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Abstract: In this study, we calculate the pressure of the interacting pion gas using the Beth–Uhlenbeck
approach to the relativistic virial expansion with Breit–Wigner phase shifts for the σ- and $-meson
resonances. The repulsive phase shift δ2

0 is taken from the quark interchange model of Barnes and
Swanson, which is in very good agreement with the experimental data. In this work we show that the
cancellation of the attractive (I = 0) and repulsive (I = 2) isospin channel contributions to the scalar
ππ interaction in the low-energy region that is known for the vacuum phase shifts also takes place
at a finite temperature. This happens despite the strong medium dependence of these phase shifts
that enters our model by the temperature dependence of the σ-meson and constituent quark masses,
because for these masses the relation Mσ(T) ≈ 2mq(T) holds and the scattering length approximation
is valid as long as the strong decay channel σ → ππ is open. Exploiting the Nambu–Jona-Lasinio
model for describing the dynamical breaking of chiral symmetry in the vacuum and its restoration at
a finite temperature, we justify with our approach that the σ-meson should be absent from the hadron
resonance gas description at low temperatures because the above cancellation holds. However,
since this cancellation breaks down in the vicinity of the hadronization transition, where due to
chiral symmetry restoration the decay channel σ → ππ closes and the σ-meson becomes a good
resonance, the latter should be included into the statistical model description of chemical freeze-out
in heavy-ion collisions.

Keywords: Breit–Wigner; Beth–Uhlenbeck; phase shift; pion gas; NJL model

1. Introduction

The thermodynamics of the hadron resonance gas (HRG) is of crucial importance for
the interpretation of the results of the ab initio evaluation of the QCD partition function by
simulations of the lattice gauge theory as well as for the explanation of yields of hadrons
produced in ultrarelativistic heavy-ion collisions at the chemical freeze-out. This HRG
model makes the simplifying assumption that instead of accounting for the interactions
among hadrons one may just evaluate the statistical sum over all known resonances in
the spectrum of hadrons as eigenstates of the QCD Hamiltonian. While such a procedure
would account for the attractive interaction leading to the formation of resonances in the
spectrum, one may additionally account for repulsion by invoking an excluded volume of
the hadrons treated, e.g., as hard spheres [1].

A simple model system for the study of the interplay between attraction and repulsion
in hot hadronic matter is the interacting pion gas at a finite temperature. For its description
one can use the Beth–Uhlenbeck approach with the well-measured phase shifts of the pion–
pion interactions in free space, which allow us to evaluate the second virial coefficient of
the partition function [2]. Soon after that, it is realized [1] that the contributions from phase
shifts in the attractive isospin-zero σ-meson channel (δ0

0) and in the repulsive isospin-2
channel (δ2

0) largely compensate for each other in the partition function. This cancellation
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has also been obtained within the Nambu–Jona-Lasinio (NJL) model description of pion–
pion scattering lengths at a finite temperature [3] where it could be traced to the manifest
chiral symmetry in this field-theoretic quark model of the interacting pion gas. This model
reproduces the Weinberg relations for the scattering lengths, which are the basis for the
cancellation. On the quark level of description, the repulsion in the ππ scattering is due to
the quark exchange interaction between pions, represented on the quark one-loop level
by the so-called box diagrams. It can be shown that this quark exchange interaction,
also denoted as quark Pauli blocking, leads to a repulsive phase shift, which is well in
accordance with the experimental data [4].

The cancellation of the scalar isoscalar σ-meson (f0(500)) against the repulsion in the
scalar isotensor channel was recently rediscovered in Ref. [5], where it was discussed
whether the σ meson should be included to the HRG thermodynamics. The authors
concluded that one should not incorporate f0(500) in standard HRG models for studies of
isospin averaged quantities [5,6]. They suggested that a similar cancellation should take
place in the corresponding channels for kaon interactions with the κ as the chiral partner
state of the kaon, see also Refs. [7,8] for a formulation within the S-matrix approach [9]. This
approach has been extended to the case of coupled channels [10], with explicit discussion
of the thermal contribution of the f0(500) which, due to the cancellation with the repulsive
isotensor ππ scattering channel, should be excluded from the HRG thermodynamics. We
note that, in referring to the σ-meson cancellation, it has already been pointed out in
Ref. [11] that the vacuum phase shifts should no longer be valid for temperatures above
T ≈ 100 MeV. A reconsideration of this cancellation question is mandatory, including the
possible medium dependence of the phase shifts at high temperatures.

