn
(√

ωt
∣∣m)dn

(√
ωt
∣∣m)

1 + bsn
(√

ωt
∣∣m)2 , (10)

with

ω =
√

∆, m =
1
2

(
1− a√

∆

)
, b =

1
2

(
a + bv2

0√
∆
− 1

)
. (11)

This solution is periodic for m 6= 1 and its main period reads

T =
4K(m)√

ω
for 0 ≤ m < 1. (12)

2.2. Second Case: For Negative Discriminant (∆ < 0)

To discuss this case, let us define the following new quantity

δ = 2av2
0 + bv4

0 + 2v̇2
0. (13)
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Since ∆ < 0, necessarily b < 0, thus, we have

δ =
∆− a2

b
, (14)

which mean that δ > 0. Accordingly, we try to find a solution to the i.v.p. (4) in the following form

v = A− 2A
1 + u

, (15)

where u ≡ u(t) denotes the solution to the following Duffing equation{
ü + cu(t) + du3 = 0,

u(0) = u0 := A+v0
A−v0

and u̇0 := 2Av̇0
(A−v0)2 . (16)

By substituting the ansatz (15) into the main problem

c =
1
2

(
3
√
−bδ− a

)
, d =

1
2

(
a +
√
−bδ

)
,

A =
4

√
− δ

b
, δ = 2av2

0 + bv4
0 + 2v̇2

0 > 0.

Thus, the Duffing Equation (16) has a positive discriminant ∆ > 0. The solution to the
i.v.p. (4) is then given by

u = 4

√
δ

−b
−

2 4
√

δ
−b

1 + u
. (17)

The period of v(t) is that of u(t).

2.3. Third Case: For Vanishing the Discriminant (∆ = 0)

For vanishing the discriminant (∆ = 0) then b < 0 and the only solution to the i.v.p. (1)
with v̇(0)2 = v̇2

0 reads

v(t) = −
√

a
−b

tanh

(√
a
2

t− tanh−1

(√
−b
a

v0

))
, (18)

which may be verified by direct computation.

Remark 1. For δ = 0, we obtain the solution to the following Helmholtz oscillator{
q̈ + α + βq + γq2 = 0,

q(0) = q0 and q̇(0) = q̇0.
(19)

Remark 2. The solution of the i.v.p. (1) may also be expressed in terms of the following Weierstrass
elliptic function

q(t) = A +
B

1 + C℘(t + t0; g2, g3)
, (20)

with

B = − 6(A3δ+A2γ+Aβ+α)
3A2δ+2Aγ+β

,

C = 12
3A2δ+2Aγ+β

,

t0 = ±℘−1
(

q0−A−B
C(A−q0)

; g2, g3

)
,

g2 = 1
12
(
−3A4δ2 − 4A3γδ− 6A2βδ− 12Aαδ− 4αγ + β2),

g3 = 1
216
(
−3A4δ

(
γ2 − 3βδ

)
− 4A3γ

(
γ2 − 3βδ

)
+ 6A2β

(
3βδ− γ2)

−12Aα
(
γ2 − 3βδ

)
+ 27α2δ− 6αβγ + β3),

(21)
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and the value of the coefficient A can be estimated by solving the following algebraic equation

3δA4 + 4γA3 + 6βA2 + 12Aα− (12q0α + 6q2
0β + 4q3

0γ + 3q4
0δ + 6q̇2

0) = 0.

