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Abstract: In this paper, we study the plane-parallel motion of a circular foil interacting with two
vortex pairs in an infinite volume of an ideal fluid. We assumed that the circulation of the velocity
of the fluid around the foil was zero. We showed that the equations of motion possess an invariant
submanifold such that the foil performed translational motion and the vortices were symmetric
relative to the foil’s direction of motion. A qualitative analysis of the motion on this invariant
submanifold was made. New relative equilibria were found, a bifurcation diagram was constructed,
and a stability analysis is given. In addition, trajectories generalizing Helmholtz leapfrogging were
found where the vortices passed alternately through each other, while remaining at a finite distance
from the foil.

Keywords: point vortices; ideal fluid; bifurcation diagram; stability; relative equilibria; Poincaré map;
Helmholtz leapfrogging
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1. Introduction

In this paper we investigate the problem of the motion of a circular foil interacting
with two pairs of point vortices using the model of an ideal incompressible fluid. A detailed
account of the historical development and various versions of this problem is provided
in [1–3]. Here, we only mention the previously obtained results closely related to the system
under consideration.

The equations of motion of two pairs of vortices in an infinite fluid (i.e., in the ab-
sence of a foil) demonstrate chaotic scattering [4]. However, these equations possess an
invariant manifold where the solution can be obtained explicitly (see, e.g., [5]). This so-
lution corresponds to mirror-symmetric vortex configurations. They include trajectories
describing Helmholtz leapfrogging, where the vortices pass alternately through each other
while remaining at a finite distance from each other. A detailed stability analysis of the
leapfrogging of vortices is given in [6,7].

In [8], the above-mentioned invariant manifold is generalized to the system of vortices
with a circular foil, and relative equilibria corresponding to a collinear configuration of
vortices and a foil were found. In addition, for vortex pairs with equal strengths, a relative
equilibrium was found where the vortices formed a square, and its geometric center was at
the center of the foil. By relative equilibria we mean the translational motion of vortices
and a foil such that the distances between them remain constant.

The search for the above-mentioned relative equilibria is closely related to equilibrium
points of another system describing the motion of vortex pairs around a fixed circular
cylinder in an incoming flow. Analogs of relative equilibria from [8], for two vortex pairs
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in an incoming flow, are presented in [9]. Other equilibrium points, such that both pairs
of vortices lie behind the foil, were found by numerical calculations in [10,11]. They are a
generalization of the classical Föppl equilibria [12].

In this work, using the reduced equations derived in [1] for the motion of n point
vortices and a circular foil, we obtained equations for a foil and two vortex pairs on an
invariant manifold corresponding to mirror-symmetric configurations. For these equations,
we found fixed points corresponding to relative equilibria. Among them were relative
equilibria with vortices behind the foil. They are an analog of the equilibria found in [10,11]
for an incoming flow. Next, using the methods of topological analysis of dynamical systems
(described, for example, in [13]), we investigated the stability of the found fixed points. The
efficiency of the application of the methods of topological analysis to problems of vortex
dynamics has been previously shown [13–15]. To numerically study the trajectories on an
invariant manifold, we constructed a Poincaré map. Using this map, we found trajectories
generalizing Helmholtz leapfrogging that is described above.

2. Equations of Motion

Main assumptions. Consider the plane-parallel motion of a cylindrical body (cylin-
der) in an infinite volume of an ideal fluid with two vortex pairs. Each vortex pair consists
of two point vortices with strengths equal in magnitude and opposite in sign. Let the
following conditions be satisfied:

• The foil of the body is a circle of radius a with its center of mass at the geometric center
of the circle C;

• The circulation of the velocity of the fluid around the foil is zero.

Choose two coordinate systems on a plane perpendicular to the motion of the vortices
and the cylinder (see Figure 1):

• A fixed (inertial) coordinate system OXY;
• A moving coordinate system Cxy attached to the foil, with its origin at the center of

the circle.

Figure 1. Coordinates and parameters describing a cylindrical foil and two pairs of point vortices in
an ideal fluid.