On the other hand, in Ref. [12] it was pointed out that the inclusion of the σ-meson to
the HRG gives a significant improvement of the statistical model description of the “horn”
structure in the beam energy dependence of the kaon to pion ratio K+/π+. The question
arises whether both statements can be simultaneously true. Namely, that on the one hand
in the Beth–Uhlenbeck (or S-matrix) formulation of the thermodynamics of the interacting
HRG, a cancellation of the attractive δ0

0 channel (σ-meson) against the repulsive δ2
0 channel

(Pauli blocking) occurs, and that on the other hand a sigma meson has to be considered
as an important degree of freedom in the statistical model of particle production where a
sudden (chemical) freeze-out of particle species occurs in the vicinity of the QCD chiral
restoration/quark deconfinement temperature.

We want to answer this question affirmatively in the following way. When formulat-
ing the hadron resonance gas in the S-matrix formalism, one has to take into account the
medium effects on the scattering phase shifts, i.e., to apply the generalized Beth–Uhlenbeck
approach. This should then in particular take into account the effects of the chiral symmetry
restoration, namely that the sigma meson becomes degenerate with the pion (parity dou-
bling) above the chiral restoration transition that entails dropping quark masses. Before the
sigma meson mass becomes degenerate with that of the pion, it has to cross the two-pion
mass threshold where the strong two-pion decay channel of the sigma meson closes and
it becomes a sharp resonance [13]. For a resonance at the threshold, the scattering length
approximation breaks down, while a Breit–Wigner ansatz for the phase shifts will be ap-
propriate. The dropping quark masses entail a Mott effect for both the pion and the sigma.
This character change of the mesons from bound states to resonances in the continuum
leads to the ceasing of the quark Pauli blocking effect and thus the resulting phase shift
should turn to zero.

So, the cancellation of contributions from the S-wave resonances in the attractive (I = 0)
and the repulsive (I = 2) channels to the thermodynamics of the pion gas discussed on the
basis of the Beth–Uhlenbeck approach to the second virial coefficient, which uses the known
free-space phase shifts δI

l (
√

sππ) in the dominant channels (l, I) = (0, 0), (1, 1), (0, 2), can
be applicable also at a finite temperature. This finite temperature cancellation can be seen in
the framework of the NJL model [3], where the pion–pion scattering lengths were obtained
at a finite temperature.
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The goal of this work is to show how the σ-meson cancellation works at a finite
temperature when one uses the NJL model results for the temperature dependence of the
σ-meson mass and width parameter in the Breit–Wigner ansatz for the δ0

0 phase shift on
the one hand and the temperature dependent quark mass in the non-relativistic quark
exchange model for δ2

0 channel on the other.
The paper is organized as follows. We start with the Breit–Wigner phase shifts for the

δ1
1 (ρ-meson) and δ0

0 (σ-meson) channels [2] and use the result of the nonrelativistic potential
model calculation of the repulsive δ2

0 channel from the quark-exchange Born diagrams [4],
which takes into account the quark substructure of the pion. In Section 3, the temperature
dependence of the mass spectra and phase shifts is calculated in the framework of the NJL
model. The results are presented and discussed in Section 4.

