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Abstract: The unit exponentiated half logistic power series (UEHLPS), a family of compound distri-
butions with bounded support, is introduced in this study. This family is produced by compounding
the unit exponentiated half logistic and power series distributions. In the UEHLPS class, some
interesting compound distributions can be found. We find formulas for the moments, density and
distribution functions, limiting behavior, and other UEHLPS properties. Five well-known estimating
approaches are used to estimate the parameters of one sub-model, and a simulation study is created.
The simulated results show that the maximum product of spacing estimates had lower accuracy
measure values than the other estimates. Ultimately, three real data sets from various scientific areas
are used to analyze the performance of the new class.

Keywords: unit exponentiated half logistic distribution; power series; maximum product of spacing;
entropy measures

MSC: 60E05; 62E15; 62F10

1. Introduction

Recently, academics have become more interested in the creation of new univariate
distributions, which are frequently used in statistics and related fields due to theoretical
considerations, practical applications, or both. By combining a specific useful lifetime with
truncated discrete distributions, compounding is a practical method for producing new dis-
tributions. The fundamental principle underlying the construction of these compounding
distributions is that the lifetime of a system with V components and a positive continuous
random variable Zi which represents the lifetime of the ith component, can be represented
by a non-negative random variable Z = min(Z1, . . . , ZV) if the components are in a series,
or Z = max(Z1, . . . , ZV) if the components are in parallel. In both situations, it is believed
that the continuous random variables Zi are independent of V.

In recent decades, several studies have examined the creation of new probabilistic
families by combining various distributions and the power series (PS) model. Most of
the works have been motivated by systems consisting of series or parallel components.
Most of the generalization is motivated by a system consisting of a series of components.
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For instance, Morais and Barreto-Souza [1] presented the Weibull–PS class, discussed
some statistical properties, thought about estimation using the maximum likelihood (ML)
approach, and provided data analysis. Similar work was presented by Mahmoudi and
Jafari [2] and Silva et al. [3] for the generalized exponential-PS and extended Weibull–
PS classes, respectively, using generalized exponential and extended Weibull. Jafari and
Tahmasebi [4] discussed the class of the Gompertz PS, presented some properties, discussed
the ML estimation procedure, and presented a simulation study for complete and censored
data. Elbatal et al. [5] introduced the class of exponential Pareto-PS. The Burr XII-PS
class, as well as the Burr–Weibull–PS class, were introduced by Silva and Corderio [6] and
Oluyede et al. [7]. Alizadeh et al. [8] investigated exponentiated power Lindley-PS class,
discussed ML estimation, provided formulas for the elements of the Fisher information
matrix, and examined real data sets. Alkarni [9] introduced the generalized inverse Lindley
PS class in his paper. The new Lindley–Burr XII PS class was recommended by Makubate
et al. [10], along with discussions of the properties class, estimation of the parameters, and
real-world applications. The inverse gamma PS class was created by Rivera et al. [11];
estimation and data analysis are also provided. The inverted exponentiated Lomax PS class
was proposed by Hassan et al. [12], who also explained the properties class, estimated the
parameter, and gave real data applications.

On the other hand, lifetime models and the PS distribution have been compounded
to present numerous compound distributions by complementary risk motivation. These
models were motivated by a parallel system with an unknown number of components. For
instance, Flores et al. [13] introduced the complementary exponential PS class, explained
the class properties, discussed parameter estimators, and offered real data applications.
Hassan et al. [14] suggested the complementary Poisson Lindley-PS class and provided
estimation and application to real data. Bagheri et al. [15] developed the generalized
modified Weibull–PS class, which evaluated the estimation process, offered a formula for
the components of the Fisher information matrix, and provided real data analysis. The
complementary exponentiated inverted Weibull–PS class was investigated by Hassan et
al. [16], which also examined the parameter estimators and supplied real data analysis.
Oluyede et al. [17] provided the generalized exponentiated PS class. The power function–PS
class was introduced by Hassan and Assar [18], who also covered the class’s characteristics,
parameter estimators, and real-world applications.

The growth of unit distributions has accelerated recently. These distributions focus
on modeling a wide variety of events using information having values between zero
and one, such as proportions, probabilities, and percentages. According to Papke and
Wooldridge [19], many economic settings naturally produce variables with a range of zero
to one, such as the percentage of total weekly hours worked, the percentage of income spent
on non-durable consumption, the participation rates in pension plans, industry market
shares, television viewership, the percentage of the land area allocated to agriculture, etc.
To represent lifetime data in reliability analysis, many authors use continuous models
with finite support. Physical considerations, such as a component’s finite lifetime or the
bounded signals present in industrial systems, are frequently the driving forces behind
this (see, for instance, Jiang [20] and Dedecius and Ettler [21]). For models established on
the unit interval, reliability should be expressed as a percentage or ratio [22], in order to
get results that are believable Today’s unit distributions are largely produced by correctly
adjusting traditional distributions. The unit Weibull and the new unit Lindley are developed
by [23,24]. The unit exponentiated half logistic (UEHL) developed by Hassan et al. [25]
has lately been published, and it has caught our interest. The following formulas define
the cumulative distribution function (CDF) and probability density function (PDF) of the
UEHL distribution:

G(z; a, b) = 1−
(

1− za

1 + za

)b
, 0 < z < 1, (1)
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and
g(z; a, b) = 2ab(1 + za)−(b+1)za−1(1− za)b−1, 0 < z < 1, (2)

where a, b ∈ R+, are the scale and shape parameters, respectively. They investigated some
of the UEHL distribution’s characteristics and discussed the parameter estimators using
different estimation methods.

In the fields of biology and engineering, the compounding technique makes it possible
to create flexible distributions with substantial physical significance. On the other hand,
the bounded distributions concentrate on modeling a large range of events using data with
values between zero and one. To our knowledge up to now, no compound family has
been created based on unit distributions. So, our objective here is to introduce the unit
exponentiated half logistic power series (UEHLPS) by taking into account a system with
parallel components and combining UEHL and PS distributions. We provide a versatile
class that includes a number of UEHL types of distributions combined with discrete
distributions (truncated at zero). Various distributional properties including, quantile
function, moments, entropy measure, Lorenz, and Bonferroni curves are presented. The
parameters of one UEHL Poisson (UEHLP) model are estimated using some classical
estimation techniques, including Cramer von Mises (CM), least squares (LS), weighed LS
(WLS), ML, and the maximum product of spacings (MPS). The accuracy of the estimated
estimators is investigated by a numerical simulation experiment. The potentiality of
the UEHLP model is investigated by utilizing three real data sets from distinct scientific
disciplines. In addition, Figure 1 depicts a detailed explanation of the work.

The creation of the UEHLPS class of distribution, which can be applied in a number of
remarkable situations, is motivated by the fact that:

1. The UEHLPS class of distributions can appear in various industrial applications as a
result of the stochastic reorientation Z = max(Z1, . . . , ZV).

2. The UEHLPS family of distributions can be used to roughly simulate the time until the
last failure of a system composed of similar components that are operating in parallel.

3. The UEHLPS class of distributions exhibits a number of interesting non-monotonic
failure rate phenomena, such as bathtub, increasing, decreasing, and J-shaped, which
are more likely to be observed in real contexts.

The structure of this article is described as follows: The PDF, CDF, and hazard rate
function (HF) of the UEHLPS class are provided in Section 2. Section 3 introduces the
specific sub-models of the class. We give a few structural characteristics of the UEHLPS class
in Sections 4 and 5. Descriptions of different classical estimators of the UEHLP distribution
parameters are given in Section 6. Sections 7 and 8 describe numerical examination and
real data analysis, respectively. The article is concluded in Section 9.



Symmetry 2023, 15, 714 4 of 28

Figure 1. A complete visual description of the paper.

2. Formation of the New Class

In this section, we construct the class of the UEHLPS distributions by combining the
UEHL distribution with the PS distribution. Let V be a zero-truncated discrete random
variable having a PS with the following probability mass function (PMF)

P(V = v) =
ςvδv

D(δ)
, v = 1, 2, 3 . . . , (3)

where ςv depends only on v, δ > 0, is the scale parameter, D(δ) =
∞
∑

v=1
ςvδv, D ′ (.) and

D′′ (.) denote the first and second derivatives of D(δ), respectively. We draw attention to
the fact that the PMF in Equation (3) also matches the generalized PS distribution covered
in Patil [26]. Several structural characteristics and statistical issues related to generalized
PS were discovered by Patil [27,28].