Let RC = (X, Y) be the radius vector of the geometric center of the foil C in the fixed
coordinate system OXY. Let us specify the foil’s orientation by the angle Θ between the
axes OX and Cx. Denote the coordinates of the ith pair of vortices in the moving axes Cxy
by r+i = (x+i , y+i ) and r−i = (x−i , y−i ), where r+i and r−i are the coordinates of the vortices
with positive Γi and negative −Γi strengths, respectively.

Reduced system. The equations of motion do not explicitly depend on the choice of
the origin and the direction of the axes of the fixed coordinate system OXY, so that the
vector field of the system possesses symmetry fields. An explicit form of these symmetry
fields is presented in the paper [1], which also gives a detailed description of the reduction
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procedure for the problem of the motion of n point vortices and a circular foil in an
ideal fluid.

Choose as variables of the reduced system the coordinates of vortices, the total mo-
mentum p = (px, py), and the total angular momentum pθ of the foil and the vortices in
the frame Cxy. Then, the reduced system has the following form (see [1] for details):

ṗx = py
∂Hr

∂pθ
, ṗy = −px

∂Hr

∂pθ
, ṗθ = px

∂Hr

∂py
− py

∂Hr

∂px
,

ẋ+i =
1

ρΓi

∂Hr

∂y+i
, ẏ+i = − 1

ρΓi

∂Hr

∂x+i
,

ẋ−i = − 1
ρΓi

∂Hr

∂y−i
, ẏ−i =

1
ρΓi

∂Hr

∂x−i
,

(1)

where i = {1, 2}, ρ is the density of the fluid, and Hr is a Hamiltonian that is given by the
relation

Hr =
1

2m

[
px − ρ

2

∑
i=1

Γi(y+i − y−i )− a2ρ
2

∑
i=1

Γi

(
y+i

(r+i )
2
− y−i

(r−i )
2

)]2

+
1
2I

[
pθ +

ρ

2

2

∑
i=1

Γi
(
(r+i )

2 − (r−i )
2)]2

+
1

2m

[
py + ρ

2

∑
i=1

Γi(x+i − x−i ) + a2ρ
2

∑
i=1

Γi

(
x+i

(r+i )
2
− x−i

(r−i )
2

)]2

−W,

W =
ρΓ1Γ2

4π
ln

S(r+1 , r−2 )S(r
−
1 , r+2 )

(r+1 − r−2 )
2(r−1 − r+2 )

2
− ρΓ1Γ2

4π
ln

S(r+1 , r+2 )S(r
−
1 , r−2 )

(r+1 − r+2 )
2(r−1 − r−2 )

2

− ρ

4π

2

∑
i=1

Γ2
i ln

(
(r+i )

2 − a2)((r−i )2 − a2)(r+i − r−i
)2

S(r+i , r−i )
,

(2)

where the function S(r1, r2) = a4 − 2a2r1r2 + r2
1r2

2 has been introduced and m and I are the
effective mass and the moment of inertia of the foil, respectively.

Equation (1) is a Hamiltonian system with the following Poisson brackets (only
nonzero Poisson brackets are presented):

{pθ , px} = −py, {pθ , py} = px,

{x+i , y+i } = −
1

ρΓi
, {x−i , y−i } =

1
ρΓi

.
(3)

This Poisson structure is degenerate (its rank is six) and hence possesses the Casimir
function

C = p2
x + p2

y, (4)

which is also a first integral of the system in (1). Moreover, the reduced system in (1)
possesses an additional first integral [1]

M = pθ +
ρ

2

2

∑
i=1

Γi
(
(r+i )

2 − (r−i )
2).

Reconstruction of dynamics. In order to define the motion of the foil in the fixed
coordinate system from the known solution of the reduced system in (1), it is necessary to
use the Noether integrals [1]:

PX = px cos Θ− py sin Θ, PY = px sin Θ + py cos Θ,

M = pθ + XPY −YPX .
(5)
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By rotating the fixed axes OXY (i.e., by choosing origin Θ), we can ensure that the
vector composed of the first integrals (PX , PY) is directed along the axis OX, i.e.,

PY = 0, PX = P(0) = const, MΘ = M(0) = const.

