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Abstract: In a number of problems in applied mathematics, physics (theoretical and mathematical),
statistics, and other fields the hypergeometric functions of one and several variables naturally appear.
Hypergeometric functions in one and several variables have several known applications today. The
Appell’s four functions and the Horn’s functions have shown to be particularly useful in providing
solutions to a variety of problems in both pure and applied mathematics. The Hubbell rectangular
source and its generalization, non-relativistic theory, and the hydrogen dipole matrix elements are
only a few examples of the numerous scientific and chemical domains where Appell functions
are used. The Appell series is also used in quantum field theory, especially in the evaluation of
Feynman integrals. Additionally, since 1985, computational sciences such as artificial intelligence
(AI) and information processing (IP) have used the well-known Horn functions as a key idea. In
literature, there have been published a significant number of results of double series in particular of
Appell and Horn functions in a series of interesting and useful research publications. We find three
general transformation formulas between Appell functions F2 and F4 and two general transformation
formulas between Appell function F2 and Horn function H4 in the present study, which are mostly
inspired by their work and naturally exhibit symmetry. By using the generalizations of the Kummer
second theorem in the integral representation of the Appell function F2, this is accomplished. As
special cases of our main findings, both previously known and new results have been found.

Keywords: hypergeometric function; generalized hypergeometric function; Kummer second theorem;
Appell functions; Horn functions; integral representation

1. Introduction

We begin by recalling the definition of the well-known and useful Pochhammer symbol
(or the shifted factorial) (a)n defined for every complex number a( 6= 0) by

(a)n =

{
a(a + 1) · · · (a + n− 1) ; n ∈ N,
1 ; n = 0.

(1)

In terms of the well-known gamma function, this can be written as

(a)n =
Γ(a + n)

Γ(a)
.

In the Gauss’s hypergeometric function

2F1

[
a, b

c
; z
]

,
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there are two numerator parameters a and b and one denominator parameter c; z is called
the variable of the function. A natural generalization of this function is accomplished by
increasing any number of numerator and denominator parameters as follows:

pFq

[
a1, · · · , ap
b1, · · · , bq

; z
]
=

∞

∑
n=0

(a1)n · · ·
(
ap
)

n
(b1)n · · ·

(
bq
)

n

zn

n!
, (2)

in which (a)n is the well-known Pochhammer symbol, already defined in (1). The function
defined in (2) is called generalized hypergeometric function. Here p and q are nonnegative
integers. It is also assumed that the variable z, the numerator parameters a1, · · · , ap and the
denumerator parameters b1, · · · , bq can take on real or complex values with an exception
that the denumerator parameters b1, · · · , bq should not be zero or a negative integer.

By ratio test, it can be easily see that the series pFq

(i) Converges for all |z| < ∞ if p ≤ q;
(ii) Converges for all |z| < 1 if p = q + 1;
(iii) Diverges for all z, z 6= 0 if p > q + 1.

Moreover, if we set

δ =
q

∑
j=1

bj −
p

∑
i=1

ai,

then the series pFq with p = q + 1 is

(i) Absolutely convergent for |z| = 1, if Re(δ) > 0;
(ii) Conditionally convergent for |z| = 1, z 6= 1 if −1 < Re(δ) ≤ 0;
(iii) Divergent for |z| = 1 if Re(δ) ≤ −1 .

It is interesting to note that the generalized hypergeometric function (2) has sym-
metry in both the numerator parameters a1, a2, · · · , ap and the denominator parameters
b1, b2, · · · , bq. This means that every arrangement of the generalized hypergeometric
function’s numerator parameters a1, a2, · · · , ap produces the same function, and every
arrangement of the denominator parameters b1, b2, · · · , bq generates the same function.

For a detailed account of hypergeometric function 2F1 and generalized hypergeometric
function pFq, the reader may consult the book by Andrews et al. [1], Bailey [2], Rainville [3],
and Slater [4].