Let Z = max {Zi}V
i=1, the joint CDF is given by:

P(Z 6 z; V = v) =
ςvδv

D(δ)

[
1−

(
1− za

1 + za

)b
]v

, 0 < z < 1, v > 1. (4)
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The conditional CDF of Z|V is given by:

HZ|V=v (z) = [G(z; a, b)]v =

[
1−

(
1− za

1 + za

)b
]v

.

So, the marginal CDF of (4) is given by

H(z; v) =
∞

∑
v=1

ςvδv

D(δ)

[
1−

(
1− za

1 + za

)b
]v

=
1

D(δ)

∞

∑
v=1

ςv

[
δ

[
1−

(
1− za

1 + za

)b
]]v

.

Hence the CDF of the UEHLPS class is as follows:

H(z; v) =
1

D(δ)
D(δ(1−Λ(z, a, b))), 0 < z < 1, (5)

where Λ(z, a, b) =
(

1−za

1+za

)b
. A random variable with CDF(5) has UEHLPS class with

parameters v ≡ (a, b, δ) shall be denoted by Z ∼ UEHLPS (v).
The family of models in (5) can be physically interpreted as follows: Consider the

case where a system, equipment, product, or component occurs due to the presence of an
unknown number, say V, of protected components or a disease manifestation, which can
be identified only after an unknown number of factors have been active. Suppose that Zi is
the time to the failure of the device owing to the ith flaw, for i > 1, such that each Zi follows
the UEHL distribution (1) and V is discrete PS distribution (3), then the distribution of the
random variable Zi, which represents the time of last failure, is the distribution in (4).

The PDF of the UEHLPS class, for 0 < z < 1, corresponding to (5) is:

h(z; v) =
2abδ(1 + za)−(b+1)za−1(1− za)b−1D ′(δ(1−Λ(z, a, b)))

D(δ)
. (6)

The survival function (SF) and HF of the UEHLPS class are represented by

H̄(z; v) = 1−D(δ(1−Λ(z, a, b)))
D(δ)

,

and

τ(z; v) =
2abδ(1 + za)−(b+1)za−1(1− za)b−1D ′(δ(1−Λ(z, a, b)))

D(δ)− D(δ(1−Λ(z, a, b)))
.

Furthermore, the UEHLPS distribution’s quantile function (QF) can be obtained as below

z = Qz(u) =
(

1− K(u, b, δ)

1 + K(u, b, δ)

)1/a
, K(u, b, δ) =

[
1− D−1(uD(δ))

δ

]1/b
, (7)

where, 0 < u < 1, and D−1(.) is D’s inverse function.

2.1. Useful Expansion

Here, an important useful expansion for the UEHLPS density function (6) is derived.

Using D′(δ) =
∞
∑

v=1
vςvδv−1, in PDF (6), then it can be reformed as follows:

h(z; v) =
∞

∑
v=1

2vaςvbδvza−1(1− za)b−1

(1 + za)b+1D(δ)

[
1−

(
1− za

1 + za

)b
]v−1

. (8)
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Using the binomial expansion in (8) gives

h(z; v) =
∞

∑
v=1

v−1

∑
j=0

(−1)j
(

v− 1
j

)
2vaςvbδvza−1(1− za)b(j+1)−1

(1 + za)b(j+1)+1D(δ)

=
∞

∑
v=1

ψjP(V = v)g(z; a, b(j + 1)),

(9)

where ψj =
v−1
∑

j=0

(−1)jv
j+1

(
v− 1

j

)
, and g(z; a, b(j + 1)) is the UEHL density function with

parameters (a, b(j + 1)) and P(V = v) defined in (3).

2.2. Limiting Behavior

Here, we provide the limiting distribution of the UHLPS class of distributions when
δ→ 0+. For Z > 0, we obtain the limiting distribution of (5) as follows:

lim
δ→0+

H(z; v) = lim
δ→0+

∞
∑

v=1
ςvδv((1−Λ(z, a, b)))v

∞
∑

v=1
ςvδv

= lim
δ→0+

δ[(1−Λ(z, a, b))] + ς−1
1

∞
∑

v=2
ςv(δ(1−Λ(z, a, b)))v−1

δ + ς−1
1

∞
∑

v=2
ςvδv−1

.

Consequently, applying L’Hospital’s rule results in

lim
δ→0+

H(z; v) = 1−Λ(z, a, b) = G(z; a, b). (10)

Note that the distribution function in (10) is the CDF of the UEHL distribution (1).

3. Special Sub Models

This section will cover some special models, such as the UEHLP, UEHL geometric
(UEHLG), UEHL binomial (UEHLB), and UEHL logarithmic (UEHLL) distributions.

3.1. The UEHLP Distribution

Consider the Poisson distribution to be the zero truncated PS distribution with
ςv = v! and D(δ) = eδ − 1. Hence, the PDF, CDF and HF of the UEHLP distribution,
for 0 < z < 1,v ≡ ( a, b, δ) ∈ R+, are respectively, given by

H1(z; v) =
1

(eδ − 1)
exp{δ(1−Λ(z, a, b))− 1},

h1(z; v) =
2abδza−1(1− za)b−1

(1 + za)b+1(eδ − 1)
exp{δ(1−Λ(z, a, b))}, (11)

and

τ(z; v) =
2abδza−1(1− za)b−1 exp{δ(1−Λ(z, a, b))}

(1 + za)b+1[(eδ − 1)− exp{δ(1−Λ(z, a, b))− 1}
] .

For b = 1 in (11), the unit half logistic Poisson distribution is produced. In Figure
2, the PDF and HF plots of the UEHLP distribution are displayed. The density is bath-
tub, symmetrical and reversed J-shaped, while the HF is a bathtub, increasing, J-shaped
and decreasing.
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Figure 2. The UEHLP density and HF for different values.

3.2. The UEHLL Distribution

Consider the logarithmic distribution to be the zero truncated PS distribution with
ςv = v−1 and D(δ) = − log(1− δ). Hence, the PDF, CDF and HF of the UEHLL distribution,
for 0 < z, δ < 1, a, b ∈ R+, are respectively, defined as:

H2(z; v) =
log[1− δ(1−Λ(z, a, b))]

log(1− δ)
,

h2(z; v) =
2abδ(1 + za)−(b+1)za−1(1− za)b−1

(1− δ(1−Λ(z, a, b))) log (1− δ)−1 , (12)

and

τ2(z; v) =
2abδza−1(1− za)b−1(1− δ(1−Λ(z, a, b)))−1

(1 + za)b+1[log(1− δ(1−Λ(z, a, b)))− log(1− δ)]
.

For b = 1 in (12), the unit half logistic logarithmic distribution is produced. The PDF
and HF plots of the UEHLL distribution are displayed in Figure 3. The density has both
symmetrical and asymmetrical shapes, whereas the HF has a J-shape, increasing, and a
bathtub shape.
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Figure 3. The UEHLL density and HF for different values.
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3.3. The UEHLG Distribution

The zero-truncated PS distribution is taken into consideration to be the geometric
distribution with ςv = 1 and D(δ) = δ(1− δ)−1 Hence, the PDF, CDF, and HF of the
UEHLG distribution, for 0 < z, δ < 1, a, b ∈ R+, are respectively, given by

H3(z; v) =
(1− δ)[1−Λ(z, a, b)]
1− δ[1−Λ(z, a, b)]

,

h3(z; v) =
2abza−1(1− δ)(1− za)b−1(1− δ(1−Λ(z, a, b)))−2

(1 + za)b+1 , (13)

and

τ3(z; v) =
2abza−1(1− δ)(1− za)b−1(1− δ(1−Λ(z, a, b)))−1

(1 + za)b+1[1− δ[1−Λ(z, a, b)]− (1− δ)[1−Λ(z, a, b)]]
.

For b = 1 in (13) the unit half logistic geometric distribution is produced. Figure 4
describes the PDF and HF plots of the UEHLG distribution. The density is reversed J,
symmetrical, right skewed, decreasing, uni-modal and left skewed, while HF is J-shaped,
increasing, U-shaped and bathtub shaped.
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Figure 4. The UEHLG density and HF for different values.