Accordingly, the angle Θ and the variable Y are expressed from (5) as follows:

tan Θ = − py

px
, Y =

M(0) + pθ

P(0)
. (6)

The evolution of the variable X describing the motion of the foil along the vector of the
total momentum is governed by equation [1]:

Ẋ =
∂Hr

∂px
cos Θ− ∂Hr

∂py
sin Θ.

Discrete symmetries and invariant submanifold. In the analysis of the dynamics of
the system in (1), an important role is played not only by the above-mentioned conservation
laws (the first integrals and the Poisson tensor), but also discrete symmetries. Let us
consider them in more detail.

The reduced system in (1) admits two involutions (time-reversal symmetries). One of
them involves rearranging the position of the vortices in the pair and changing the sign of
the linear and angular momenta:

R(1) : px → −px, py → −py, pθ → −pθ , x+i → x−i , y+i → y−i , x−i → x+i , y−i → y+i , t→ −t,

and the other has the form

R(2) : px → −px, py → py, pθ → pθ , x+i → x+i , y+i → −y+i , x−i → x−i , y−i → −y−i , t→ −t.

Remark 1. It is fairly simple to verify the presence of the involutions of R(1) and R(2). Indeed,
after an appropriate change in variables of the reduced system (without time reversal) the Hamilto-
nian Hr remains invariant, while the right-hand sides of Equation (1) change their sign. Therefore,
in order that the equations remain invariant, it is necessary to reverse the direction of time.

Composing these two involutions, we obtain the following transformation of symme-
try for the reduced system:

S(1) = R(1) ◦ R(2) : px → px, py → −py, pθ → −pθ , x+i → x−i , y+i → −y−i , x−i → x+i , y−i → −y+i .

As is well known, the fixed points of this symmetry form the invariant submanifold of the
system in (1):

N =
{
(p, pθ , r+1 , r−1 , r+2 , r−2 ) | px = const, py = 0, pθ = 0,

x+1 − x−1 = 0, y+1 + y−1 = 0, x+2 − x−2 = 0, y+2 + y−2 = 0
}

.
(7)

Throughout the rest of the paper we restrict ourselves to the analysis of the dynamics of a foil
and vortices on the invariant submanifold N .

Restriction of the system to the invariant submanifold. Let us parameterize mani-
fold N using the dimensionless variables z = (x1, y1, x2, y2) and f as follows:

f =
px

aρΓ1
, xi =

x+i
a

, yi =
y+i
a

, i = 1, 2
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and define the parameters

µ =
πρa2

m
∈ (0, 1), γ =

Γ1

Γ2
.

Thus, for the vortex pair we keep track, in fact, only of the coordinates of the vortex with
positive strength, since, knowing them from (7), we can always restore the position of a
vortex with negative strength.

Rescaling time as

t =
Γ1

2a2 τ,

we obtain equations of motion on the invariant manifold N in the following Hamiltonian
form:

dx1

dτ
=

∂H
∂y1

,
dy1

dτ
= − ∂H

∂x1
,

dx2

dτ
=

1
γ

∂H
∂y2

,
dy2

dτ
= − 1

γ

∂H
∂x2

,
(8)

where the Hamiltonian H is

H(z) =
µ

2π

[
f − 2y1

(
1− 1

r2
1

)
− 2γy2

(
1− 1

r2
2

)]2

+
1

4π
ln

y2
1
(
r2

1 − 1
)2

(r2
1 + 1)2 − 4x2

1
+

γ2

4π
ln

y2
2
(
r2

2 − 1
)2(

r2
2 + 1

)2 − 4x2
2

+
γ

2π
ln

1− 2(x1x2 + y1y2) + r2
1r2

2
(x1 − x2)2 + (y1 − y2)2 −

γ

2π
ln

1− 2(x1x2 − y1y2) + r2
1r2

2
(x1 − x2)2 + (y1 + y2)2 ,

(9)

where ri = (xi, yi), i = {1, 2}. We note that f in (8) is a parameter that corresponds to the
fixed value of the Casimir function (4) of the initial system.