Remember that solution (20) is valid even if α = γ = 0, i.e., for the standard Duffing oscillator{
q̈ + βq ++δq3 = 0,

q(0) = q0 and q̇(0) = q̇0 .
(22)

3. Approximate Solution for D-HO in Terms of Elementary Functions

Let us consider the following D-HO{
q̈ + α + βq + γq2 + δq3 = 0,

q(0) = q0 and q̇(0) = 0.
(23)

The exact solution to this problem in the form of JEFs is given by

q(t) = A +
B

1 + v0cn
(√

a + bv2
0t, bv2

0
2(a+bv2

0)

) , (24)

where (A, B, a, b, v0) are undermined parameters. By inserting solution (24) into the prob-
lem (23) and after several simple and successive arithmetic operations, we can obtain

a =

A4(−(γ2 − 3βδ
))
− 2A3(βγ− 9αδ)

−3A2(12q0αδ + 6q2
0βδ + 4q3

0γδ + 3q4
0δ2 − 2αγ + β2)

−2A
(
12q0αγ + 6q2

0βγ + 4q3
0γ2 + 3q4

0γδ + 3αβ
)

−12q0αβ− 6q2
0β2 − 4q3

0βγ− 3q4
0βδ− 9α2

(A−q0)(3A3δ+A2(3q0δ+4γ)+A(4q0γ+3q2
0δ+6β)+6q0β+4q2

0γ+3q3
0δ+12α)

.

b = − 3(A3δ+A2γ+Aβ+α)
2

(A−q0)(3A3δ+A2(3q0δ+4γ)+A(4q0γ+3q2
0δ+6β)+6q0β+4q2

0γ+3q3
0δ+12α)

.

B =
(A3δ+A2γ+Aβ+α)

b .
v0 = q0−A−B

A−q0
,

(25)

and the value of the coefficient A can be calculated by finding the root of the following equation

3δA4 + 4γA3 + 6βA2 + 12αA− (12q0α + 6q2
0β + 4q3

0γ + 3q4
0δ) = 0.

To give approximate analytic solution to the i.v.p. (23) in terms of elementary functions,
we will approximate the Jacobian function “cn” using the trigonometric cosine function
as follows:

First let us assume that [40]

x(t) =
√

1 + λ + µ cos(
√

wt)√
1 + λ cos2(

√
wt) + µ cos4(

√
wt)

,

y(t) = cn(t, m), (26)

where (λ, µ, w) are undermined parameters. Now, by applying an approximation to x(t)
and y(t) until t4, we have

x(t)− y(t) =
(λ + µ + µw− w + 1)

2(λ + µ + 1)
t2

+

(
w2 − 4λµw2 − 8λw2 + 5µ2w2 − 30µw2

24(λ + µ + 1)2 − 1
24

(4m + 1)
)

t4 + O
(

t5
)

.
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with

w =
1 + λ + µ

1− µ
and λ =

µ(µ− 7)−m(µ− 1)2

µ + 2
. (27)

On the other hand, if the residual error R(z(t)) = ż(t)2 +mz(t)4 + (1− 2m)z(t)2 + (m− 1),
it is easy to see that R(y(t)) ≡ 0. We will choose the value of µ to get a small value for the
residual R(x(t)). Thus, we have

2m
(

λ cos2(t√w
)
+ µ cos4(t√w

)
+ 1
)3

R(x(t)) = A0 +
6

∑
k=1

Ak cos(2k
√

wt), (28)

with
A0 = 7(m+4w+3)

1024 µ3 + 1
256 (14λ + 3λm + 7λw− 25w + 13)µ2

+ 1
128
(
5λ2 + 6λ− 6λm− 13m− 16λw + 48w

)
µ

+ 1
16
(
−λ2 − 4λ + λm + 6m + 8λw + 8w− 8

)
.

We will choose the value of µ to fulfill A0 = 0 and by using Equation (27), the following
quintic algebraic equation is obtained

320m2 − 40
(
128− 128m + 27m2)µ + 4

(
1240− 1240m + 309m2)µ2

−4
(
513− 513m + 128m2)µ3 + 4

(
32− 32m + 9m2)µ4 + 5(1−m)µ5 = 0.