3.4. The UEHLB Distribution

We assume that the truncated binomial distribution taken from PS distribution with

ςv =

(
n
v

)
and D(δ) = (1 + δ)n − 1 Hence, the PDF, CDF and HF of the UEHLB

distribution, for 0 < z < 1, a, δ, b ∈ R+, are respectively, given by

H4(z; v) =

[
(1 + δ(1−Λ(z, a, b)))n − 1

][
(1 + δ)n − 1

] ,

h4(z; v) =
2nabδza−1(1− za)b−1(1 + δ(1−Λ(z, a, b)))n−1

(1 + za)b+1[(1 + δ)n − 1
] , (14)

and

τ4(z; v) =
2nabδza−1(1− za)b−1(1 + δ(1−Λ(z, a, b)))n−1

(1 + za)b+1[(1 + δ)n − (1 + δ(1−Λ(z, a, b)))n] .

For b = 1 the unit half logistic geometric distribution in (14) is produced. Figure 5
describes the PDF and HF plots of the UEHLB distribution. The density is symmetrical,
uni-modal, and right skewed, while HF is J-shaped and bathtub shaped.
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Figure 5. The UEHLB density and HF for different values.

4. General Properties

This section covers some moments of the UEHLPS class. Furthermore, these measures
are focused on one model, specifically the UEHLP distribution.

4.1. Moments Measures

The moments of a probability distribution are essential tools in any statistical analysis.
The sth moment of Z has the UEHLPS class is presented using (10) as follows:

µ′s =
∞

∑
v=1

ψjP(V = v)
∫ 1

0

2abzs+a−1(1− za)b(j+1)−1

(1 + za)b(j+1)+1
dz. (15)

Using binomial expansion in (15) and let y = za, then µ′s of UEHLPS class is

µ′s =
∞

∑
m=0

∞

∑
v=1

2b(−1)m
(

b(j + 1) + m
m

)
ψjP(V = v)

∫ 1

0
y

s
a +m(1− z)b(j+1)−1 dy

=
∞

∑
v=1

λ̄m,jP(V = v)B
(

m +
s
a
+ 1, b(j + 1)

)
,

(16)

where,λ̄m,j =
∞
∑

m=0
(−1)m2 ψjb

(
m + b(j + 1)

m

)
and B(., .) is the beta function (BF).

The sth central moment (µs) of the UEHLPS class is:

µs = E
(
Z− µ′1

)s
=

s

∑
j=0

(−1)j

(
s

j

)(
µ′1
)j

µ′s−j. (17)

In particular, the sth central moment of the UEHLP distributing is obtained, by
putting P(V = v) = e−δδv

v!(1−e−v)
, v = 1, 2, . . . in (16). Using the well-known relation-

ships in (17), some measures of the UEHLP distribution, such as variance (σ2), skewness
(α3), and kurtosis (α4) are calculated. The numerical values of µ′1, µ′2, µ′3, µ′4, σ2, α3 and α4
for the UEHLP distribution are given in Table 1 for the following parameter values (i)
(a = 0.8, b = 0.8, δ = 0.5), (ii) (a = 0.8, b = 1.5, δ = 0.8), (iii) (a = 2, b = 1.5, δ = 0.5), (iv)
(a = 1.5, b = 0.8, δ = 0.3), (v) (a = 1.5, b = 0.8, δ = 1.5), (vi) (a = 0.8, b = 1.5, δ = 1.5), and
(vii) (a = 0.8, b = 0.8, δ = 1.5).
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Table 1. Moment values for the UEHLP Distribution.

Measures (i) (ii) (iii) (iv) (v) (vi) (vii)

µ′1 0.435 0.281 0.519 0.571 0.662 0.325 0.520

µ′2 0.285 0.136 0.320 0.402 0.506 0.166 0.366

µ′3 0.215 0.082 0.219 0.312 0.414 0.103 0.287

µ′4 0.175 0.056 0.161 0.257 0.353 0.071 0.239

σ2 0.096 0.057 0.051 0.076 0.067 0.061 0.095

α3 0.276 0.873 −0.007 −0.174 −0.581 0.652 −0.077

α4 1.77 2.881 2.157 1.882 2.288 2.484 1.712

As seen from Table 1, the UEHLP distribution is negatively skewed, positively skewed,
and platykurtic.

4.2. Incomplete Moments

Furthermore, the sth incomplete moment of the UEHLP class is derived as:

ηs(t) =
∞

∑
v=1

ψjP(V = v)
∫ t

0

2abzs+a−1(1− za)b(j+1)−1

(1 + za)b(j+1)+1
dz . (18)

Using binomial expansion in (18) and let y = za, then ηs(t) of UEHLPS class is

ηs(t) =
∞

∑
v=1

λ̄m,jP(V = v)B
( s

a
+ m + 1, b(j + 1), ta

)
,

where, B(., ., x) is the incomplete BF. Additionally, the Lorenz (Lo) and Bonferroni (Bo)
curves of UEHLP distribution are derived using the following expressions; Lo(t) =
η1(t)

/
µ′1, and Bo(t) = η1(t)

/
µ′1H(t; v). The mean deviations about the mean and median

of UEHLPS distributions can be obtained as ζµ = 2µ′1H(µ′1)− 2η1(µ
′
1), ζM = µ′1 − 2η1(M),

where, µ′1 is the mean which obtained from (16) for s = 1, H(.) is obtained from (5) and η1
is the first incomplete moment.

5. Entropy Measures

The uncertainty of the data is quantified by the entropy; the greater value of entropy,
the more variability there is in the data. Entropy has been widely employed in various
applications, and there are a number of goodness-of-fit tests based on it that are available
in the literature, the reader can refer to Mahdizadeh and Zamanzade [29–32].

Here, we explore Rényi (Ri) entropy and c-entropy, among other information measures.
The Ri entropy of Z is defined by:

E(c) = (1− c)−1 log
(∫ 1

0
(h(z; v))cdz

)
. (19)

We acquire (h(z; v))c as shown below in order to determine the Ri entropy of the
UEHLPS distributions

(h(z; v))c =
(2abδ)czc(a−1)(1− za)c(b−1)

(1 + za)c(b+1)(D(δ))c

{
∞

∑
v=1

vςv[δ(1−Λ(z, a, b))]v−1

}c

. (20)

Furthermore,{
∞

∑
v=1

vςv[δ(1−Λ(z, a, b))]v−1

}c

= ςc
1

[
∞

∑
k=0

πk{δ(1−Λ(z, a, b))}k

]c

, πk =
ςk+1
ς1

(k + 1), k = 1, 2, . . . (21)
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As mentioned in [33], we have the following relation(
∞

∑
k=0

πkzk

)c

=
∞

∑
k=0

ec,kzk. (22)

Using (22) in (21) gives[
∞

∑
k=0

πk{δ(1−Λ(z, a, b))}k

]c

=
∞

∑
k=0

ec,k{δ(1−Λ(z, a, b))}k. (23)

Consequently, (21) will appear as follows:{
∞

∑
v=1

vςv[δ(1−Λ(z, a, b))]v−1

}c

= ςc
1

∞

∑
k=0

ec,k{δ(1−Λ(z, a, b))}k, (24)

where, ec,0 = 1 and ec,t = t−1
t

∑
k=1

[k(c + 1)− t]πkec,t−k, t > 1. Therefore, (20) is as follows

(h(z; v))c =
(2abδ)cςc

1zc(a−1)(1− za)c(b−1)

(1 + za)c(b+1)(D(δ))c

∞

∑
k=0

ec,k

{
δ

(
1−

(
1− za

1 + za

)b
)}k

. (25)

Using binomial expansions in (25), give

(h(z; v))c =
k

∑
j1=0

εk,j2

(D(δ))c zc(a−1)+aj2(1− za)c(b−1)+bj1 , (26)

where εk,j2 =
∞
∑

k,j2=0

(
k
j1

)(
c(b + 1) + bj1 + j2

j2

)
(−1)j1+j2 (2abς1)

cec,k(δ)
c+k

(D(δ))c . Setting (26) in

(19), we get the Ri entropy of the UEHLPS distributions as follows:

E(c) = (1− c)−1 log

(
k

∑
j1=0

εk,j2

a(D(δ))c B
(

c− c
a
+ j2 +

1
a

, c(b− 1) + bj1 + 1
))

. (27)

The c-entropy of the UEHLPS distributions is defined by

E1(c) =
1

(c− 1)

(
1−

∫ 1

0
( f (z))cdz

)
, c 6= 1, c > 0.