2. The Interacting Pion Gas
2.1. Beth–Uhlenbeck Equation and Cancellation of the σ Meson

The virial expansion of the grand canonical partition function of the system with the
known S-matrix for two-particle scattering can be written as a virial expansion [1,9]

lnZ = lnZ0 + ∑
i1,i2

zi1
1 zi2

2 b(i1, i2), (1)

where zj = exp(βµj) for j = 1, 2 and b(i1, i2) is the second virial coefficient defined by the
S-matrix with labels i1, i2 referring to a channel of the S-matrix with i1 + i2 particles in the
initial state.

b(i1, i2) =
V

4πi

∫ d3P
(2π)3

∫
dε exp(−β

√
P2 + ε2)Tri1,i2

[
AS−1

←→
∂

∂ε
S

]
. (2)

Here β = T−1 is the inverse temperature, V is the volume, P is the center-of-mass (total)
momentum and ε the energy of the two-particle system. The symbol A denotes the
symmetrization/antisymmetrization operator for a system of bosons/fermions. The trace
is taken over all combinations of particle number. For a one-component system under the
assumption that hadrons interact mainly via elastic collisions, the second virial coefficients
of Equation (2) can be simplified by choosing the representation of the S-matrix in terms
of the two-particle phase shifts. The lowest virial coefficient b2 corresponds to the case
i1 = i2 = 1. Then, Equation (2) can be written as

b2 =
1

2π3β

∫ ∞

M
dεε2K2(βε)∑

l,I

′gl,I
∂δI

l (ε)

∂ε
, (3)

with the modified Bessel function K2 and the degeneracy factor gI
l = (2l + 1)(2I + 1). M

is the invariant mass of the interacting pair at threshold. For a given l, the sum over I
is restricted to values consistent with statistics. In the limit that only the second virial
coefficient is considered, the interaction pressure (as well as all the other thermodynamic
variables) can be obtained from Equation (1) in the form of a Beth–Uhlenbeck equation,

Pint = Tz2b2 =
z2

2π3β2

∫ ∞

M
dεε2K2(βε)∑

l,I

′gl,I
∂δI

l (ε)

∂ε
. (4)

For the one component pion gas, the total center of mass energy is chosen as ε = 2(q2 +
M2

π)
1/2 and the threshold mass is M = 2Mπ in Equations (3) and (4). For the case δI

l → 0
at low energies ε → M the equation for the second virial coefficient b2 can be simplified
using integration by parts to

b2 =
1

2π3

∫ ∞

2Mπ

dεε2K1(βε)∑
l,I

′gl,Iδ
I
l (ε). (5)
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The corresponding pressure contribution from the two-particle interactions is

Pint = P00 + P02 + P11 , (6)

where the partial pressure contributions at vanishing chemical potential (z = 1) are defined
by the phase shift,

Pl I =
gl,I

2π3β

∫ ∞

2Mπ

dεε2K1(βε)δI
l (ε). (7)

The second virial coefficient b2 and therefore the thermodynamic functions are. The
phase shift in free space (vacuum) can be obtained from experiments and be compared
with the theoretical models for it. The latter could then also be used to predict its in-
medium modifications. The low-energy ππ interaction includes the δ0

0 , δ1
1 , δ2

0 phase shifts.
The repulsive isospin-2, S-wave phase shift can be well described in the scattering length
approximation by δ2

0 = −0.12q/Mπ . The phase shift δ1
1 contains the ρ-meson resonance

and δ0
0 contains the σ-meson resonance. These resonant phase shifts can be chosen in the

simple Breit–Wigner form [2],

δ0
0(ε) =

π

2
+ arctan

(
ε−Mσ

Γσ/2

)
, (8)

δ1
1(ε) =

π

2
+ arctan

(
ε−Mρ

Γρ/2

)
. (9)

For the case Mπ = 0.138 GeV, Mσ = 5.8 Mπ , Mρ = 5.53 Mπ and

Γσ = βσq, (10)

Γρ = βρq
(

q/Mπ

1 + (q/Mρ)2

)2
, (11)

with βσ = 2.06 and βρ = 0.095. In this approximation, the well-known picture for the
phase shifts δ0

0 , δ1
1 , δ2

0 is obtained, see Figure 1.
In Ref. [4], the phase shift for I = 2 low-energy ππ scattering was obtained within a

diagrammatic approach to the quark exchange interaction between qq̄ mesons in the frame-
work of a nonrelativistic potential model for their quark substructure; see also Ref. [14].
The phase shift, obtained by the so-called quark Born diagrams has the form

sin δ2
0 = −

 αs

9λm2

√
q2 + M2

π

q

(
1− e−2λq2

+
16λq2

3
√

3
e−4λq2/3

). (12)