The vast popularity and immense usefulness of the hypergeometric function 2F1 and
the generalized hypergeometric function pFq in one variable have inspired and stimulated
a large number of mathematicians and researchers to study hypergeometric functions in
two or more variables. In this regard, serious and very significant study of the functions
of two variables initiated by Appell [5], who introduced the so-called four functions F1,
F2, F3, and F4 named in the literature, the Appell functions in two variables which are the
natural generalizations of the hypergeometric function 2F1. It is interesting to mention
here that Appell established the set of partial differential equations of which the above
mentioned four functions are solutions. In addition to this, Appell found various very
interesting reduction formulas together with expressions of these functions in terms of the
hypergeometric function 2F1. Moreover, in our present investigations, we are interested in
the following two Appell functions [5] viz.

F2[α, µ1, µ2; ν1, ν2; x1, x2] =
∞

∑
m=0

∞

∑
n=0

(α)m+n(µ1)m(µ2)n

(ν1)m(ν2)n m! n!
xm

1 xn
2 , (3)

provided |x1|+ |x2| < 1,
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F4[α, β; γ, γ
′
; x, y] =

∞

∑
m=0

∞

∑
n=0

(α)m+n(β)m+n

(γ)m(γ
′)n m! n!

xmyn, (4)

provided
√
|x|+

√
|y| < 1.

Furthermore, the following integral representation for the Appell function F2 viz.

F2[λ, µ1, µ2; ν1, ν2; x1, x2]

=
1

Γ(λ)

∫ ∞

0
e−t tλ−1

1F1

[
µ1
ν1

; x1t
]

1F1

[
µ2
ν2

; x2t
]

dt, (5)

provided Re(λ) > 0 and Re(x1 + x2) < 1.
It should be noted that two most significant functions described in the paper, the

generalized hypergeometric function pFq and the two Appell’s functions F2 and F4 involving
two variables, naturally exhibit symmetry.

Moreover, in the theory of special functions in mathematics, there are the 34 distinct
convergent hypergeometric functions in two independent variables enumerated by Horn [6]
(including the above mentioned four Appell functions). The total 34 Horn functions
can be further categorized into 14 complete hypergeometric functions and 20 confluent
hypergeometric functions. For details, we refer Erdélyi [7]. However, here we would like
to mention Horn H4 function which is defined as follows [6]:

H4[α, β; γ, δ; x, y] =
∞

∑
m=0

∞

∑
n=0

(α)2m+n(β)n

(γ)m(δ)n m! n!
xmyn, (6)

provided |x| < γ and |y| < δ with 4γ = (δ− 1)2.
It is not out of place to mention here that the symmetry occurs in the numerator

parameters µ1 and µ2 and also symmetry occurs in the denominator parameters ν1 and
ν2 of the Appell functions F2 while the symmetry occurs in the denominator parameters
γ and γ

′
of the Appell function F4 and the denominator parameters γ and δ of the Horn

function H4.

2. Preliminaries

We start with the following interesting transformation formula between Appell func-
tions F2 and F4 was given by Bailey [8] viz.

F2[λ, µ, ν; 2µ, 2ν; 2x1, x2] (7)

= (1− x1 − x2)
−λ F4

[
1
2

λ,
1
2
(λ + 1); µ +

1
2

, ν +
1
2

;
(

x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]
.

Similarly, the following interesting transformation formula between Appell function
F2 and Horn function H4 is given by Erdélyi [7] viz.

F2[λ, µ1, µ2; 2µ1, ν; 4x1, x2]

= (1− 2x1)
−λ H4

[
λ, µ2; µ1 +

1
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x2

)]
. (8)

For a detailed account of hypergeometric functions in two and more variables, the
reader may consult the book by Srivastava and Karlsson [9].