(29)

Using the Padé-approximate technique, then the approximate value of µ reads

µ =
40m2(27m2 − 128m + 128

)
2409m4 − 29, 600m3 + 111, 520m2 − 163, 840m + 81, 920

. (30)

Accordingly, we get

cn(t, m) ≈ cosm(t) :=

√
1 + λ + µ cos(

√
wt)√

1 + λ cos2(
√

wt) + µ cos4(
√

wt)
, (31)

where the values of (w, λ, µ) are evaluated using the Formulas (27)–(30). For more infor-
mation about the relation between the JEFs and elementary functions, the reader can see
Ref. [40]. In the end, the approximate trigonometric solution to the i.v.p. (1) can be written
in the following trigonometric form

q(t) = A +
B

1 + cos(
√

wωt+t̄0)√
1+λ cos2(

√
wωt+t0)+µ cos4(

√
wωt+t̄0)

. (32)

4. Approximate Solutions for the Time Delayed D-HO

Let us consider the i.v.p.{
ẍ + r0 + r1x + r2x2 + r3x3 = ε(Qx(t− τ) + f (t)− ẋ),

x(0) = x0 and ẋ(0) = ẋ0 ,
(33)

For anatomy this problem, we first consider z ≡ z(t) as a solution to the i.v.p. (33) for
f (t) = 0 and assuming that

lim
t→∞

z(t) = d, (34)

which leads to
d3r3 + d2r2 + d(r1 − εQ) + r0 = 0. (35)

After that, the solution of the original problem (33) is considered in the following form

x(t) = d + u(t), (36)
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where u ≡ u(t) needs to determine. Inserting solution (36) into the i.v.p. (33) yields{
ü + ω2

0u + αu2 + βu3 + ε[u̇−Qx(t− τ)− f (t)] = 0,
u(0) = d− x0 and u̇(0) = ẋ0,

(37)

with
ω2

0 =
(

r1 + 2dr2 + 3d2r3

)
, α = (3dr3 + r2) and β = r3. (38)

Since we will use one of the perturbation methods, the following construction (the homo-
topy) is considered

Hp(t) = ü + ω2
0u + p

[
αu2 + βu3 + εu̇− εQx(t− τ)− ε f (t)

]
, (39)

with the periodically excited force

f (t) = γ cos(ωt), (40)

where p indicates the perturbation parameter.
Now, problem (37) can be analyzed using many perturbation techniques such as the

KBMM and MSM.

4.1. KBMM for Analyzing the Time Delayed D-HO

Based on the KBMM, the solution of the i.v.p. (39) is assumed in the ansatz form

u = a cos ψ +
N

∑
n=1

pnΥn(a, ψ), (41)

with

ȧ =
N

∑
n=1

pn An(a) and ψ̇ = ω0 +
N

∑
n=1

pnΦn(a), (42)

Approximation (41) is called the N-th order approximations. For the second-order approxi-
mation, i.e., N = 2, we get

u(t) = a cos(ψ) + pΥ1(a, ψ) + p2Υ2(a, ψ) + O
(

p3
)

, (43)

with {
ȧ = pA1(a) + p2 A2(a) + O

(
p3),

ψ̇ = ω0 + pΦ1(a) + p2Φ2(a) + O
(

p3). (44)

where the functions a ≡ a(t), ψ ≡ ψ(t), Υ1 ≡ Υ1(a, ψ), and Υ2 ≡ Υ2(a, ψ) will be set later.
Inserting both Equations (43) with (44) into Equation (39) yields

aεω0 + aεQ sin(τω0)− 2A1ω0 = 0, (45)
1
4

a
(
−8ω0Φ1(a) + 3a2β + 4εQ cos(τω0)

)
= 0, (46)

−2A2ω0 + aεΦ1(a)− 2A1Φ1(a)− aA1Φ̇1(a) = 0, (47)
1
4

(
4ω2

0Υ1 + 4ω2
0Υ(0,2)

1 + 2αa2 cos(2ψ) + 2αa2 + a3β cos(3ψ)− 4ε f (t)
)
= 0, (48)

−A1ε + 2aαΥ1 − aΦ1(a)2 − 2aω0Φ2(a) + A1 Ȧ1 = 0. (49)