Hence, the c-entropy of the UEHLPS distributions is obtained as follows:

E1(c) =
1

(c− 1)

(
1−

k

∑
j1=0

εk,j2

a(D(δ))c B
(

c− c
a
+ j2 +

1
a

, c(b− 1) + bj1 + 1
))

. (28)

Putting D(δ) = eδ−1 in (27) and (28), we get the Ri entropy and c-entropy of the
UEHLP distribution.

6. Parameter Estimation of the UEHLPS Class

The parameter estimators of the UEHLPS class of distributions based on ML, MPS, LS,
WLS, and CM are discussed in this section.

6.1. ML Estimation

Let Z1, . . . , Zn be the observed values from the UEHLPS class of distributions with a
set of parameters v ≡ (a, b, δ)T . The likelihood function, say L(v) of the UEHLPS distribu-
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tions is expressed as:

L(v) =
(2abδ)n

(D(δ))n

n

∏
i=1

za−1
i (1− za

i )
b−1(1 + za

i )
−(b+1)D ′(δ(1−Λ(zi, a, b))).

Following that, the UEHLPS distributions’ log-likelihood function, say `◦, is shown:

`◦=n log(2abδ)−n log(D(δ))+(a−1)
n
∑

i=1
log(zi)+(b−1)

n
∑

i=1
log(1−za

i )−(b+1)
n
∑

i=1
log(1+za

i )+
n
∑

i=1
log[D ′(δ(1−Λ(zi,a,b)))].

The components of the score vector are

Uδ =
n
δ
− nD′(δ)

D(δ)
+

n

∑
i=1

(1−Λ(zi, a, b))D′′ (δ(1−Λ(zi, a, b)))
D ′(δ(1−Λ(zi, a, b)))

,

Ua =
n
a
+

n

∑
i=1

log(zi)−
n

∑
i=1

(b− 1) log(zi)

(z−a
i − 1)

−
n

∑
i=1

(b + 1) log(zi)

1 + z−a
i

+
n

∑
i=1

D′′(δ(1−Λ(zi, a, b)))
D ′(δ(1−Λ(zi, a, b)))

2bza
i log(zi)

(1 + za
i )

2

(
1− za

i
1 + za

i

)b−1

,

and

Ub =
n
b
+

n

∑
i=1

log(1− za
i )−

n

∑
i=1

log(1 + za
i )−

n

∑
i=1

D′′(δ(1−Λ(zi, a, b)))
D ′(δ(1−Λ(zi, a, b)))

(
1− za

i
1 + za

i

)b
log
(

1− za
i

1 + za
i

)
.

Setting the nonlinear system of equations Uδ = Ua = Ub = 0 and solving them simul-
taneously yields the ML estimator (MLE), say â1, b̂1, and δ̂1. Use of nonlinear optimization
techniques, such as the quasi-Newton algorithm, to numerically maximize `◦, is typically
more practical for solving these equations.

6.2. Maximum Product of Spacings Estimation

In the case of continuous univariate distributions, the MPS estimation approach was
suggested by Cheng and Amin [34] and supported by Ranneby [35] as an alternative to the
ML method. It was shown that the MPS technique yields consistent and asymptotically
successful estimators for a number of distributions, including a three-parameter gamma,
lognormal, or Weibull, where the ML method fails due to the likelihood’s unboundedness.

In this method, an ordered sample z(1), . . . , z(n) of size n is drawn from a population
having UEHLPS distributions given by (6). The uniform spacings may be determined
as follows,

Ξ∗(v) =
1

n + 1
log

{
n+1

∏
i=1

Υ(i)

}
,

Υ(i) =


Υ(1) = H(z(1); v)

Υ(i) = H(z(i); v)− H(z(i−1); v) i = 2, . . . , n
Υ(n+1) = 1− H(z(n); v)

where Ξ∗i (v) = H
(

z(i); v
)
− H

(
z(i−1); v

)
, i = 1, 2, . . . , n + 1,

H
(

z(0); v
)
= 0, H

(
z(n+1); v

)
= 1,

n+1
∑

i=1
Ξ∗i (v) = 1.

The MPS estimators of v = (δ, a, b)T , represented by v = (δ̂2, â2, b̂2)
T , can be obtained

by maximizing the geometric mean of the spacings

Ξ∗(v) =
1

n + 1

n+1

∑
i=1

log
{[

1
D(δ)

D
(

δ
(

1−Λ
(

z(i), a, b
)))]

−
[

1
D(δ)

D
(

δ
(

1−Λ
(

z(i−1), a, b
)))]}

,

with respect to a, b and δ. However, the obtained estimators â2, b̂2, and δ̂2, cannot be solved
analytically, so numerical technique will be employed using nonlinear optimization algo-
rithms.
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6.3. LS and WLS Estimation

Let z(1), . . . , z(n) an ordered sample of size n is drawn from UEHLPS distributions (6).
The LS estimators, say â3, b̂3, and δ̂3, are obtained by minimizing the following function:

Q(v) =
n

∑
i=1

Ai

[
1

D(δ)
D
(

δ
(

1−Λ
(

z(i), a, b
)))
− i

n + 1

]2
, (29)

with respect to v ≡ (a, b, δ)T , where, i = 1, 2, . . . , n. Hence, we obtain â3, b̂3, and δ̂3 by
setting Ai = 1 in (29). Similarly, the WLS estimators, say â4, b̂4, and δ̂4, are produced by

minimizing (29) with respect to a, b and δ where Ai =
(n+2)(n+1)2

i(n−i+1) , i = 1, 2, . . . , n. However,

the estimators â4, b̂4, and δ̂4, cannot be solved analytically so the numerical method will be
used with a nonlinear optimization technique.

6.4. Cramér–von Mises Estimation

Let z(1), . . . , z(n) an ordered sample of size n drawn from UEHLPS distributions (6).
The CV estimators â5, b̂5, and δ̂5, of a, b and δ , respectively, are obtained by minimizing the
following function:

C(v) =
1

12n
+

n

∑
i=1

[
1

D(δ)
D
(

δ
(

1−Λ
(

z(i), a, b
)))
− 2i− 1

2n

]2
,

with respect to v. However, the estimators â5, b̂5, and δ̂5, cannot be solved analytically so
the numerical method will be used with a nonlinear optimization technique.

7. Simulation

To examine the effectiveness of the various estimators, we conducted a simula-
tion study in this part. We evaluate the ML, LS, WLS, MPS, and CM estimates based
on the mean squared errors (MSEs) and relative biases (RBs) for various sample sizes.
1000 random samples Z1, . . . , Zn of sizes n = 20, 30, 50, 75, and 100 are generated from the
UEHLP distribution. We take into account the following four sets of parameters: set 1 ≡
(a = 0.8, b = 0.8, δ = 0.5), set 2≡ (a = 0.8, b = 1.5, δ = 0.8), set 3≡ (a = 2, b = 1.5, δ =
0.5) and set 4 ≡ (a = 1.5, b = 0.8, δ = 0.3).

The ML, LS, WLS, MPS, and CV estimates of a, b and δ are computed. Then, the MSEs
and RBs of the estimates of the unknown parameters are calculated. The following findings
are noted after analyzing the simulated results in Tables 2 and 3 and Figures 6–11.

• All of the estimates exhibit consistency properties.
• The MSEs and RBs decrease as sample sizes increase for all sets of parameters (see

Tables 2 and 3 and Figures 8, 9 and 11).
• The MSEs and RBs of the MPS estimates appear to take the least values correspond-

ing to the other estimates for all sample sizes and all sets of parameters, based on
Figures 6 and 7 and Tables 2 and 3.

• In most cases, Set 1 is the best set for estimating the parameters corresponding to the
other sets (see for example Figures 6–11).

• For a fixed value of a = 0.8 and as the value of b, δ increases, the MSEs and RBs for a
and b estimates are increasing, also the MSEs and RBs for δ decreasing based on all
methods for almost sample sizes (see for example Table 2).

• For increasing value of a and as the value of b, δ decrease, the MSEs and RBs for a, b
and δ estimates are decreasing based on all methods and for all sample sizes (see
Table 3).

• From Figure 6, the MSEs of the CV method for Set 1 have the smallest MSE among
other sets of parameters.
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• The estimated parameter of a is the best compared to the estimated parameters of b, δ
(see Figures 10 and 11).

Figure 6. MSEs of a estimates for different methods for all sets.