In the system in (8), one should exclude such values of the coordinates z where the
following hold:

• One of the vortices lies inside the foil

Di = {z | x2
i + y2

i < 1}, i = 1, 2;

• Vortices in one of the pairs collide

Pi = {z | yi = 0}, i = 1, 2;

• Vortices from different pairs collide

W = {z | x1 = x2, y1 = y2}.

As can be seen, the Hamiltonian H has a singularity at P1, P2, W and on the boundary of
D1 and D2.

We note that Equation (8) is symmetric under the transformation

f → − f , y1 → −y1, y2 → −y2, τ → −τ. (10)

Therefore, without loss of generality, it can be assumed that, for example, y2 > 0 because
the trajectories with y2 < 0 can be obtained by making the change in variables (10).

The evolution of the variable X is described by the equation

π

a
dX
dτ

= 2µ f − 4µy1

(
1− 1

r2
1

)
− 4γµy2

(
1− 1

r2
2

)
.
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Thus, the system in (8) defines a Hamiltonian system with two degrees of freedom. In
the general case, the system in (8) is nonintegrable.

3. Relative Equilibria and Their Stability

We recall the main principles of the stability analysis of fixed points of Hamiltonian
systems with two degrees of freedom that we use in what follows (for details, see, e.g., [13]).

Let z0 be a fixed point of the system in (8), which is also a critical point of the Hamiltonian
H. Define the following matrices:

• A =

∥∥∥∥ ∂żi
∂zj

∥∥∥∥
z=z0

is the linearization matrix of the vector field in a neighborhood of the

fixed point;

• H =

∥∥∥∥ ∂2H
∂zi∂zj

∥∥∥∥
z=z0

is the matrix of the quadratic part of the Hamiltonian (Hessian).

For the system in (1), these are 4× 4 matrices. Each of them is related to an invariant
that has a key role in investigating the stability.

(1) The index of the symmetric matrix H (i.e., the number of its negative eigenvalues) is
denoted by ind in what follows. It can take the values ind = 0, 1, 2, 3, 4.

(2) The type of the fixed point defined by the eigenvalues λi, i = 1, . . . , 4 of the matrix A is
as follows:

– Center–center (λ1,2 = ±iα, λ3,4 = ±iβ);
– Saddle–center (λ1,2 = ±iα, λ3,4 = ±β);
– Saddle–saddle (λ1,2 = ±α, λ3,4 = ±β);
– Focus–focus (λ1,2,3,4 = ±α± iβ),

where α and β are real numbers. Only a fixed point that is of center–center type is
Lyapunov stable.

The index is related to the type of the critical point as follows:

(1) If ind = 0, 4, then the fixed point is stable and of center–center type;
(2) If ind = 1, 3, then the fixed point is unstable and of saddle–center type;
(3) If ind = 2, then the fixed point is of one of three types: center–center, saddle–saddle, or

focus–focus. For it to be unstable, it suffices that the matrix A has eigenvalues with a
nonzero real part. To prove the stability of such a point, it is necessary to use the KAM
theorem and it requires that all eigenvalues of the matrix A are imaginary numbers
and additional nonlinear conditions hold [16].

Thus, to examine the stability of the fixed points, it is in many cases sufficient to
calculate its index, and only if ind = 2 is it necessary to specify the type of the point by
analyzing the eigenvalues.

When these principles are applied in a standard way, a difficulty arises due to the fact
that an analytic formulation of the stability criteria leads to a cumbersome set of inequalities,
so that it is often difficult to determine whether there exists a solution satisfying the required
criteria. For this reason, on the plane of values of the first integrals

R2
f ,h = {( f , h)},

where h is the fixed value of the Hamiltonian H(z), we introduce the extended bifurcation
diagram, which is constructed with the following three principles:

1. We plot the values of f , h corresponding to critical points of H(z); they form bifurcation
curves, and when such a curve is crossed, the topological type of the isoenergetic
manifolds changes [13].