We remark in passing that the results (7) and (8) can be established by employing the
following Kummer’s second theorem [3] viz.
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e−
1
2 x

1F1

[
λ

2λ
; x
]
= 0F1

[
−

λ + 1
2

;
x2

16

]
. (9)

In 1995, Rathie and Nagar [10] established the following two results closely related to
the Kummer’s second theorem (9) viz.

e−
1
2 t

1F1

[
λ

2λ + 1
; t
]
= 0F1

[
−

λ + 1
2

;
t2

16

]
− t

2(2λ + 1) 0F1

[
−

λ + 3
2

;
t2

16

]
, (10)

and

e−
1
2 t

1F1

[
λ

2λ− 1
; t
]
= 0F1

[
−

λ− 1
2

;
t2

16

]
+

t
2(2λ− 1) 0F1

[
−

λ + 1
2

;
t2

16

]
, (11)

by employing two results closely related to Gauss’s second summation theorem. These
results are also recorded in [11].

In 2019, Mathur and Solanki [12,13], by employing the results (9), (10), and (11) in the
integral representation (5) of F2, established certain transformation formulas between F2, F4
and H4 out of which some were corrected very recently by Mohammed et al. [14] in the
following form:

F2[λ, µ, ν; 2µ + 1, 2ν + 1; 2x1, x2]

= (1− x1 − x2)
−λ

{
F4

[
1
2

λ,
1
2
(λ + 1); µ +

1
2

, ν +
1
2

;
(

x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]
− λx1

(2µ + 1)(1− x1 − x2)
F4

[
1
2
(λ + 1),

1
2

λ + 1; µ +
3
2

, ν +
1
2

;
(

x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]
− λx2

(2ν + 1)(1− x1 − x2)
F4

[
1
2
(λ + 1),

1
2

λ + 1; µ +
1
2

, ν +
3
2

;
(

x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]
+

λ(λ + 1)x1x2

(2µ + 1)(2ν + 1)(1− x1 − x2)2

× F4

[
1
2

λ + 1,
1
2

λ +
3
2

; µ +
3
2

, ν +
3
2

;
(

x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]}
, (12)

provided Re(λ) > 0 and Re(x1 + x2) <
1
2 .

F2[λ, µ, ν; 2µ− 1, 2ν− 1; 2x1, x2] = (1− x1 − x2)
−λ

×
{

F4

[
1
2

λ,
1
2
(λ + 1); µ− 1

2
, ν− 1

2
;
(

x1
1− x1 − x2

)2

,
(

x2
1− x1 − x2

)2]
+

λx1
(2µ− 1)(1− x1 − x2)

× F4

[
1
2
(λ + 1),

1
2

λ + 1; µ +
1
2

, ν− 1
2

;
(

x1
1− x1 − x2

)2

,
(

x2
1− x1 − x2

)2]
+

λx2
(2ν− 1)(1− x1 − x2)

× F4

[
1
2
(λ + 1),

1
2

λ + 1; µ− 1
2

, ν +
1
2

;
(

x1
1− x1 − x2

)2

,
(

x2
1− x1 − x2

)2]
+

λ(λ + 1)x1x2

(2µ− 1)(2ν− 1)(1− x1 − x2)2

× F4

[
1
2

λ + 1,
1
2

λ +
3
2

; µ +
1
2

, ν +
1
2

;
(

x1
1− x1 − x2

)2

,
(

x2
1− x1 − x2

)2]}
, (13)
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provided Re(λ) > 0 and Re(x1 + x2) <
1
2 .

F2[λ, µ1, µ2; 2µ1 + 1, ν; 4x1, x2]

= (1− 2x1)
−λ

{
H4

[
λ, µ2; µ1 +

1
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)]
− 2λx1

(2µ1 + 1)(1− 2x1)
H4

[
λ + 1, µ2; µ1 +

3
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)]}
, (14)

provided Re(λ) > 0 and Re(4x1 + x2) < 1, and

F2[λ, µ1, µ2; 2µ1 − 1, ν; 4x1, x2]

= (1− 2x1)
−λ

{
H4

[
λ, µ2, µ1 −

1
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)]
+

2λx1

(2µ1 − 1)(1− 2x1)
H4

[
λ + 1, µ2; µ1 +

1
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)]}
, (15)

provided Re(λ) > 0 and Re(4x1 + x2) < 1.
We remark in passing that the results (12) and (13) are closely related to the result (7)

from Bailey while the results (14) and (15) are closely related to the result (8) from Erdélyi.
In order to establish our general results, we shall need the following two results

recorded in [15] written here in a slightly different form, valid for i ∈ N0 viz.