Table 2. MSEs and RBs of UEHLP estimates for different methods at set 1 and set 2.

n Methods Properties
Set 1 Set 2

a b δ a b δ

20

ML
MSE 0.069 0.111 0.921 0.092 0.419 0.647

RB 0.301 0.185 0.724 0.215 0.063 1.003

LS
MSE 0.075 0.111 0.265 0.833 0.434 0.640

RB 0.042 0.109 0.952 0.779 0.401 1.000

WLS
MSE 0.073 0.124 0.378 0.796 0.419 0.640

RB 0.028 0.142 1.033 0.792 0.396 1.000

MPS
MSE 0.048 0.060 0.229 0.048 0.267 0.640

RB 0.032 0.004 0.967 0.031 0.163 1.000

CV
MSE 0.118 0.170 0.232 1.476 0.351 0.640

RB 0.131 0.239 0.953 1.064 0.343 1.000

30

ML
MSE 0.045 0.062 0.628 0.054 0.171 0.641

RB 0.017 0.147 0.850 0.178 0.005 1.000

LS
MSE 0.050 0.068 0.235 0.605 0.404 0.640

RB 0.046 0.105 0.965 0.746 0.401 1.000

WLS
MSE 0.052 0.075 0.326 0.576 0.389 0.640

RB 0.020 0.132 1.023 0.767 0.395 1.000

MPS
MSE 0.038 0.035 0.222 0.028 0.160 0.640

RB 0.012 0.001 0.961 0.042 0.156 0.998

CV
MSE 0.063 0.093 0.229 0.878 0.345 0.640

RB 0.027 0.189 0.972 0.915 0.363 1.000
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Table 2. Cont.

n Methods Properties
Set 1 Set 2

a b δ a b δ

50

ML
MSE 0.023 0.035 0.377 0.034 0.102 0.640

RB 0.024 0.120 0.858 0.157 0.131 0.985

LS
MSE 0.025 0.039 0.240 0.484 0.378 0.635

RB 0.068 0.104 0.977 0.753 0.396 0.999

WLS
MSE 0.024 0.044 0.309 0.479 0.369 0.640

RB 0.062 0.134 1.117 0.770 0.393 0.994

MPS
MSE 0.020 0.021 0.214 0.019 0.088 0.623

RB 0.115 0.027 0.956 0.065 0.022 0.994

CV
MSE 0.026 0.048 0.214 0.604 0.341 0.632

RB 0.030 0.151 0.984 0.849 0.374 0.800

75

ML
MSE 0.018 0.025 0.297 0.027 0.083 0.640

RB 0.034 0.104 0.894 0.482 0.567 0.969

LS
MSE 0.019 0.029 0.246 0.418 0.367 0.632

RB 0.064 0.101 0.989 0.148 0.126 0.990

WLS
MSE 0.018 0.036 0.300 0.424 0.359 0.639

RB 0.054 0.129 1.081 0.752 0.395 0.991

MPS
MSE 0.014 0.016 0.212 0.016 0.060 0.612

RB 0.102 0.034 0.956 0.079 0.046 0.715

CV
MSE 0.019 0.035 0.210 0.486 0.342 0.626

RB 0.036 0.135 0.990 0.793 0.380 0.729

100

ML
MSE 0.0153 0.018 0.230 0.021 0.069 0.626

RB 0.049 0.093 0.913 0.119 0.567 0.799

LS
MSE 0.014 0.022 0.246 0.394 0.351 0.626

RB 0.074 0.094 0.988 0.726 0.399 0.952

WLS
MSE 0.014 0.026 0.274 0.399 0.345 0.632

RB 0.062 0.115 1.041 0.742 0.397 0.984

MPS
MSE 0.011 0.013 0.200 0.013 0.049 0.600

RB 0.102 0.036 0.948 0.079 0.056 0.701

CV
MSE 0.013 0.026 0.202 0.442 0.322 0.614

RB 0.055 0.117 0.990 0.772 0.389 0.716

Table 3. MSEs and RBs of UEHLP estimates for different methods at set 3 and set 4.

n Methods Properties
Set 3 Set 4

a b δ a b δ

ML
MSE 0.661 1.012 0.480 0.311 0.078 0.302

RB 0.155 0.552 0.862 0.172 1.000 1.044

LS
MSE 0.736 0.637 0.164 0.606 0.934 0.090

RB 0.255 0.392 0.756 0.477 1.000 1.013

WLS
MSE 0.675 0.661 0.174 0.583 0.940 0.090

RB 0.244 0.411 0.749 0.472 1.028 1.001
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Table 3. Cont.

n Methods Properties
Set 3 Set 4

a b δ a b δ

20

MPS
MSE 0.658 0.505 0.148 0.179 0.052 0.083

RB 0.329 0.332 0.649 0.028 0.116 0.994

CV
MSE 0.891 0.952 0.171 0.522 0.997 0.090

RB 0.318 0.521 0.735 0.413 1.227 0.995

30

ML
MSE 0.584 0.768 0.354 0.187 0.042 0.175

RB 0.312 0.504 0.808 0.124 0.035 1.039

LS
MSE 0.567 0.559 0.164 0.561 0.806 0.090

RB 0.275 0.397 0.734 0.480 0.996 0.997

WLS
MSE 0.536 0.742 0.393 0.545 0.823 0.090

RB 0.261 0.484 0.723 0.474 1.019 1.001

MPS
MSE 0.578 0.470 0.104 0.123 0.035 0.080

RB 0.310 0.356 0.579 0.023 0.102 0.983

CV
MSE 0.528 0.740 0.165 0.490 0.932 0.086

RB 0.207 0.478 0.727 0.401 1.142 0.999

50

ML
MSE 0.421 0.630 0.268 0.091 0.022 0.141

RB 0.277 0.482 0.751 0.079 0.005 1.001

LS
MSE 0.423 0.505 0.161 0.565 0.698 0.090

RB 0.268 0.311 0.722 0.488 0.965 1.000

WLS
MSE 0.411 0.755 0.365 0.549 0.712 0.090

RB 0.237 0.418 0.543 0.483 0.986 1.001

MPS
MSE 0.364 0.440 0.100 0.066 0.022 0.063

RB 0.306 0.310 0.482 0.011 0.096 0.963

CV
MSE 0.379 0.619 0.163 0.521 0.815 0.090

RB 0.126 0.462 0.714 0.366 1.049 0.997

75

ML
MSE 0.401 0.552 0.241 0.062 0.014 0.106

RB 0.262 0.403 0.658 0.073 0.003 0.994

LS
MSE 0.417 0.423 0.157 0.556 0.676 0.090

RB 0.244 0.392 0.717 0.482 0.953 0.996

WLS
MSE 0.404 0.699 0.351 0.542 0.688 0.090

RB 0.216 0.313 0.462 0.481 0.971 1.000

MPS
MSE 0.359 0.425 0.096 0.048 0.011 0.053

RB 0.207 0.304 0.381 0.002 0.081 0.943

CV
MSE 0.374 0.482 0.157 0.516 0.752 0.080

RB 0.111 0.422 0.674 0.345 1.029 0.990

ML
MSE 0.311 0.537 0.238 0.042 0.010 0.093

RB 0.259 0.363 0.565 0.054 0.002 0.988

LS
MSE 0.370 0.416 0.143 0.544 0.628 0.090

RB 0.221 0.309 0.667 0.475 0.942 0.989
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Table 3. Cont.

n Methods Properties
Set 3 Set 4

a b δ a b δ

100

WLS
MSE 0.314 0.550 0.340 0.532 0.638 0.088

RB 0.205 0.239 0.374 0.471 0.966 1.000

MPS
MSE 0.308 0.416 0.060 0.038 0.010 0.043

RB 0.195 0.235 0.369 0.001 0.077 0.934

CV
MSE 0.341 0.459 0.145 0.501 0.682 0.070

RB 0.102 0.410 0.569 0.285 0.994 0.970

Figure 7. MSEs of b estimates for different methods for all sets.

Figure 8. MSEs of δ̂2 for MPS method for all sets of parameters and all sample sizes.
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Figure 9. RBs of b̂3 for LS method for all sets of parameters and all sample sizes.

Figure 10. MSEs of â5, b̂5, and δ̂5 for CV method for all sets of parameters.

