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Abstract: An analytical analysis of the problem of the longitudinal tension of two-layered tubes with
walls made of tetragonal crystals was carried out together with numerical calculations of the effective
Young’s moduli and Poisson’s ratios of the tubes, using the known experimental data on the elastic
characteristics of such crystals. The study of the effective elastic properties of two-layered tubes was
carried out in the cases of layers of the same thickness, equal volumes, and greater arbitrariness. The
effective Young’s modulus often exceeds the largest Young’s modulus of a pair of layers, and the
effective Poisson’s ratio can be negative, even if the Poisson’s ratios are positive in both layers. In
other words, an auxetic of the two-layered tube may correspond to a pair of non-auxetics in two
layers of this tube.

Keywords: auxetics; negative Poisson’s ratio; cylindrical anisotropy; tetragonal crystals; tetragonal
symmetry; two-layered tubes

1. Introduction

More than a hundred years ago, material with a negative Poisson’s ratio was discussed
for the first time. This material was iron pyrite with elastic properties described in Love’s
monograph [1]. More recent studies have not confirmed a negative Poisson’s ratio for
this material [2,3]. Extensive investigation of materials with a negative Poisson’s ratio
began after publication [4], where metal and polymer foams with a negative Poisson’s ratio
were produced. Later, such materials became known as auxetics. They are divided into
two groups: artificial materials (metamaterials and nanomaterials) and natural materials
(anisotropic materials, such as crystals, zeolites, etc.). Re-entrant hexagonal structures [4,5],
chiral structures [6,7], structures from rotating rigid blocks [8,9], triangular [10] and other
cellular structures [11–14] can be attributed to the former category.

The anomalous elastic behavior of the auxetic type among anisotropic materials is
widespread. The elastic features of crystals (including auxeticity) depend on their crystal
system class number. Cubic crystals belong to the lowest class with three independent
elastic parameters. The number of such parameters is doubled for two-layered composites
(plates and tubes). Many auxetics are formed among cubic crystals despite the small
number of elastic parameters in them. This is due to the wide spread of materials with a
cubic structure in nature. Various features of auxetics among cubic crystals are reflected
in the following publications: [15–33]. A change in auxeticity occurs in the presence of
defects in cubic crystals. The role of one-dimensional and two-dimensional defects, such
as nanochannels and nanolayers, in model cubic crystals has been studied in a number
of works: [34–45]. The auxeticity of cylindrically anisotropic crystalline tubes from cubic
and six-constant tetragonal crystals was investigated partially in [46,47]. It was shown
that the number of auxetic tubes exceeds the number of auxetic crystals at the rectilinear
anisotropy. The stress–strain state of tubes was supposed to be radially non-uniform.
The analytical results were verified by atomistic simulation in [48,49], where for tubes of
aluminum, copper and iron, they showed qualitative and, for some potentials, quantitative
correspondence between the analytical and numerical results.
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Longitudinal tension of two-layered tubes of cubic crystals depends on six defining
elastic parameters and, therefore, exhibits many features of auxetic behavior and effective
mechanical properties. For example, two-layered tubes produced from pairs of non-auxetics
can have large negative effective Poisson’s ratios. The effective elastic properties (Young’s
modulus and Poisson’s ratio) of longitudinally deformed two-layered composites of cubic
crystals are not described by simple mixture rules [50,51]. The angle between differently
oriented layers of a stretchable two-layered plate made of cubic crystals plays an important
role in addition to the six elastic parameters. The effective Young’s modulus in this case
exceeds Young’s modulus of each of the layers, and the Voigt’s mixture rule fails [52]. The
longitudinal tension of two-layered plates formed from cubic and hexagonal crystals is
characterized by a slightly larger number of elastic parameters (3+5). This is due to a
different class of crystal system for hexagonal crystals. The different orientation of layers
with cubic and hexagonal crystals is reflected in an important additional parametric de-
pendence. A significant difference between the effective Young’s modulus and predictions
by the mixture rule takes place in the case where one of the layers is auxetic. Significant
influence on effective Poisson’s ratio has the ratio of Young’s moduli of cubic and hexagonal
crystals [53]. Longitudinal tension of two-layered plates of hexagonal crystals depends on
ten elastic parameters. It has been shown that the effective Young’s modulus of such plates
always exceeds the results calculated by the Voigt’s mixture rule. Increasing the thickness
of the auxetic layer allows to control the value of the negative effective in-plane Poisson’s
ratio of a two-layered auxetic–non-auxetic plate [54].