1
2

(
3a2βΥ1 + 2εQΥ1 + 3a2β cos(2ψ)Υ1 + 2ω2

0Υ2 − 2εω0Υ(0,1)
1

+4ω0Φ1(a)Υ(0,2)
1 + 2ω2

0Υ(0,2)
2 + 4A1ω0Υ(1,1)

1

)
= 0, (50)
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Now, by solving Equations (45) and (46), we obtain{
A1(a) = aε

2ω0
(ω0 + Q sin(ω0τ)),

Φ1(a) = εQ cos(ω0τ)
2ω0

+ 3a2β
8ω0

,
(51)

Solving Equations (47)–(50) with the help of values given in Equation (51), we have

A2(a) = − εa
16ω3

0

(
3a2βω0 + 6a2βQ sin(ω0τ) + 2εQ2 sin(2ω0τ)

)
,

Φ2(a) =
1

384ω3
0

(
−27a4β2 − 192a2α2 − 48ε2ω2

0 + 384εα f (t)
)

,

Υ1(a, ψ) =
1

96ω2
0

[
3a3β cos(3ψ) + 16αa2(cos(2ψ)− 3) + 96ε f (t)

]
, (52)

and

Υ2(a, ψ) = − a4αβ cos(2ψ)

3ω4
0

+
a4αβ cos(4ψ)

120ω4
0

+
5αa4β

8ω4
0
− a2αε sin(2ψ)

9ω3
0

− 21a5β2 cos(3ψ)

1024ω4
0

+
a5β2 cos(5ψ)

1024ω4
0
− 3a3βε sin(3ψ)

128ω3
0

+
a2βε f (t) cos(2ψ)

2ω4
0

− 2a2αεQ cos(2ψ− τω0)

9ω4
0

+
a2αεQ cos(2ψ)

18ω4
0

+
a2εαQ
2ω4

0
− 9a3βεQ cos(3ψ− τω0)

256ω4
0

+
a3βεQ cos(3ψ)

256ω4
0

− ε2Q f (t)
ω4

0
− 3a2βε f (t)

2ω4
0

. (53)

Inserting Equations (51) and (51) into system (44), and for p→ 1, we get

ȧ = −S1a + S2a3 (54)

and
ψ̇ = W0 + W1a2 + W2a4 +

384εα

384ω3
0

f (t) (55)

with

S1 = − ε

2ω0
(ω0 + Q sin(ω0τ)) +

2aε2Q2

16ω3
0

sin(2ω0τ),

S2 = − εa
16ω3

0

(
3a2βω0 + 6a2βQ sin(ω0τ)

)
,

W0 = ω0 +
εQ cos(ω0τ)

2ω0
−

48ε2ω2
0

384ω3
0

,

W1 =
3β

8ω0
− 192α2

384ω3
0

,

W2 =
−27β2

384ω3
0

.

Solving Equation (54) for a(0) = c0, we obtain

a(t) =
√

S1√
e2tS1

(
S1
c2

0
− S2

)
+ S2

, (56)
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Solving both system (55) for f (t) = γ cos(ωt) and ψ(0) = c1, the value of ψ is obtained

ψ(t) = c1 +
c2

0W2
2S2

(
S1

c2
0S2+(S1−c2

0S2)e2S1t − 1
)
+ t
(

W0 +
S1
S2

2
(S2W1 + S1W2)

)
+ γεS2 sin(tω)

ωω3
0

+ (S2W1+S1W2)

2S2
2

(
log(−S1)− log

((
c2

0S2 − S1
)
e2S1t − c2

0S2
))

.
(57)

The constants c0 and c1 are obtained from the initial conditions.
Inserting the value of u(t) given in (43) into solution (36), we finally obtain the second-

order approximation to the time-delayed D-HO (33)

x(t) = d + a cos(ψ) +
1

96ω2
0

[
3a3β cos(3ψ) + 16αa2(cos(2ψ)− 3) + 96ε f (t)