1F1

[
α

2α + i
; 2x

]
= ex

i

∑
k=0

(−i)k(2α− 1)k xk

(2α + i)k(α− 1
2 )k 2k k!

0F1

[
−

α + 1
2 + k

;
x2

4

]
, (16)

and

1F1

[
α

2α− i
; 2x

]
= ex

i

∑
k=0

(−1)k(−i)k(2α− 2i− 1)k xk

(2α− i)k(α− 1
2 − i)k 2k k!

0F1

[
−

α + k− i + 1
2

;
x2

4

]
. (17)

Appell functions have numerous uses in several physical and chemical domains. In
this follow-up, we refer to [16] for application in radiation field problems, [17] for ap-
plication in Hubbell rectangular sources and its generalization, [18] for application in
non-relativistic theory and [19] for application in the hydrogen dipole matrix element.
Additionally, it can be shown in the interesting works [20,21], the Appell series is used in
quantum field theory, specifically in the evaluation of Feynman integrals. In the computa-
tional sciences, including artificial intelligence (AI) and information processing (IP), the
well-known Horn functions have also been used since 1985 as a fundamental idea. The
papers [22–24] provide more information.

In recent years, in a series of research papers, Brychkov and Saad [25–27],
Brychkov [28,29], Brychkov et al. [30], and Brychkov and Savischenko [31–37] have estab-
lished a large number of results on Appell and Horn functions.

Inspired mainly by their work, in this paper, our main objective is to generalize
Bailey’s result (7) and Erdélyi’s result (8) in the most general form. For this, the rest of the
paper is organized as follows: In Section 3, we shall establish three general transformation
formulas between Appell functions F2 and F4 while in Section 3, two general transformation
formulas between Appell function F2 and Horn function H4. The results obtained earlier by
Mohammed et al. [14] (which are corrected forms of the results from Mathur and Solanki)



Symmetry 2023, 15, 696 6 of 13

follow special cases of our main findings. A few new interesting special cases have also
been mentioned.

3. Transformation Formulas between Appell Functions F2 and F4

In this section, we shall establish three general transformation formulas between
Appell functions F2 and F4 asserted in the following theorem.

Theorem 1. For Re(λ) > 0, Re(x1 + x2) < 1
2 and i, j ∈ N0, the following transformation

formulas hold true.

F2[λ, µ, ν; 2µ + i, 2ν + j; 2x1, 2x2] = (1− x1 − x2)
−λ

×
i

∑
k1=0

j

∑
k2=0

(−i)k1 (−j)k2 (2µ− 1)k1 (2ν− 1)k2 (λ)k1+k2 xk1
1 xk2

2
(2µ + i)k1 (2ν + j)k2 2k1+k2 (k1)! (k2)! (1− x1 − x2)k1+k2

× F4

[
1
2
(λ + k1 + k2),

1
2
(λ + k1 + k2 + 1); µ +

1
2
+ k1, ν +

1
2
+ k2;(

x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]
, (18)

F2[λ, µ, ν; 2µ + i, 2ν− j; 2x1, 2x2] = (1− x1 − x2)
−λ

×
i

∑
k1=0

j

∑
k2=0

{
(−1)k2 (−i)k1 (−j)k2 (λ)k1+k2

2k1+k2 (k1)! (k2)!