2. We put the index of the corresponding critical point on the bifurcation curves, in [13]
it was shown that the index does not change along a smooth branch of the bifurcation
curve.
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3. For each branch of the bifurcation curves with the index ind = 2, we first plot the
curves (aλ( f ) and bλ( f )) on the plane of coefficients of the characteristic polynomial

χ(λ) = det(A− λE) = λ4 + aλλ2 + bλ = 0

and, thus, define possible types of fixed points on the branch and mark the corre-
sponding parts of the branch according to the type of the fixed point.

Thus, the bifurcation diagram described above allows us to answer the questions
concerning the existence and stability of the fixed points of Equation (8) (they correspond
to relative equilibria of the initial system (1)).

Relative equilibria. We note that the fixed points of the reduced systems in (8) and (9)
are given by solutions of four polynomial equations of sufficiently high order. This makes
an explicit solution impossible, so we solve this system numerically.

We first consider collinear configurations. For them, the center of the foil and the
vortices lie on the axis Cy: x1 = 0, x2 = 0, and the coordinates y1 and y2 take (constant)
values, which satisfy the equations

∂H
∂y1

∣∣∣∣x1=0
x2=0

= 0,
∂H
∂y2

∣∣∣∣x1=0
x2=0

= 0. (11)

Previously, collinear configurations were found in [8]. It was shown that these two equa-
tions have solutions. To describe them, at the first step, we eliminate f from the system in
(11) and obtain a solution in the form of a curve on the plane R2 = {(y1, y2)}:

∆(y1, y2) = π

[
y2

1 + 1
γy2

1

∂H
∂y2
− y2

2 + 1
y2

2

∂H
∂y1

]
x1=0
x2=0

=
y2

2 + 1
y1

[
2(y4

1 − 1)
(y2

1y2
2 − 1)(y2

2 − y2
1)

+
y4

1 + 4y2
1 − 1

2y2
2(y

4
1 − 1)

]

−γ
y2

1 + 1
y2

[
2(y4

2 − 1)
(y2

1y2
2 − 1)(y2

1 − y2
2)

+
y4

2 + 4y2
2 − 1

2y2
1(y

4
2 − 1)

]
= 0.

(12)

If γ < 0, then the preceding relation defines the curve, which lies in the region y1 > 1,
y2 > 1. A typical form of this curve is shown in Figure 2. Then, to define the dependence
f = F0(y1, y2), it suffices to express f from any equation of (11) and to substitute the values
of y1 and y2 satisfying (12). As a result, for the collinear configurations, we obtain the
following bifurcation curve:

Σ0 = {( f , h) | h = H(y1, y2), f = F0(y1, y2), ∆(y1, y2) = 0, y2 > 1}.

0 1 2 3 4 5
0

0.5

1

1.5 ∆(y1, y2) = 0

y1

y2

0 1 2 3 4 5
0

1

2

3

f

y1

0 1 2 3 4 5
0

1

2

3

f

y2

Figure 2. A typical curve ∆(y1, y2) = 0 and dependences y1( f ) and y2( f ) for collinear configurations
with γ = −0.4, µ = 0.6. The red and blue lines denote parts of the curve Σ0 with the indices ind = 1
and ind = 2, respectively.
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For the foil and one pair of vortices, a relative equilibrium with the vortices behind the
foil is known [8,17,18]. Consider the question of the existence of similar solutions for the
system with two pairs (see Figure 3). If they exist, then they are fixed points of the system
in (8). Without loss of generality, we assume here

x1 < 0, x2 < 0 and
dX
dτ

> 0.

Figure 3. Layout of a foil and point vortices.