]
− a4αβ cos(2ψ)

3ω4
0

+
a4αβ cos(4ψ)

120ω4
0

+
5αa4β

8ω4
0
− a2αε sin(2ψ)

9ω3
0

− 21a5β2 cos(3ψ)

1024ω4
0

+
a5β2 cos(5ψ)

1024ω4
0
− 3a3βε sin(3ψ)

128ω3
0

+
a2βε f (t) cos(2ψ)

2ω4
0

− 2a2αεQ cos(2ψ− τω0)

9ω4
0

+
a2αεQ cos(2ψ)

18ω4
0

+
a2εαQ
2ω4

0
− 9a3βεQ cos(3ψ− τω0)

256ω4
0

+
a3βεQ cos(3ψ)

256ω4
0

− ε2Q f (t)
ω4

0
− 3a2βε f (t)

2ω4
0

, (58)

where a, ψ, and f (t) are defined above. Note that Q is not too large and r1 is large as
compared with Q.

4.2. MSM for Analyzing the Time Delayed D-HO

We will assume that the delay is not too large, say 0 < τ ≤ 2, accordingly, Taylor series
for x(t− τ) until the second-order reads

x(t− τ) ≈ x(t)− τẋ(t) +
1
2

τ2 ẍ(t). (59)

Inserting this approximation in the i.v.p. (2) yields

{
ẍ + r0 + r1x + r2x2 + r3x3 = ε

[
Q
(

x(t)− τẋ(t) + 1
2 τ2 ẍ(t)

)
+ f (t)− ẋ

]
,

x(0) = x0 and ẋ(0) = ẋ0 ,
(60)

Inserting solution (36) (x(t) = d + u(t)) into problem (60) and rearrange the obtained
results, we finally get{

ü + w2
1u + w2u2 + w3u3 + 2δu̇ + F(t) = 0,
u(0) = d− x0 and u̇(0) = ẋ0,

(61)

with

δ =
ε(1 + Qτ)

2− εQτ2 , w1 =

√
2(r1 + 2dr2 + 3d2r3 − εQ)

2− εQτ2 ,

w2 =
2(r2 + 3dr3)

2− εQτ2 , w3 =
2r3

2− εQτ2 , F(t) =
2ε f (t)

2− εQτ2

and the value of d can be calculated by finding a suitable root to the following equation

r0 + r1d + r2d2 + r3d3 − εQd = 0.
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Applying the MSM, then the solution to the i.v.p. (61) is assumed in the ansatz form

u(t) = v0(T0, T1) + pv1(T0, T1) + O(p2), (62)

where T0 = t, T1 = pt, and p denotes the perturbation parameter.
Inserting the perturbed solution (62) into problem (61), we have

ü + w2
1u + w2u2 + w3u3 + 2δu̇ + F(t) = p0K0 + pK1 + O(p2), (63)

with

K0 = v0
(2,0)(T0, T1) + w2

1v0(T0, T1),

K1 = F(t) + w2
1v1(T0, T1) + w2v2

0(T0, T1) + w3v3
0(T0, T1)

+ 2δv0
(1,0)(T0, T1) + 2v0

(1,1)(T0, T1) + v1
(2,0)(T0, T1)

Equating the coefficient K0 to zero and solved the obtained results, we get

v0(T0, T1) = a(T1) cos(θ), (64)

then inserting the solution (64) into the coefficient K1 = 0 and rearrange the obtained
results, we get

−2w1

[
a(1,0)(T1) + δa(T1)

]
sin(θ)

+ 1
4 a(T1)

[
3w3a2(T1)− 8w1 ϕ(1,0)(T1)

]
cos(θ)

+ 1
2 w2a2(T1) +

1
2 w2a2(T1) cos(2θ) + 1

4 w3a3(T1) cos(3θ)

+F(t) + w2
1v1(T0, T1) + v1

(2,0)(T0, T1) = 0,

(65)

where θ = ω0T0 + ϕ(T1).
To avoid the secular terms, the coefficients of sin(θ) and cos(θ) must be vanished

which lead to {
a(1,0)(T1) + δa(T1, T2) = 0,
3w3a2(T1)− 8w1 ϕ(1,0)(T1) = 0.