Figure 11. MSEs of â1, b̂1, and δ̂1 in set 3 for all n values.
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8. Data Application

In this part, three real data examples from various scientific domains are modeled
using the new UEHLP model as an example of the UEHLPS class distributions. For
comparison with the UEHLP model, many distributions are recommended, such as the
unit exponential Pareto (UEP) model [36], the exponential Pareto (EP) model [37], the unit-
Weibull (UW) model [38], Marshall-Olkin extended Topp–Leone (MOETL) model [39], unit-
Gompertz (UG) model [40], unit gamma/Gompertz (UGG) model [41], Kavya–Manoharan
Kumaraswamy (KMKw) model [42], Kumaraswamy (Kw) model [43], power Topp-Leone
(PTL) model [44] and type I half-logistic Topp-Leone (TIHLTL) model [45].

Four measures of goodness of fit are used, the CV, Anderson–Darling (AN-D) test,
Kolmogorov–Smirnov (KOS) and the p-value is evaluated for reliable results.

The first data set includes 25 observations covering the period from 27 March 2020
to 20 April 2020 of the daily ratio of total recoveries to the total number of confirmed
cases in Turkey. Accessed by https://en.wikipedia.org/wiki/COVID-19_pandemic_in_
TurkeyCumulative_cases,_recoveries,_and_deaths.

The data set is: 0.0568, 0.0605, 0.0648, 0.0074, 0.0095, 0.0113, 0.015, 0.018, 0.0212, 0.0229,
0.0231, 0.127, 0.1388, 0.1476, 0.0328, 0.0385, 0.0818, 0.0955, 0.0439, 0.1099, 0.0464, 0.0483,
0.0507, 0.0515, 0.0737.

The second set of data relates to milk production. This data set includes the total milk
production from 107 SINDI race cows’ first calves. The details can be found in [46]. The
data set is: 0.4371, 0.4694, 0.5285, 0.5629, 0.6114, 0.6844, 0.7687, 0.0671, 0.2356, 0.3383, 0.3906,
0.4438, 0.0168, 0.4612, 0.515, 0.5553, 0.6012, 0.6768, 0.7471, 0.0609, 0.216, 0.3259, 0.3821,
0.4365, 0.4675, 0.3175, 0.3635, 0.426, 0.4576, 0.5232, 0.5627, 0.6058, 0.6789, 0.7629, 0.065,
0.2303, 0.3323, 0.3891, 0.4741, 0.5349, 0.5707, 0.6174, 0.686, 0.7804, 0.0776, 0.1546, 0.3188,
0.3751, 0.4332, 0.2361, 0.3406, 0.3945, 0.447, 0.4752, 0.535, 0.5744, 0.6196, 0.6891, 0.8147,
0.0854, 0.2605, 0.3413, 0.4049, 0.4517, 0.48, 0.5394, 0.577, 0.622, 0.6907, 0.8492, 0.1131, 0.2681,
0.348, 0.4111, 0.453, 0.4823, 0.5447, 0.5853, 0.6465, 0.6927, 0.8781, 0.1167, 0.2747, 0.3598,
0.4143, 0.4553, 0.499, 0.5481, 0.5878, 0.6488, 0.7131, 0.1479, 0.3134, 0.3627, 0.4151, 0.4564,
0.5113, 0.5483, 0.5912, 0.6707, 0.7261, 0.1525, 0.514, 0.5529, 0.5941, 0.675, 0.729. The third
data set is taken from [47] and is known as the failure components data; it is about the
ordered failure of 20 components. The data set is: 0.2099, 0.2168, 0.2918, 9.00 × 10−4, 0.004,
0.1404, 0.1498, 0.175, 0.0261, 0.0418, 0.0473, 0.0834, 0.1091, 0.1252, 0.2031, 0.0142, 0.0221,
0.3465, 0.4035, 0.6143.

Ten different statistical models are recommended for comparison with the UEHLP
model in Tables 4–6. It is obvious that the UEHLP model, which has a high p-value, achieves
the minimal value for all of the goodness of fit metrics. This shows that the UEHLP model
is more appropriate and effective than utilizing the other competing models for the three
suggested real-world data sets. The estimated PDF, CDF, SF, and probability-probability
(PP) plots of the UEHLP model for the three suggested real-world data sets are shown
in Figures 12–14. Additionally, the numerical values of ML estimates and their standard
errors (SEs) in Tables 4–6 are indicated.

For the proposed model, the estimated parameters, CV, AN-D, KOS, and p-value are
determined using various estimation techniques and are provided in Tables 7–9 for the
three real data sets, respectively. For the three proposed real-world data sets, Figures 15–20
show the plots of the estimated PDF, CDF, and PP plots of the UEHLP model utilizing ML,
LS, WLS, MPS, and CV techniques of estimation. The ML approach is the best method of
estimation for the numerical values in Tables 7–9.

https://en.wikipedia.org/wiki/COVID-19_pandemic_in_TurkeyCumulative_cases,_recoveries,_and_deaths
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_TurkeyCumulative_cases,_recoveries,_and_deaths
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Table 4. ML estimate and SE for the first data, along with certain goodness-of-fit measures.

Models ML Estimates and SEs CV AN-D KOS p-Value

UEHLP(a, b, δ) 1.310
(2.530)

19.067
(24.459)

2.447 × 10−5

(19.476)
0.027 0.209 0.080 0.997

UEP(α, β, λ) 1.342
(0.209)

0.115
(0.054)

2.063
(1.069)

0.030 0.229 0.101 0.941

EP(α, β, λ) 1.432
(0.224)

0.117
(0.909)

2.501
(27.807)

0.030 0.231 0.103 0.930

UW(α, β) 0.006
(0.003)

4.160
(0.418)

0.065 0.386 0.136 0.692

MOETL(α, β) 0.006
(0.005)

2.066
(0.298)

0.056 0.348 0.106 0.915

UGG(α, β, λ) 1.288
(0.283)

29.959
(14.070)

0.806
(0.400)

0.039 0.255 0.219 0.156

UG(α, β) 0.017
(0.013)

1.146
(0.180)

0.124 0.726 0.160 0.493

KMKw(α, β) 1.552
(0.245)

55.323
(37.219)

0.029 0.213 0.102 0.956

Kw(α, β) 1.416
(0.230)

50.934
(31.330)

0.028 0.211 0.102 0.957

PTL(α, β) 0.034
(0.022)

89.748
(111.173)

0.422 7.507 0.295 0.026

TIHLTL(α, β) 1.206
(0.221)

18.050
(8.231)

0.033 0.254 0.103 0.955

Table 5. ML estimate and SE for the second data, along with certain goodness-of-fit measures.

Models ML Estimates and SEs CV AN-D KOS p-Value

UEHLP(a, b, δ) 1.699
(0.322)

2.554
(0.332)

2.701
(1.037)

0.076 0.447 0.054 0.918

UEP(α, β, λ) 1.209
(0.087)

1.124
(1.018)

0.843
(0.415)

0.109 0.652 0.079 0.521

EP(α, β, λ) 2.601
(0.210)

0.637
(6.204)

1.662
(42.140)

0.232 1.524 0.083 0.449

UW(α, β) 0.985
(0.102)

1.562
(0.106)

0.396 2.424 0.121 0.089

MOETL(α, β) 1.054
(0.348)

2.023
(0.412)

0.225 1.426 0.097 0.268

UGG(α, β, λ) 4.158
(1.059)

5.238
(1.603)

0.427
(0.139)

0.220 1.438 0.107 0.175

UG(α, β) 2.119
(0.868)

0.388
(0.115)

0.521 3.095 0.184 0.002

KMKw(α, β) 2.403
(0.237)

2.923
(0.548)

0.246 1.506 0.086 0.409

Kw(α, β) 2.195
(0.222)

3.436
(0.582)

0.179 1.110 0.076 0.563

PTL(α, β) 0.912
(0.380)

2.377
(1.471)

0.198 1.513 0.098 0.251

TIHLTL(α, β) 2.045
(0.271)

1.582
(0.191)

0.123 0.789 0.077 0.546
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Table 6. ML estimate and SE for the third data, along with certain goodness-of-fit measures.