To find those equilibria, we fix the values of γ, µ, and f and numerically solve the
corresponding polynomial system for xi,yi using Newton’s algorithm. Then, for the found
solutions, using the method of continuation in a parameter, we restore the corresponding bi-
furcation curves on the plane R2

f ,h. Earlier, this method was used to find new configurations
of three vortices in a circle [13].

Using the method described above, two more bifurcation curves, Σ1 and Σ2, are found
corresponding to the relative equilibria. An example with explicit numerical values of z for
the found relative equilibria is given in Table 1, the graphs characterizing the arrangement
of vortices are shown in Figures 4 and 5, and a bifurcation diagram is shown in Figure 6.
From these graphs, several conclusions may be drawn.

• On each bifurcation curve Σi, i = 0, 1, 2, a critical point of the cusp type is visible.
The values of f and h for each of these cusps correspond to the birth of two isolated
relative equilibria. Then, as f increases, each of these relative equilibria persists and
forms a branch (smooth part) of a bifurcation curve with the same index. Only the
curve Σ2 has a branch with ind = 4 and, thus, corresponds to stable relative equilibria.
Both branches of the bifurcation curves with ind = 2 correspond to fixed points of the
saddle–saddle type (see, e.g., Figure 7).

• The branches of the curves Σ0 and Σ1 with ind = 1 and ind = 2, respectively, corre-
spond to relative equilibria where vortices become more distant from the foil as f
increases. By contrast, for the other relative equilibria, the distance between vortices
and the foil decreases as f increases.

Table 1. An example of numerical values of the fixed points of the system in (8) for γ = −0.4, µ = 0.6,
and f = 5.

x1 y1 x2 y2

Σ1
−3.938836165 2.661361030 −3.940909660 0.3738183364
−1.151164395 0.2241720364 −1.159436579 0.03680779387

Σ2
−1.214662769 0.1785458502 −1.046342147 0.04920780747
−1.302316693 0.1573333876 −1.064157855 0.09971334570
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0 1 2 3 4
0

1

2

3

4

f

r1

0 1 2 3 4
0

1

2

3

4

f

r2

0 1 2 3 4
0

0.005

0.01

0.015

0.02

f

x1 − x2

Figure 4. Typical dependences r1( f ), r2( f ) and x1( f )− x2( f ) for relative equilibria corresponding to
the bifurcation curve Σ1 with γ = −0.4, µ = 0.6. The red and blue lines denote parts of the curve Σ1

with the indices ind = 2 and ind = 3, respectively.

0 1 2 3 4 5 6
0

0.5

1

1.5

f

r1

0 1 2 3 4 5 6
0

0.5

1

1.5

f

r2

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

f

x2 − x1

Figure 5. Typical dependences r1( f ), r2( f ) and x1( f )− x2( f ) for the relative equilibria corresponding
to the bifurcation curve Σ2 with γ = −0.4, µ = 0.6. The red and blue lines denote parts of the curve
Σ2 with the indices ind = 3 and ind = 4, respectively.

0 1 2 3 4 5

−0.5

0

0.5

1

1.5

2

ind = 3

ind = 2

ind = 2

ind = 1

f

h

Σ0

Σ1

Σ2

4.8 4.82 4.84 4.86 4.88 4.9
1.7

1.72

1.74
ind = 4

ind = 3

0 1 2 3 4 5
0

0.0005

0.001

0.0015

0.002

0.0025

f

∆h

(b)

Figure 6. Bifurcation diagram (a) and the dependence ∆h( f ), which is the difference between the
values of h on the upper and lower branches of the bifurcation curve Σ2 (b).
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Figure 7. Dependence of the coefficients of the characteristic polynomial for a portion of the bifurca-
tion curve Σ1 (black) with the index ind = 2.