(66)

Solving these two differential equations, we obtain

a(T1) = c0e−tδ,

ϕ(T1) = c1 +
3c2

0w3

8w1
te−2tδ. (67)

and by solving the following other part in Equation (65) with f (t) = γ cos(ωt) and
F(t) = 2ε f (t)/

(
2− εQτ2)

1
2

w2a2(T1) +
1
2

w2a2(T1) cos(2θ) +
1
4

w3a3(T1) cos(3θ)

+F(t) + w2
1v1(T0, T1) + v1

(2,0)(T0, T1) = 0, (68)

we get

v1(T0, T1) =
2γε cos(ωT0)(

w2
1 −ω2

)
(εQτ2 − 2)

+
a(T1)

2

96w2
1

[
3w3a(T1) cos(3θ)

+16w2(cos(2θ)− 3)

]
. (69)

For p → 1, v0(t, t) ≡ U0(t), and v1(t, t) ≡ U1(t), we finally obtain the MSM first-order
approximation to the time delayed D-HO (33)
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x(t) = d + u(t) = d + U0(t) + U1(t) + O(ε2)

= d + c0e−
1
2 tδ cos(θ) +

2γε cos(ωt)(
w2

1 −ω2
)
(εQτ2 − 2)

+
a(t)2

96w2
1

[
3w3a(t) cos(3θ)

+16w2(cos(2θ)− 3)

]
+ O(ε2), (70)

with

θ = (ω0t + c1) +
3c2

0w3

8w1
te−2tδ.

The constants c0 and c1 are obtained from the initial conditions.

5. Numerical Example and Discussion

Let us consider the following numerical example of the time-delayed D-HO{
ẍ + 1 + 2x + x2 + x3 = ε

(
1
3 x(t− 1) + 1

10 cos
( t

4
)
− ẋ
)

,
x(0) = 0 and ẋ(0) = 0.

(71)

For ε = 0.1, the numerical value of the second-order perturbed approximation using the
KBMM is obtained as follows

xKBM = c0e−0.1t cos
(

c2
0

(
1.37959 − 1.37959e−0.2t

)
+ c4

0

(
0.070019e−0.4t − 0.070019

)
+ c1 + 1.3591t

)
+ 0.0000782538 sin

(
t
4

)
− 0.000220198e−0.05t sin(1.35912t) + 0.00559423 cos

(
t
4

)
− 0.00559423e−0.05t cos(1.35912t)− 0.580342, (72)

where c0 = 0.581722 and c1 = −0.0688913, whereas the numerical value to the first-order
perturbed approximation using the MSM reads

xMSM =− 0.580342 + e−0.135593t
(

0.0603533 − 0.0201178 cos
((
−0.166039e−0.135593t − 2.7182

)
t + 0.121715

))
− 0.00569828 cos

(
t
4

)
+ 0.00276884e−0.20339t cos

((
−0.249059e−0.135593t − 4.07731

)
t + 0.182572

)
+ 0.54394e−0.0677966t cos

((
−0.0830196e−0.135593t − 1.3591

)
t + 0.0608574

)
. (73)