×
(2µ− 1)k1 (2ν− 2j− 1)k2 xk1

1 xk2
2

(2µ + i)k1 (2ν− j)k2 (µ−
1
2 )k1 (ν−

1
2 − j)k2 (1− x1 − x2)k1+k2

× F4

[
1
2
(λ + k1 + k2),

1
2
(λ + k1 + k2 + 1); µ +

1
2
+ k1, ν + k2 − j +

1
2

;(
x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]}
, (19)

and

F2[λ, µ, ν; 2µ− i, 2ν− j; 2x1, 2x2] = (1− x1 − x2)
−λ

×
i

∑
k1=0

j

∑
k2=0

{
(−1)k1+k2 (−i)k1 (−j)k2 (λ)k1+k2

2k1+k2 (k1)! (k2)!

×
(2µ− 2i− 1)k1 (2ν− 2j− 1)k2 xk1

1 xk2
2

(2µ− i)k1 (2ν− j)k2 (µ−
1
2 − i)k1 (ν−

1
2 − j)k2 (1− x1 − x2)k1+k2

× F4

[
1
2
(λ + k1 + k2),

1
2
(λ + k1 + k2 + 1); µ + k1 − i +

1
2

, ν + k2 − j +
1
2

;(
x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]}
. (20)

Proof. In order to establish our first result (18) asserted in the Theorem 1, we proceed
as follows. For this in the integral representation (5) of F2, if we set µ1 = µ, ν1 = 2µ + i,
µ2 = ν, ν2 = 2ν + j and replacing x1 and x2 by 2x1 and 2x2 , respectively, then for i, j ∈ N0,
we have

F2[λ, µ, ν; 2µ + i, 2ν + j; 2x1, 2x2]

=
1

Γ(λ)

∫ ∞

0
e−t tλ−1

1F1

[
µ

2µ + i
; 2x1t

]
1F1

[
ν

2ν + j
; 2x2t

]
dt.
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Using the result (16) in both 1F1 functions, we have after some simplification

F2[λ, µ, ν; 2µ + i, 2ν + j; 2x1, 2x2] =
1

Γ(λ)

∫ ∞

0
e−t tλ−1

×
{

ex1t
i

∑
k1=0

C1(k1) xk1
1 tk1 0F1

[
−

µ + 1
2 + k1

;
x2

1 t2

4

]

· ex2t
j

∑
k2=0

C2(k2) xk2
2 tk2 0F1

[
−

ν + 1
2 + k2

;
x2

2 t2

4

]}
dt,

where

C1(k1) =
(−i)k1(2µ− 1)k1

(2µ + i)k1(µ−
1
2 )k1 2k1(k1)!

,

and

C2(k2) =
(−j)k2(2ν− 1)k2

(2ν + j)k2(ν−
1
2 )k2 2k2(k2)!

.

Now, changing the order of integration and summation, we have

F2[λ, µ, ν; 2µ + i, 2ν + j; 2x1, x2]

=
i

∑
k1=0

j

∑
k2=0

C1(k1)C2(k2) xk1
1 xk2

2
1

Γ(λ)

∫ ∞

0
e−t(1−x1−x2) tλ+k1+k2−1

× 0F1

[
−

µ + 1
2 + k1

;
x2

1 t2

4

]
0F1

[
−

ν + 1
2 + k2

;
x2

2 t2

4

]
dt.

Next, expressing both 0F1 functions as series, change the order of integration and
summation, we have

F2[λ, µ, ν; 2µ + i, 2ν + j; 2x1, x2]

=
i

∑
k1=0

j

∑
k2=0

C1(k1)C2(k2) xk1
1 xk2

2

×
{ ∞

∑
m=0

∞

∑
n=0

x2m
1 x2n

2

(µ + 1
2 + k1)m(ν + 1

2 + k2)n 22m+2n m! n!

× 1
Γ(λ)

∫ ∞

0
e−(1−x1−x2)t tλ+k1+k2+2m+2n−1dt

}
.