Remark 2. We note that in Figure 6a two branches of the curve Σ2 with different indices are quite
close to each other. Discerning them visually is only possible by enlarging this curve. The difference
in values of the energy integral on these branches is shown in Figure 6b.
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We do not have a rigorous proof that, for the chosen parameters γ = −0.4 and µ = 0.6,
the system in (8) does not possess any other equilibrium points than those mentioned above.
However, the resulting bifurcation diagram (Figure 6) is self-consistent (i.e., the change
in the type of fixed points occurred at the critical points of the bifurcation curves). We
emphasize the importance of the criterion of the breaking of the isolation of a bifurcation
curve at degenerate critical points. For example, for a fixed value of f , only one point
of each family Σ1 and Σ2 was at first found numerically. We then plotted corresponding
bifurcation curves in the plane R2

f ,h and found that such a bifurcation diagram was not
self-consistent. This suggests the existence of additional equilibrium points, which were
found later.

In [8], such relative equilibria for equal strengths of vortex pairs (i.e., γ = 1) were
found where vortices formed a square with a foil at its geometric center. It would be
interesting to examine the problem of the existence of such types of equilibria with γ 6= 1.

4. Bounded Trajectories: Generalization of the Helmholtz Leapfrogging

In this section, we consider the bounded trajectories of the system in (8), which are
not fixed points. For their numerical analysis and visualization we made use of a Poincaré
map. We describe its construction in more detail below.

Let us introduce polar coordinates for the positions of the vortices:

ri = (ri sin ϕi, ri cos ϕi), i = 1, 2.

According to Section 2, the range of variation of these coordinates is given as r1 ∈
(1,+∞), r2 ∈ (1,+∞), ϕ1 ∈

(
0, π

2
)
∪
(

π
2 , 3π

2
)
∪
( 3π

2 , 2π
]
, and ϕ2 ∈

(
0, π

2
)
∪
( 3π

2 , 2π
]
.

Choose a submanifold given by the relation

ϕ2 = const (13)

as a cross-section of the vector field. Next, numerically integrate the system with initial con-
ditions satisfying (13) and use the Hénon method by finding intersections of the trajectory
with the chosen cross-section. We finally obtain a Poincaré map of the system (7).

We note that the intersection of the (noncritical) level surface of the Hamiltonian with
the cross-section (13) is defined in three-dimensional space

R3 =

{
(r1, r2, ϕ1) | r1 ∈ (1,+∞), r2 ∈ (1,+∞), ϕ1 ∈

(
0,

π

2

)
∪
(

π

2
,

3π

2

)
∪
(

3π

2
, 2π

]}
,

with a two-dimensional manifoldM2
ϕ2

, which is disconnected in the general case. Com-
ponents of M2

ϕ2
have a fairly complex form (see Figures 8b and 9b), and so it is more

convenient to plot a map onM2
ϕ2

directly in three-dimensional spaceR3 than to project it
onto some plane.
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Figure 8. Poincaré map (a) and the corresponding cross-sectionM2
ϕ2

(b) for ϕ2 = 4.7624 and the
parameters h = 1.51, f = 4.6, γ = −0.4, µ = 0.6.

Figure 9. Poincaré map (a) and the corresponding cross-section M2
ϕ2

(b) for ϕ2 = 4.65 and the
parameters h = 1.5101, f = 4.6, γ = −0.4, µ = 0.6.

In addition, the fixed level set of the energy integral H(z) = h can define an un-
bounded surface that contains scattering trajectories, i.e., trajectories for which one (or
several) of the distances r1, r2, |r1− r2| increase without bounds as τ → ±∞. The scattering
trajectories may have only a finite number of intersections with the chosen cross-section
(13) as τ → ±∞. This complicates the use of a Poincaré map for studying the system.
Therefore, we first consider the case where the level set of the energy integral has a compact
connected component.