For ε = 0.2, the numerical value of the second-order perturbed approximation using the
KBMM is given by

xKBM =c0e−0.2t cos
(

c2
0

(
0.687142 − 0.687142e−0.4t

)
+ c4

0

(
0.0346073e−0.8t − 0.0346073

)
+ c1 + 1.36435t

)
+ 0.000307188 sin

(
t
4

)
− 0.000869703e−0.1t sin(1.36237t) + 0.0110806 cos

(
t
4

)
− 0.0110806e−0.1t cos(1.36237t)− 0.591142, (74)

where c0 = 0.596673 and c1 = −0.136259, whereas the numerical value to the first-order
perturbed approximation using the MSM reads

xMSM = e−0.275862t
(

0.0671009 − 0.022367 cos
((
−0.177552e−0.275862t − 2.7287

)
t + 0.250504

))
− 0.011501 cos

(
t
4

)
+ 0.00302986e−0.413793t cos

((
−0.266328e−0.275862t − 4.09304

)
t + 0.375756

)
+ 0.55877e−0.137931t cos

((
−0.088776e−0.275862t − 1.36435

)
t + 0.125252

)
− 0.591142. (75)
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The two perturbed approximations (72) and (73) for ε = 0.1 and (74) and (75) for ε = 0.2,
are compared with the RK4 numerical approximations as illustrated in Figures 1 and 2,
respectively. Moreover, the global maximum error for the two perturbed approximations
as compared to the RK4 numerical approximations are estimated{

LKBM|ε=0.1 = max0<t≤40|RK4−KBM-approx.| = 0.029302,
LMSM|ε=0.1 = max0<t≤40|RK4−MSM-approx.| = 0.0522202,

(76)

and {
LKBM|ε=0.2 = max0<t≤40|RK4−KBM-approx.| = 0.0545619,
LMSM|ε=0.2 = max0<t≤40|RK4−MSM-approx.| = 0.0293156.

(77)

The comparison results are shown that both KBMM and MSM give good results compared
the RK4 numerical approximations as illustrated from Figures 1 and 2 as well as from the
estimated error.
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-0.8
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-0.2
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x

(a)-(r0,r1,r2,r3,Q,�,�)=(1,2,1,1,0.3,0.1,0.25)& ε=0.1
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-0.2
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x

(b)-(r0,r1,r2,r3,Q,γ,ω)=(1,2,1,1,0.3,0.1,0.25)& ε=0.1
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Figure 1. Both (a) second-order perturbed approximation (72) using the KBMM and (b) first-order
approximation (73) using MSM to the i.v.p. (71) are compared with the RK4 numerical approximations
for ε = 0.1.
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-0.4

-0.2

0.0
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x

(a)-(r0,r1,r2,r3,Q,�,�)=(1,2,1,1,0.3,0.1,0.25)& ε=0.2

Error0.0545619
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(b)-(r0,r1,r2,r3,Q,γ,ω)=(1,2,1,1,0.3,0.1,0.25)& ε=0.2

Error0.0293156

Figure 2. Both (a) second-order perturbed approximation (74) using the KBMM and (b) first-order
approximation (75) using MSM to the i.v.p. (71) are compared with the RK4 numerical approximations
for ε = 0.2.

6. Conclusions

In summary, using MATHEMATICA, the exact symmetric solutions of the stan-
dard/undamped Duffing–Helmholtz oscillator (D-HO) have been derived and discussed.
Moreover, an approximation to this oscillator in the framework of elementary functions
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was derived. The trigonometric approximation was compared with both exact solutions
and the 4th Range–Kutta (RK4) numerical approximation. It has been noted that the trigono-
metric approximation is characterized by high accuracy and more stability for long time
intervals. On the other hand, both Krylov–Bogoliubov–Mitropolsky method (KBMM) and
the multiple scales method (MSM) were applied to derive some approximate solutions to
the time-delayed forced damped D-HO. Due to KBMM being less complicated than the
other methods, thus, the approximate perturbed solution was derived up to the second
order. In addition, it is possible to derive the solutions up to the upper degree in the same
way. For the MSM, the first perturbed approximation was derived, but the higher-order
approximations cost a lot of time; also in the same way, the higher-order approximations
can be obtained. All perturbed approximations were analyzed numerically using suitable
numerical values to the related parameters and compared with RK4 numerical approxima-
tions. It has been noticed that KBMM gives more accurate perturbed approximations to the
current problem than the MSM.
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