Models ML Estimates and SEs CV AN-D KOS p-Value

UEHLP(a, b, δ) 0.689
(0.336)

2.531
(0.777)

1.542
(2.757)

0.026 0.157 0.092 0.992

UEP(α, β, λ) 0.729
(0.127)

0.376
(0.498)

1.536
(1.763)

0.027 0.165 0.093 0.989

EP(α, β, λ) 0.900
(0.165)

0.265
(0.759)

1.627
(0.433)

0.043 0.242 0.119 0.907

UW(α, β) 0.160
(0.071)

1.727
(0.288)

0.057 0.330 0.132 0.833

MOETL(α, β) 0.352
(0.254)

0.835
(0.274)

0.049 0.279 0.110 0.949

UGG(α, β, λ) 1.343
(1.071)

3.852
(2.309)

0.435
(0.449)

0.040 0.227 0.157 0.651

UG(α, β) 0.772
(0.279)

0.596
(0.120)

0.043 0.242 0.119 0.907

KMKw(α, β) 0.839
(0.185)

2.966
(1.248)

0.038 0.216 0.116 0.951

Kw(α, β) 0.764
(0.175)
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Figure 12. Estimated PDF, CDF, SF and PP plots of UEHLP model for the first data.
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Figure 13. Estimated PDF, CDF, SF, and PP plots of UEHLP model for the second data.
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Figure 14. Estimated PDF, CDF, SF, and PP plots of UEHLP model for the third data.

Table 7. Estimated parameters with the goodness of fit measures by different estimation methods for
the first data.

Methods
ML Estimates and SEs

CV AN-D KOS p-Value
a b δ

ML 1.31 19.067 2.447 × 10−5 0.027 0.209 0.080 0.997

LS 0.284 4.322 30.446 0.072 0.493 0.030 0.970

WLS 0.251 4.320 47.322 0.069 0.449 0.091 0.909
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Table 7. Cont.

Methods
ML Estimates and SEs

CV AN-D KOS p-Value
a b δ

MPS 0.899 10.996 2.531 0.030 0.231 0.003 0.996

CV 0.254 4.452 53.328 0.046 0.395 0.032 0.968
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Figure 15. Estimated PDF and CDF of the UEHLP model using different estimation methods for the
first data.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ML

Obs

E
x
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LS

Obs

E
x
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

WLS

Obs

E
x
p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MPS

Obs

E
x
p

Figure 16. Cont.



Symmetry 2023, 15, 714 24 of 28

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CV

Obs

E
x
p

Figure 16. PP plots of the UEHLP model using different estimation methods for the first data.
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Figure 17. Estimated PDF and CDF of the UEHLP model using different estimation methods for the
second data.
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Figure 18. PP plots of the UEHLP model using different estimation methods for the second data.
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Figure 19. Estimated PDF and CDF of the UEHLP model using different estimation methods for the
third data.
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Figure 20. PP plots of the UEHLP model using different estimation methods for the third data.

Table 8. Estimated parameters with the goodness of fit measures by different estimation methods for
the second data.

Methods
ML Estimates and SEs

CV AN-D KOS p-Value
a b δ

ML 1.699 2.554 2.701 0.076 0.447 0.054 0.918

LS 1.898 2.739 2.454 0.133 0.814 0.197 0.803

WLS 1.823 2.671 2.572 0.125 0.770 0.161 0.839

MPS 1.558 2.355 2.869 0.105 0.701 0.110 0.890

CV 1.944 2.813 2.416 0.141 0.864 0.223 0.777

Table 9. Estimated parameters with the goodness of fit measures by different estimation methods for
the third data.

Methods
ML Estimates and SEs

CV AN-D KOS p-Value
a b δ

ML 0.689 2.531 1.542 0.026 0.157 0.092 0.992

LS 0.126 1.715 20.598 0.052 0.299 0.029 0.971

WLS 0.101 1.696 27.648 0.053 0.309 0.035 0.965

MPS 0.471 1.959 2.635 0.040 0.253 0.013 0.987

CV 0.070 1.817 73.601 0.063 0.362 0.019 0.981

9. Concluding Remarks

In this study, a novel class of bounded distributions known as the unit exponentiated
half logistic power series (UEHLPS) is created. This class is created by combining the
power series and the unit exponentiated half logistic (UEHL) distributions. This com-
pounding method allows for the construction of important distributions with significant
physical importance in the disciplines of biology and engineering. Four new sub-models
are provided. Statistical aspects of the class include formulas for the quantile function,
entropy measurements, moments and incomplete moments, limiting behavior, density,
and cumulative distribution functions. The parameters of one sub-model of the class are
estimated using five estimation techniques. Using simulated data, we assess how well the
various estimators perform. According to the simulated results, the estimates based on the
MPS typically have lower accuracy measure values than the other estimates. To illustrate
the usefulness of one sub-model, three real data sets from various scientific areas are used.
The new model that has been developed frequently provides better fits for these data sets
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than the other ten competing models. Some directions can be done in future research, with
an estimation based on ranked set sampling being one of the key areas [48–50]. Moreover,
the multivariate case may be regarded as extended work [51,52].

Author Contributions: S.M.A., A.S.H., M.E., I.E., R.E.M. and M.S.; Methodology, S.M.A., A.S.H., M.E.,
I.E., R.E.M. and M.S.; Formal analysis, S.M.A., A.S.H., M.E., I.E., R.E.M. and M.S.; Writing—original
draft, S.M.A., A.S.H., M.E., I.E., R.E.M. and M.S.; Writing—review & editing, S.M.A., A.S.H., M.E.,
I.E., R.E.M. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: Researchers supporting project number (RSP2023R464), King Saud University, Riyadh,
Saudi Arabia.

Data Availability Statement: Data sets are available in the application section.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morais, A.L.; Barreto-Souza, W. A compound class of Weibull and power series distribution. Comput. Stat. Data Anal. 2011, 55,

1410–1425.
2. Mahmoudi, E.; Jafari, A.A. Generalized exponential power series distributions. Comput. Stat. Data Anal. 2012, 56, 4047–4066.
3. Silva, R.B.; Bourguignon, M.; Dias, C.R.B.; Cordeiro, G.M. The compound family of extended Weibull power series distributions.

Comput. Stat. Data Anal. 2013, 58, 352–367.
4. Jafari, A.A; Tahmasebi, S. Gompertz-power series distributions. Commun. Stat. Theory Methods 2016, 45, 3761–3781 [CrossRef]
5. Elbatal, I.; Zayedm, M.; Rasekhi, M.; Butt, N.S. The Exponential Pareto Power Series Distribution: Theory and Applications. Pak.

J. Stat. Oper. Res. 2017, 13, 603–615.
6. Silva, R.B.; Corderio, G.M. The Burr XII power series distributions: A new compounding family. Braz. J. Probab. Stat. 2015, 29,

565–589.
7. Oluyede, B.; Mdlongwa, P.; Makubate, B.; Huang, S. The Burr–Weibull power series class of distributions. Austrian J. Stat. 2018,

48, 1–13. [CrossRef]
8. Alizadeh, M.; Bagheri, S.F.; Bahrami-Samani, E.; Ghobadi, S.; Nadarajah, S. Exponentiated power Lindley power series class of

distributions: Theory and applications. Commun.-Stat.-Simul. Comput. 2018, 47, 2499–2531.
9. Alkarni, S.H. Generalized inverse Lindley power series distributions: Modeling and simulation. J. Nonlinear Sci. Appl. 2019, 12,

799–815.
10. Makubate, B.; Gabanakgosi, M.; Chipepa, F.; Oluyede, B. A new Lindley–Burr XII power series distribution: Model, properties

and applications. Heliyon 2021, 7, e07146.
11. Rivera, P.A.; Calderín-Ojeda, E.; Gallardo, D.I.; Gómez, H.W. A Compound Class of the Inverse Gamma and Power Series

Distributions. Symmetry 2021, 13, 1328. [CrossRef]
12. Hassan, A.S.; Almetwally, E.M.; Gamoura, S.C.; Metwally, A.S.M. Inverse exponentiated Lomax power series distribution: Model,

estimation and application. J. Math. 2022, 2022, 1998653. [CrossRef]
13. Flores, J.; Borges, P.; Cancho, V.G.; Louzada, F. The complementary exponential power series distribution. Braz. J. Probab. Stat.

2013, 27, 565–584.
14. Hassan, A.S.; Assar, M.S.; Ali, K.A. Complementary Poisson–Lindley class of distributions. Int. J. Adv. Stat. Probab. 2015, 3,

146–160.
15. Bagheri, S.F.; Samani, E.B.; Ganjali, M. The generalized modified Weibull power series distribution: Theory and applications.