The parameter αs is fixed to the value αs/m2 = 4.48 GeV−2 so that αs = 0.71 for the vacuum
quark mass m = 0.40 GeV. The parameter λ is related to the Gaussian wave function of
the nucleon in the usual simple-harmonic-oscillator (SHO) model with the quark-model
parameter βSHO = 1/(2

√
λ) = 0.337 [4]. The resulting phase shift δ2

0 is shown in Figure 1
as a blue dashed line.
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Figure 1. (Left panel): ππ-scattering phase shifts as functions of the total center-of-mass-
momentum. The blue dashed line corresponds to the phase shift δ2

0 calculated using Equation (12) [4].
(Right panel): Interaction contribution to the pressure according to the Beth–Uhlenbeck formula with
the medium-independent phase shifts of the left panel (without the contribution from the ρ-meson
channel). The almost perfect cancellation of the σ-meson (green dashed line) by the quark Pauli
blocking (red dashed-dotted line) is demonstrated by the blue solid line.

By inserting the phase shifts to the Beth–Uhlenbeck Formula (7), one can observe
an almost perfect cancellation of the sigma meson by the quark Pauli blocking; see the
right panel of Figure 1. This result has been obtained under the assumption that the phase
shifts are independent of the temperature, which is no longer valid when approaching the
pseudocritical temperature Tc, where chiral symmetry gets restored and the pion undergoes
a Mott dissociation. This pion dissociation effect on the Pauli blocking phase shift δ2

0 can be
accounted for by multiplying it with a factor

c(T) =

{
|2m(T)−Mπ(T)|/|2m(0)−Mπ(0)|, if T < TMott,π .
0, otherwise.

(13)

which quantifies the reduction of the binding energy when approaching the Mott tem-
perature. In Equation (13), m(T) denotes the temperature-dependent quark mass and
m(0) = m is its value in the vacuum. The relation to the fourth power of the pion–quark–
antiquark coupling gπqq(T) = |2m(T)−Mπ(T)|1/4 is plausible because the Pauli blocking
effect is encoded in the quark box diagram for the four pion vertex; see Equation (3.4) of
Ref. [15].

2.2. Analytic Justification for the Cancellation

The σ cancellation at low energies and the robustness of this result at finite temper-
atures despite the in-medium modification of the phase shifts can also be understood
analytically in the low-momentum expansion of the phase shifts of Equations (8) and (12),
which introduce the scattering lengths aI

l ,

dδi
l

dq

∣∣∣∣
q=0
≈ aI

l . (14)

The σ meson scattering length is then

a0
0 =

βσ

2(Mσ − 2Mπ)
, βσ = 2.06, (15)

which becomes singular in the vicinity of the chiral transition, when Mσ → 2Mπ and the
dominant σ→ 2π decay channel closes so that the σ meson becomes a good resonance at
the threshold. This is the limitation for the present considerations because the scattering
length approximation breaks down in this case.
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The scattering length for the phase shift of the quark exchange process (quark Pauli
blocking) from the Equation (12) gives

a2
0 = −2

9

(
1 +

8
3
√

3

)
αs

Mπ

m2 , (16)

so that we obtain for the relevant ratio of scattering lengths

a0
0

5a2
0

=
1.03

−2Mπ + Mσ

1
5

(
−0.565 αs Mπ

m2

)−1
= − 1.03
−2M2

π + Mσ Mπ

m2

2.82αs

=
1.03

2(Mπ −Mσ/4)2 −M2
σ/8

m2

2.82αs
≈ − 4m2

1.41 αs M2
σ

, (17)

where in the last step the approximation (mπ −mσ/4)2 ≈ 0 has been used.
The wanted result of the cancellation by quark Pauli blocking of the σ meson contri-

bution to the thermodynamics of the pion gas is obtained when αs ∼ 0.7. Then, because
Mσ ≈ 2m, the result is a0