Evaluating the Gamma integral and noting that

Γ(λ + k1 + k2 + 2m + 2n)
Γ(λ)

= 22m+2n
(

1
2
(λ + k1 + k2)

)
m+n

(
1
2
(λ + k1 + k2 + 1)

)
m+n

(λ)k1+k2 ,

and summing up the series, we after some simplification, easily arrive at the right-hand
side of (18). This completes the proof of the first result (18) asserted in the Theorem 1. In
exactly the same manner, the results (19) and (20) can be established.

Corollaries

In this subsection, we shall mention special cases of the results (18), (19) and (20)
asserted in the Theorem 1.
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Corollary 1. In (18), if we take i = 0, we obtain the following result which is also of general character:

F2[λ, µ, ν; 2µ, 2ν + j; 2x1, 2x2]

= (1− x1 − x2)
−λ

j

∑
k2=0

(−j)k2 (2µ− 1)k2 (λ)k2

(2ν + j)k2 2k2 (k2)!

(
x2

1− x1 − x2

)k2

× F4

[
1
2
(λ + k2),

1
2
(λ + k2 + 1); µ +

1
2

, ν +
1
2
+ k2;

(
x1

1− x1 − x2

)2
,
(

x2

1− x1 − x2

)2]
.

In particular, for j = 1, we obtain

F2[λ, µ, ν; 2µ, 2ν + 1; 2x1, 2x2] = (1− x1 − x2)
−λ

×
{

F4

[
1
2

λ,
1
2
(λ + 1); µ +

1
2

, ν +
1
2

;
(

x1

1− x1 − x2

)2
,
(

x2

1− x1 − x2

)2]
− λx2

(2ν + 1) (1− x1 − x2)

× F4

[
1
2
(λ + 1),

1
2

λ + 1; µ +
1
2

, ν +
3
2

;
(

x1

1− x1 − x2

)2
,
(

x2

1− x1 − x2

)2]}
.

Corollary 2. In (19), if we take i = 0, we obtain the following result which is also of general character:

F2[λ, µ, ν; 2µ, 2ν− j; 2x1, 2x2]

= (1− x1 − x2)
−λ

j

∑
k2=0

(−1)k2 (−j)k2 (2ν− 2j− 1)k2 (λ)k2

(2ν− j)k2 (ν−
1
2 − j)k2 2k2 (k2)!

(
x2

1− x1 − x2

)k2

× F4

[
1
2
(λ + k2),

1
2
(λ + k2 + 1); µ +

1
2

, ν + k2 − j +
1
2

;
(

x1

1− x1 − x2

)2
,
(

x2

1− x1 − x2

)2]
.

In particular, for j = 1, we obtain

F2[λ, µ, ν; 2µ, 2ν− 1; 2x1, 2x2] = (1− x1 − x2)
−λ

×
{

F4

[
1
2

λ,
1
2
(λ + 1); µ +

1
2

, ν− 1
2

;
(

x1

1− x1 − x2

)2
,
(

x2

1− x1 − x2

)2
]

+
λx2

(2ν− 1) (1− x1 − x2)

× F4

[
1
2
(λ + 1),

1
2

λ + 1; µ +
1
2

, ν +
1
2

;
(

x1

1− x1 − x2

)2
,
(

x2

1− x1 − x2

)2]}
.

Remark 1. In (18) or (19) or (20), if we set i = j = 0, we at once obtain a known result (7) according
to Bailey.

Remark 2. In (18), if we take i = j = 1, we obtain a known result from Mathur and Solanki in the
corrected form (12) given very recently by Mohammed et al.