Comput. Stat. Data Anal. 2016, 94, 136–160.
16. Hassan, A.S.; Abd-Elfattah, A.M.; Hussein, A.M. The complementary exponentiated inverted Weibull power series family of

distribution and its applications. Br. J. Math. Comput. Sci. 2016, 13, 1–20. [CrossRef]
17. Oluyede, B.O.; Mashabe, B.; Fagbamigbe, A.; Makubate, B.; Wanduku, D. The exponentiated generalized power series family of

distributions: Theory, properties and applications. Heliyon 2020, 6, e04653. [CrossRef]
18. Hassan, A.S.; Assar, S.M. A new class of power function distribution: Properties and applications. Ann. Data Sci. 2021, 8, 205–225.
19. Papke, L.E.; Wooldridge, J.M. Econometric methods for fractional response variables with an application to 401(K) plan participa-

tion rates. J. Appl. Econom. 1996, 11, 619–632.
20. Jiang, R. A new bathtub curve model with finite support. Reliab. Eng. Syst. Saf. 2013, 119, 44–51.
21. Dedecius, K.; Ettler, P. Overview of bounded support distributions and methods for Bayesian treatment of industrial data. In

Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Reykjavik,
Iceland, 29–31 July 2013; pp. 380–387.

22. Genc, A.I. Estimation of P(X > Y) with Topp-Leone distribution. J. Stat. Comput. Simul. 2013, 83, 326–339. [CrossRef]
23. Almetwally, E.M.; Jawa, T.M.; Sayed, A.N.; Park, C.; Zakarya, M.; Dey, S. Analysis of unit-Weibull based on progressive type-II

censored with optimal scheme. J. Alex. Eng. J. 2023, 63, 321–338.

http://doi.org/10.1080/03610926.2014.911904
http://dx.doi.org/10.17713/ajs.v48i1.633
http://dx.doi.org/10.3390/sym13081328
http://dx.doi.org/10.1155/2022/1998653
http://dx.doi.org/10.9734/BJMCS/2016/21903
http://dx.doi.org/10.1016/j.heliyon.2020.e04653
http://dx.doi.org/10.1080/00949655.2011.607821


Symmetry 2023, 15, 714 28 of 28

24. Alrumayh, A.; Weera, W.; Khogeer, H.A.; Almetwally, E.M. Optimal analysis of adaptive type-II progressive censored for new
unit-Lindley model. J. King Saud Uni. Sci. 2023, 35, 102462.

25. Hassan, A.S.; Fayomi, A.; Algarni, A.; Almetwally, E.M. Bayesian and non-Bayesian inference for unit exponentiated half logistic
distribution with data analysis. Appl. Sci. 2022, 12, 11253. [CrossRef]

26. Patil, G.P. Certain Properties of the Generalized Power Series Distribution. Ann. Math. Stat. 1962, 21, 179–182.
27. Patil, G.P. On homogeneity and combined estimation for the generalized power series distribution and certain applications

.Biometrics 1962, 18, 365–374. [CrossRef]
28. Patil, G.P. Minimum variance unbiased estimation and certain problems of additive number theory. Ann. Math. Stat. 1963, 34,

1050–1056. [CrossRef]
29. Zamanzade, E.; Mahdizadeh, M. Goodness of fit tests for Rayleigh distribution based on Phi-divergence. Rev. Colomb. EstadíStica

2017, 40, 279–290.
30. Mahdizadeh, M.; Zamanzade, E. A comprehensive study of lognormality tests. Electron. J. Appl. Stat. Anal. 2017, 10, 349–373.
31. Mahdizadeh, M.; Zamanzade, E. New goodness of fit tests for the Cauchy distribution. J. Appl. Stat. 2017, 44, 1106–1121.

[CrossRef]
32. Mahdizadeh, M.; Zamanzade, E. Goodness-of-fit testing for the Cauchy distribution with application to financial modeling. J.

King Saud-Univ.-Sci. 2019, 31, 1167–1174.
33. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products; Academic Press: San Diego, CA, USA, 2000.
34. Cheng, R.C.H.; Amin, N.A.K. Product-of-Spacings Estimation with Applications to the Lognormal Distribution; Math Report 79-1;

University of Wales IST: Cardiff, UK, 1979.
35. Ranneby, B. The maximum spacing method. An estimation method related to the maximum likelihood method. Scand. J. Stat.

1984, 93–112.
36. Haj Ahmad, H.; Almetwally, E.M.; Elgarhy, M.; Ramadan, D.A. On unit exponential pareto distribution for modeling the recovery

rate of COVID-19. Processes 2023, 11, 232. [CrossRef]
37. Al-Kadim, K.A.; Boshi, M.A. Exponential Pareto distribution. Math. Theory Model. 2013, 3, 135–146.
38. Mazucheli, J.; Menezes, A.F.B.; Ghitany, M.E. The unit-Weibull distribution and associated inference. J. Appl. Probab. Stat. 2018,

13, 1–22.
39. Opone, F.C.; Osemwenkhae, J.E. The transmuted Marshall-Olkin extended Topp-Leone distribution. Earthline J. Math. Sci. 2022, 9,

179–199.
40. Mazucheli, J.; Menezes, A.F.; Dey, S. Unit-Gompertz distribution with applications. Statistica 2019, 79, 25–43.
41. Bantan, R.A.; Jamal, F.; Chesneau, C.; Elgarhy, M. Theory and applications of the unit gamma/Gompertz distribution. Mathematics

2021, 9, 1850.
42. Alotaibi, N.; Elbatal, I.; Shrahili, M.; Al-Moisheer, A.S.; Elgarhy, M.; Almetwally, E.M. Statistical inference for the Kavya–

Manoharan Kumaraswamy model under ranked set sampling with applications. Symmetry 2023, 15, 587.
43. Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol. 1980, 46, 79–88.
44. Elgarhy, M.; Hassan, A.S.; Nagy, H. Parameter estimation methods and applications of the power Topp-Leone distribution. Gazi

Univ. J. Sci. 2022, 35, 731–746. [CrossRef]
45. ZeinEldin, R.A.; Chesneau, C.; Jamal, F.; Elgarhy, M. Different estimation methods for type I half-Logistic Topp–Leone distribution.

Mathematics 2019, 7, 985. [CrossRef]
46. Cordeiro, G.M.; dos Santos Brito, R. The beta power distribution. Braz. J. Probab. Stat. 2012, 26, 88–112.
47. Nigm, A.M.; Al-Hussaini, E.K.; Jaheen, Z.F. Bayesian one-sample prediction of future observations under Pareto distribution.

Statistics 2003, 37, 527–536. [CrossRef]
48. Hassan, A.S.; Elshaarawy, R.S.; Nagy, H.F. Parameter estimation of exponentiated exponential distribution under selective ranked

set sampling. Stat. Transit. New Ser. 2022, 23, 37–58. [CrossRef]
49. Nagy, H.F.; Al-Omari, A.I.; Hassan, A.S.; Alomani, G.A. Improved estimation of the inverted Kumaraswamy distribution parameters

based on ranked set sampling with an application to real data. Mathematics 2022, 10, 4102. [CrossRef]
50. Hassan, A.S.; Almanjahie, I.M.; Al-Omari, A.I.; Alzoubi, L.; Nagy, H.F. Stress-strength modeling using median ranked set

sampling: Estimation, simulation, and application. Mathematics 2023, 11, 318. [CrossRef]
51. Patil, G.P. On multivariate generalized power series distribution and its application to the multinomial and negative multinomial.

Indian J. Stat. Ser. A 1966, 28, 225–238.
52. Patil, G.P. On sampling with replacement from populations with multiple characters. Indian J. Stat. Ser. B 1968, 30, 355–366.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app122111253
http://dx.doi.org/10.2307/2527478
http://dx.doi.org/10.1214/aoms/1177704029
http://dx.doi.org/10.1080/02664763.2016.1193726
http://dx.doi.org/10.3390/pr11010232
http://dx.doi.org/10.35378/gujs.776277
http://dx.doi.org/10.3390/math7100985
http://dx.doi.org/10.1080/02331880310001598837
http://dx.doi.org/10.2478/stattrans-2022-0041
http://dx.doi.org/10.3390/math10214102
http://dx.doi.org/10.3390/math11020318

	Introduction
	Formation of the New Class
	Useful Expansion
	Limiting Behavior

	Special Sub Models
	The UEHLP Distribution
	The UEHLL Distribution
	The UEHLG Distribution
	The UEHLB Distribution

	General Properties
	Moments Measures
	Incomplete Moments

	Entropy Measures
	Parameter Estimation of the UEHLPS Class
	ML Estimation
	Maximum Product of Spacings Estimation
	LS and WLS Estimation
	Cramér–von Mises Estimation

	Simulation
	Data Application
	Concluding Remarks
	References