0/5a2
0 = −0.99, which means the total cancellation of contributions

from the σ—channel by the contribution from the repulsive Pauli-blocking channel. For the
parameter set given by Welke [2] δ0

0/5δ2
0 = −1.18 and for the Weinberg results a0 = 0.158

and a2 = −0.045 follows a0
0/5a2

0 = −0.708 [16].
We observe that the result of the cancellation of the σ meson as a resonance in the inter-

acting pion gas by quark Pauli blocking depends only on the relation Mσ = 2m between the
masses of the σ and the quark as well as the approximate validity of (Mπ −Mσ/4)2 ≈ 0.
Therefore, one can expect that it should also hold when going beyond the standard Beth–
Uhlenbeck approach and taking into account an explicit temperature dependence of the
phase shifts, as long as the above relations between quark and meson masses remain
intact. In the following, we consider the Nambu–Jona-Lasinio model for describing the
temperature dependence of quark and meson masses as well as meson decay constants, so
that the limits of the cancellation effect can be estimated.

3. Mesons at a Finite Temperature in the Nambu–Jona-Lasinio Model

In Equations (5) and (7), the dependence on the temperature appears due to the
parameter β = 1/T only and it is assumed here that other quantities (such as masses and
δI

l ) are temperature independent. Since the constituent quark mass in (12) is generated
by dynamical chiral symmetry breaking in the vacuum, one can expect its approximate
restoration at finite temperatures (and densities). This effect of chiral symmetry restoration
(χSR) in a hot and dense medium can be modeled with the Nambu–Jona-Lasinio (NJL)
model [17].

We employ here the NJL model with two flavors of quarks defined by the Lagrangian

LNJL = q̄
(
iγµ∂µ − m̂0

)
q + Gs

[
(q̄q)2 + (q̄iγ5~τq)2

]
− Gv

[
(q̄γµτaq)2 + (q̄γµγ5τaq)2

]
, (18)

with chirally symmetric four-quark interactions in the scalar, pseudo-scalar, vector, and
axial-vector channels. Gs and Gv are the scalar and vector coupling constants, q̄ and q
are the quark spinor fields, m̂0 is the diagonal matrix of the current quark mass, m̂0 =
diag(m0

u, m0
d) with m0

u = m0
d = m0, and −→τ are the SU(2) Pauli matrices in flavor space with

the components τa(a = 1, 2, 3).
In the mean-field approximation, the constituent quark mass is obtained by solving

the gap equation at the mean field level

m = m0 + 8GsNcN f

∫
Λ

d3 p
(2π)3

m
Ep

[
1− f (E+)− f (E−)

]
, (19)
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where the dependence on temperature and chemical potential is modeled in the Fermi-
functions f (E±) = (1 + eβE±p )−1 and the quark (antiquark) energy dispersion relation
E±p = Ep ± µ.

Mesons are considered as quark-antiquark bound states and their properties are
described by the Bethe–Salpeter equation in the pole approximation

1− 2Gs ΠM(k2)|k2=M2
M
= 0 , M = π, σ, (20)

with the polarization operator ΠM(k2) determining the meson properties being defined as

ΠM(k2) = i
∫ d4 p

(2π)4 Tr [ΓMS(p + k)ΓMS(p)], (21)

where the vertex factor ΓM depends on the meson species M = π, σ, ρ and a1. For the
pseudo-scalar π meson Γπ = iγ5τa and for the scalar σ meson Γσ = 1τa; S(q) is the quark
propagator and the trace is being taken over color, flavor, and spinor indices. For mesons at
rest (P = 0) medium, these conditions correspond to the equations:

1 + 8GsNcN f

∫ d3 p
(2π)3

1
Ep

E2
p

M2
π − 4E2

p

(
1− f (E+)− f (E−)

)
= 0, (22)

1 + 8GsNcN f

∫ d3 p
(2π)3

1
Ep

E2
p −m2

M2
σ − 4E2

p

(
1− f (E+)− f (E−)

)
= 0 . (23)