Corollary 3. In (19), if we take i = j = 1, we obtain the following interesting result in com-
pact form.
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F2[λ, µ, ν; 2µ + 1, 2ν− 1; 2x1, 2x2] = (1− x1 − x2)
−λ

×
{

F4

[
1
2

λ,
1
2
(λ + 1); µ +

1
2

, ν− 1
2

;
(

x1

1− x1 − x2

)2
,
(

x2

1− x1 − x2

)2
]

− λx1

(2µ + 1) (1− x1 − x2)

× F4

[
1
2
(λ + 1),

1
2

λ + 1; µ +
3
2

, ν− 1
2

;
(

x1

1− x1 − x2

)2
,
(

x2

1− x1 − x2

)2]
+

λx2

(2ν− 1) (1− x1 − x2)

× F4

[
1
2
(λ + 1),

1
2

λ + 1; µ +
1
2

, ν +
1
2

;
(

x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]
− λ(λ + 1) x1 x2

(2µ + 1) (2ν− 1) (1− x1 − x2)2

× F4

[
1
2

λ + 1,
1
2

λ +
3
2

; µ +
3
2

, ν +
1
2

;
(

x1

1− x1 − x2

)2

,
(

x2

1− x1 − x2

)2]}
.

Remark 3. In (20), if we take i = j = 1, we obtain another known result from Mathur and Solanki
in the corrected form (13) given very recently by Mohammed et al.

Similarly, other results can be obtained.

4. Transformation Formulas between Appell Functions F2 and Horn Function H4

In this section, we shall establish two general transformation formulas between Appell
function F2 and Horn function H4 asserted in the following theorem.

Theorem 2. For Re(λ) > 0, Re(4x1 + x2) < 1 and i ∈ N0, the following transformation
formulas hold true.

F2[λ, µ1, µ2; 2µ1 + i, ν; 4x1, x2]

= (1− 2x1)
−λ

i

∑
k=0

(−i)k (2µ1 − 1)k (λ)k xk
1

(2µ1 + i)k(µ1 − 1
2 )k (1− 2x1)k k!

× H4

[
λ + k, µ2; µ1 + k +

1
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)]
, (21)

and

F2[λ, µ1, µ2; 2µ1 − i, ν; 4x1, x2]

= (1− 2x1)
−λ

i

∑
k=0

(−1)k(−i)k (2µ1 − 2i− 1)k (λ)k xk
1

(2µ1 − i)k (µ1 − i− 1
2 )k (1− 2x1)k k!

× H4

[
λ + k, µ2; µ1 − i +

1
2
+ k, ν;

(
x1

1− 2x1

)2

,
(

x2

1− 2x1

)]
. (22)
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Proof. In order to establish first result (21) asserted in the Theorem 2, we proceed as follows.
For this, in the integral representation (5) of F2, if we set ν1 = 2µ1 + i, ν2 = ν and replacing
x1 by 4x1, then for i ∈ N0, we have

F2[λ, µ1, µ2; 2µ1 + i, ν; 4x1, x2]

=
1

Γ(λ)

∫ ∞

0
e−t tλ−1

1F1

[
µ1

2µ1 + i
; x1 t

]
1F1

[
µ2
ν

; x2 t
]

dt.

Using the result (16) in the first 1F1 function, we have after some simplification

F2[λ, µ1, µ2; 2µ1 + i, ν; 4x1, x2]

=
1

Γ(λ)

∫ ∞

0
e−t tλ−1

{
e2x1t

i

∑
k=0

C(k) xk
1 tk

0F1

[
−

µ1 + k + 1
2

; x2
1 t2
]}

× 1F1

[
µ2
ν

; x2 t
]

dt,

where

C(k) =
(−i)k (2µ1 − 1)k

(2µ1 + i)k (µ1 − 1
2 )k (k)!

.

Now, changing the order of integration and summation, we have

F2[λ, µ1, µ2; 2µ1 + i, ν; 4x1, x2] =
i

∑
k=0

C(k) xk
1

× 1
Γ(λ)

∫ ∞

0
e−(1−2x1)t tλ+k−1

0F1

[
−

µ1 + k + 1
2

; x2
1 t2
]

1F1

[
µ2
ν

; x2 t
]

dt.