In the preceding section, we pointed out a critical point of the Hamiltonian H(z)
with index ind = 4. Hence, in a neighborhood of this point there are compact connected
components of H(z) = const and ofM2

ϕ2
. An example of such a compact component of

M2
ϕ2

and the corresponding Poincaré map is shown in Figure 8, and an example of the
trajectory of vortices in the coordinate system Cxy is shown in Figure 10a. All trajectories
of the system (7) lying on the compact components of H(z) = const correspond to those
motions of vortices where they lie in a bounded region near their positions that correspond
to critical points with ind = 4. Further, as h decreases and the branch of the bifurcation
curve Σ2 with ind = 3 is reached, scattering trajectories arise, i.e., the level surface of the
Hamiltonian becomes unbounded. An example of such a scattering trajectory is shown in
Figure 10b.
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ϕ1(0) = 4.84219 (h = 1.5095)

Figure 10. Trajectories of vortices with initial conditions r1(0) = 1.25, r2(0) = 1.06, ϕ2(0) = 4.7624;
parameters f = 4.6, γ = −0.4, µ = 0.6; and different ϕ1(0).

On the noncompact level surface of the Hamiltonian there may also lie bounded
trajectories. Figure 9 shows an example of a Poincaré map whereM2

ϕ2
has an unbounded

connected component. As can be seen, on this map there is a fixed point of period 3, which
corresponds to a periodic solution of the system in (7). In addition, in a neighborhood of
this point, the map has invariant curves corresponding to quasi-periodic trajectories of the
system in (8).

In Figure 11b, the trajectories of vortices in the coordinate system Cxy are shown. They
correspond to one of the invariant curves on the map of Figure 9a (for details, see (accessed
on 1 March 2023) https://www.youtube.com/watch?v=jdW4yOVK_Ww). In this case,
the vortex pairs pass alternately through each other, while all distances r1, r2, |r1 − r2|
remain bounded (for details, see (accessed on 1 March 2023) https://www.youtube.com/
watch?v=PufmBTVEstA). These trajectories generalize Helmholtz leapfrogging of two vortex
pairs [6,7].

0 1 2 3 4 5 6
−1.8

−1.6

−1.4

−1.2

−1

−0.8

x

−2 −1.8 −1.6 −1.4 −1.2 −1

−0.4

−0.2

0

0.2

0.4

x

y

0 2 4 6 8 10
4.8

4.9

5

5.1

5.2

5.3

π

a

dX

dτ

Figure 11. Dependences x1(τ) and x2(τ) (red and blue, respectively) (a), vortex trajectories in the

coordinate system Cxy (b), and the dependence
π

a
dX
dτ

(τ) (c), which characterizes the translational
velocity of the foil in the fixed coordinate system. All graphs have been plotted for the fixed initial
conditions r1(0) = 1.47, r2(0) = 1.85, ϕ2(0) = 4.65, ϕ1(0) = 4.8649 and the parameters f = 4.6,
γ = −0.4, µ = 0.6.

We note that there are still many open problems in describing the behavior of scattering
trajectories in vortex dynamics and the considered system in particular. For example, they
include constructing a scattering map and describing trajectories with different types of
scattering depending on parameter values and initial conditions (i.e., depending on which
of the distances r1, r2, |r1 − r2| increase without a bound). It would also be of interest to
search for nonlocal bifurcations of the level surface of the Hamiltonian H(z) and to analyze
their contribution to the dynamics of the system.

https://www.youtube.com/watch?v=jdW4yOVK_Ww
https://www.youtube.com/watch?v=PufmBTVEstA
https://www.youtube.com/watch?v=PufmBTVEstA
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5. Conclusions

Our analysis has allowed us to find two families of relative equilibria where the
vortices and the foil move along a straight line with constant velocity, while the vortices
are behind the foil. Using the topological methods of stability analysis, we have shown
that among them there are equilibria that are stable relative to symmetric perturbations
(i.e., perturbations lying on the invariant manifold under consideration). The problem of
the stability of these equilibria relative to nonsymmetric perturbations remains unsolved.
For numerical analysis of the system’s trajectories we have constructed a Poincaré map.
Using this Poincaré map, we have shown the existence of unbounded and bounded tra-
jectories. The bounded trajectories of the system generalize the well-known Helmholtz
leapfrogging, and the vortices always remain in a neighborhood of the cylinder. It would
be interesting to investigate the problem of stability and conditions for existence of these
trajectories depending on the system’s parameters.
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