Both pion–quark gπqq(T, µ) and sigma-quark gσqq(T, µ) coupling strengths can be
defined from ΠM by the residuum of the mass pole approximation (20)

g−2
Mqq(T, µ) =

∂ΠM(k2)

∂k2 |k2=M2
M

, M = π, σ. (24)

Generally, the pole mass Equation (20) can be extended to the vector and axial-vector
case, and Equations (19), (22), and (23) together with an equation for the vector meson is
solved self-consistently. To simplify the calculations for the ρ meson, the relations suggested
in Refs. [18–20] are used. The mass of the ρ-meson and its width can be calculated as

M2
ρ =

g2
ρqq

4Gv
, (25)

gρqq =
√

6gσqq, (26)

Γρππ =
g2

ρππ

48πM2
ρ

√(
M2

ρ − 4M2
π

)3
. (27)

The decay width Γσππ within the NJL model is defined by the triangle Feynman
diagram treating the sigma meson as a quark–antiquark system [21,22]:

Γσππ =
3
2

(2gσqqg2
πqq Aσππ(T, µ))2

16π Mσ

√
1− 4M2

π

M2
σ

, (28)

where the factor 3/2 takes into account the isospin conservation and gσqq and gπqq are
the coupling constants defined from Equation (24). The amplitude of the triangle vertex
Aσ→ππ is

Aσππ =
∫ d4q

(2π)4 Tr{S(q) Γπ S(q + P) Γπ S(q)}. (29)
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The kinematic factor
√

1− 4M2
π/M2

σ in (28) leads to the constraint Mσ > 2Mπ , if this
condition is broken, the decay σ → ππ is forbidden and the σ meson becomes a good
bound state of the ππ interaction with only a negligible electromagnetic decay width from
the σ→ γγ process [13].

In order to describe the mass spectra in the NJL model, a set of parameters is required.
Since we are interested in a phenomenology for the case that the constituent quark mass
in the vacuum is m = 400 MeV, we choose the corresponding parameterization from
Table V of Ref. [23] with the cutoff parameter Λ = 0.5879 GeV, the current quark mass
m0 = 5.582 MeV, and the scalar-pseudoscalar coupling constant GsΛ2 = 2.442. The vector
meson coupling constant GvΛ2 = 2.4 is found from fitting the ρ meson mass in vacuum
Mρ = 780 MeV.

The double quark mass, masses of scalar, pseudoscalar and vector mesons as functions
of the temperature at zero chemical potential are presented in Figure 2 (left panel). The
temperature is normalized to the pseudocritical temperature Tc = 0.225 GeV of the chiral
crossover transition at zero chemical potential. It is clearly seen that the masses of the π-
and ρ-meson stay almost constant when T < Tc. Then, the pion mass increases and exceeds
the mass of two constituent quarks at the Mott temperature Tπ

Mott = 0.244 GeV, where the
dissociation of the pion occurs (also called “soft deconfinement” [15]), which is analogous
to the Mott effect in solid-state and plasma physics [24].

2m

Mσ

Mπ

Mρ

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

T/Tc

Γρ/Γρ(0)

Γσ/Γσ(0)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T/Tc

Figure 2. (Left panel): the temperature dependence Mi(T) of mass spectra for mesons (i = π, σ, ρ)
and doubled quark mass m(T)). (Right panel): scaled temperature dependence of total decay widths
Γi(T)/Γi(0) for mesons (i = σ, ρ) calculated within the NJL model.

The temperature dependencies for Γσππ and Γρππ , calculated in the framework of the
NJL model are shown in the Figure 2 (right panel) as black and blue solid lines, accordingly.
It can be seen that the σ → ππ decay is forbidden after Tσ

diss = 0.228 GeV, where Γσππ

drops to zero. A center of mass momentum dependence for Γρ and Γσ, are introduced by
using Equations (10) and (11).