Next, expressing both 0F1 and 1F1 generalized hypergeometric function as series,
changing the order of integration and summation, we have

F2[λ, µ1, µ2; 2µ1 + i, ν; 4x1, x2] =
i

∑
k=0

C(k) xk
1

×
{ ∞

∑
m=0

∞

∑
n=0

x2m
1 x2n

2 (µ2)n

(µ1 + k + 1
2 )m (ν)n m! n!

1
Γ(λ)

∫ ∞

0
e−(1−2x1)t tλ+k+2m+n−1dt

}
.

Evaluating the Gamma integral and noting that

Γ(λ + k + 2m + n)
Γ(λ)

= (λ + k)2m+n (λ)k,

and summing up the series, we after some simplification, easily arrive at the right-hand
side of (21). This completes the proof of the first result (21) asserted in the Theorem 2. In
exactly the same manner the result (22) can be established.

Corollaries

In this subsection, we shall mention some known as well as new special cases of the
results (21) and (22) asserted in the Theorem 2.

Remark 4. In (21) or (22), if we take i = 0, the result (8) follows in view of the work conducted by
Erdélyi [7], (Eq. (4.7), p. 239).

Remark 5. In (21), if we take i = 1, we obtain a known result from Mathur and Solanki in the
corrected form (14) given very recently by Mohammed et al.
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Corollary 4. In (21), if we take i = 2, we obtain the following interesting contiguous result.

F2[λ, µ1, µ2; 2µ1 + 2, ν; 4x1, x2]

= (1− 2x1)
−λ

{
H4

[
λ, µ2; µ1 +

1
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)2]
− 2λ x1

(µ1 + 1) (1− 2x1)
H4

[
λ + 1, µ2; µ1 +

3
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)2]
+

4λ (λ + 1) x2
1

(µ1 + 1) (2µ1 + 1) (2µ1 + 3) (1− 2x1)2

× H4

[
λ + 1, µ2; µ1 +

5
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)2]}
.

Remark 6. In (22), if we take i = 1, we obtain another known result from Mathur and Solanki in
the corrected form (15) given recently by Mohammed et al.

Corollary 5. In (22), if we take i = 2, we obtain the following interesting contiguous result.

F2[λ, µ1, µ2; 2µ1 − 2, ν; 4x1, x2]

= (1− 2x1)
−λ

{
H4

[
λ, µ2; µ1 −

3
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)2]
− 2λ x1

(µ1 − 1) (1− 2x1)
H4

[
λ + 1, µ2; µ1 −

1
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)2]
+

4λ (λ + 1) (µ1 − 2)
(µ1 − 1) (2µ1 − 1) (2µ1 − 3)2

× H4

[
λ + 2, µ2; µ1 +

1
2

, ν;
(

x1

1− 2x1

)2

,
(

x2

1− 2x1

)2]}
.

Similarly, other results can be obtained.

5. Conclusions

In this study, three general transformation formulas between Appell functions F2 and
F4 and two general transformation formulas between Appell function F2 and Horn function
H4 have been established. To achieve this, in the integral formulation of the Appell function
F2, generalizations of the Kummer second theorem are used. As special cases of our major
discoveries, both previously known and new results have been found. The findings in
this work are thought to be novel to the literature and provide a significant advance to
the understanding of generalized hypergeometric functions of one and two variables.
It is believed that the findings in this work may have possible applications in a variety
of physical and chemical domains, such as Hubbell’s radiation field problems, Hubbell
rectangular source and its generalization, non-relativistic theory, and hydrogen dipole
matrix element. The Appell series is also used in quantum field theory, namely for the
evaluation of Feynman integrals. Furthermore, since 1985, computational sciences such as
artificial intelligence (AI) and information processing (IP) have used the well-known Horn
functions as a key notion. A forthcoming paper in this area will explore the applications
of the findings from this work as well as the geometrical interpretation of the general
transformation formulas for the Appell and Horn functions.
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