The phase shift δ0
0 calculated using Equation (8) for the temperatures T = 0, 0.15,

0.185 GeV is shown in the left panel of Figure 3. The blue line corresponds to the
Equation (8) without T-dependence and the results almost coincide due to the choice
of the NJL parameters giving the mass Mσ ∼ 0.8 GeV. The phase shift δ2

0 calculated
by Equation (12) for the temperatures T = 0, 0.15, 0.185 GeV is shown in the right
panel of Figure 3. The solid blue line reproduces the scattering length approximation
δ2

0 = −0.12q/mπ . The experimental data are taken from Refs. [25–28] for δ0
0 and Ref. [29]

for δ2
0 .
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Figure 3. The phase shifts δ0
0 (left panel) and δ2

0 (right panel) for different temperatures T = 0, 0.15,
0.185 GeV. The solid blue line in the right panel corresponds to the scattering length approximation
δ2

0 = −0.12q/Mπ . Experimental data are taken from Refs. [25–28] for δ0
0 and from Ref. [29] for δ2

0 .

The partial contributions to the total pressure for mesons were calculated according
to Equation (7). The repulsive isospin-2 channel phase shift was calculated according to
Equation (12). The partial contributions to the total pressure are presented in the left panel
of Figure 4 as functions of the temperature. The contributions from δ0

0 and 5δ2
0 compensate

for each other and the main virial correction to the pressure is given by the ρ meson. The
pressure of the ideal pion gas (red dashed line) and the interacting pion gas (black solid
line) are presented in the right panel of Figure 4.
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4

T / T c
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P i d e a l

P t o t a l

Figure 4. (Left panel): Contributions to the pressure of the pion gas at second order of the virial
expansion (ππ scattering) using the Beth–Uhlenbeck equation with medium dependent phase shifts.
The quark Pauli blocking term P02 (red dot-dashed line) is modified to take into account that it
vanishes when the pion bound state is dissociated. (Right panel): Pressure of the ideal pion gas (red
dashed line), compared to the total pressure with all three interaction channels (black solid line) and
with just the ρ-meson channel (blue dotted line). The ρ-meson contribution is also shown separately
by the blue dotted line.

4. Results and Conclusions

In this paper we discussed that the contribution to the pressure from the S-wave
channel is small due to an approximate cancellation of the attractive (I = 0) sigma resonance
contribution against the repulsive (I = 2) contribution, which is explained by quark Pauli
blocking. Using the simple Breit–Wigner approximation for the meson phase shifts [2] and
the nonrelativistic potential model result [4] for the phase shift in the repulsive channel
(I = 2) together with the temperature dependence of the mass spectra from the NJL model,
we show that this cancellation appears not only in a low-energy and low-temperature
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region, as previously discussed [1,5], but also takes place at a finite temperature as long as
T . 0.75Tc.

In Table 1, the relation a0
0/(5a0

2) obtained in the frame of the NJL model for different
temperatures is shown [3].

Table 1. The relation a0
0/(5a0

2) in the frame of the NJL model.

T = 0 T = 0.14 T = 0.16 T = 0.19 T = 0.2

a0
0 0.148 0.155 0.164 0.202 0.237

a0
2 −0.036 −0.037 −0.037 −0.041 −0.043

a0
0/(5a0

2) −0.826 −0.85 −0.88 −0.996 −1.11

The results obtained in Table 1 and the results shown in Figure 4 show that the
cancellation works also at a finite temperature. As can be seen from Figure 4, at high
temperatures near the phase transition the difference P00 + 5P20 becomes finite and the
σ-meson channel should be taken into account. A similar picture appears in the NJL model,
where the scattering length approximation is used [3]. It was discussed in the Introduction
that singularity in scattering lengths appears near the Tc due to the cancellation of the input
from the σ-exchange diagram to the total amplitude. Near the critical temperature the
interplay between the pion Pauli blocking process and the creation of σ meson appears as a
bounding state just before turning back into a resonance state [13].

This leads to the fact that deep inside the HRG phase for T � Tc a complete cancel-
lation of the σ meson against the repulsive channel appears, so the σ meson should not
be included in the HRG model [5]. In the hadronization region for T ≈ Tc, however, it is
important to take into account the σ meson as the degree of freedom [12], since there is a
good resonance and the quark Pauli blocking ceases because of the Mott dissociation of
the pion.
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