Below, we consider the problem of the longitudinal tension of two-layered tubes filled
with unidirectional six-constant tetragonal crystals. The analytical solution of this problem
of elasticity theory with twelve elastic parameters is discussed in detail (Section 2). The
experimental values of the elastic characteristics of crystals in layers were taken from a
well-known handbook [55]. Section 3 is limited to the analysis of some two-layered tubes
with equal thickness and volumes of layers. In Section 4, calculations of the effective
Young’s modulus and Poisson’s ratio are mode for arbitrary values of the layers thicknesses
of two-layered tubes. In the final Section 5, the results of the analysis of the longitudinal
tension of two-layered tubular composites from unidirected six-constant tetragonal crystals
are presented.

2. Two-Layered Tubes from Six-Constant Tetragonal Crystals under
Longitudinal Tension

Let us consider a two-layered tube as pictured in Figure 1. The radial coordinate
r changes at r0 ≤ r ≤ ri and ri ≤ r ≤ R0 for the inner and outer layers, respectively.
Each layer consists of material with six-constant tetragonal anisotropy and it requires six
independent coefficients (s11, s33, s44, s66, s12, s13) to describe its elastic behavior. Upper
indices (1) and (2) will be used to denote the inner and outer layers, respectively. Local
correspondence x(1,2)

1 → z, x(1,2)
2 → −ϕ, x(1,2)

3 → r between bases of the crystallophysic and
cylindrical coordinate systems takes place for both layers of the tube. Taking into account
the aforementioned assumptions, Hooke’s law has the following form:
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Figure 1. A two-layered hollow cylindrical tube. Layer 1: h1 = ri − r0, r0 ≤ r ≤ ri and layer 2:
h2 = R0 − ri, ri ≤ r ≤ R0.

With a rigid connection of the two layers of the tube, the displacements at the interface
(r = ri) are continuous

u(1)
r = u(2)

r , u(1)
ϕ = u(2)

ϕ , u(1)
z = u(2)

z (2)

The stress components σ(1,2)
rz , σ(1,2)

rϕ , σ(1,2)
ϕz on the inner (r = r0) and outer (r = R0)

surfaces of the tube stretched along z-axis are assumed to be equal to zero:

σ
(1)
rr (r0) = σ

(2)
rr (R0) = 0, σ

(1)
rϕ (r0) = σ

(2)
rϕ (R0) = 0,

σ
(1)
rz (r0) = σ

(2)
rz (R0) = 0

(3)

If there are no integral torques, then the tangential stress components σ(1,2)
rz , σ(1,2)

rϕ , σ(1,2)
ϕz

can be considered negligible over the entire cross-section of the tube. The normal stress
components σ(1,2)

zz correspond to the specific tensile force P:∫ ri

r0

∫ 2π

0
σ
(1)
zz rdrdϕ +

∫ R0

ri

∫ 2π

0
σ
(2)
zz rdrdϕ = P

∫ R0

r0

∫ 2π

0
rdrdϕ (4)

Only one equation for normal stresses out of three equilibrium equations

σ(1,2)
ϕϕ =

d
(

rσ(1,2)
rr

)
dr

,
d
(

rσ(1,2)
rz

)
dr

= 0,
d
(

r2σ(1,2)
rϕ

)
dr

= 0 (5)

turns out to be non-trivial under these conditions.
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Using the simplified Hooke’s law and the differential equations for the strain compo-
nents in terms of displacement, we find the following possible type of the latter:

u(1,2)
r = ru(1,2)

ϕϕ (r) + f (1,2)
1 (ϕ)r + C1

u(1,2)
ϕ = C(1,2)

1 r−
d f (1,2)

1 (ϕ)

dϕ
z +

d f (1,2)
2 (ϕ)

dϕ

u(1,2)
z = ε(1,2)z− f (1,2)

1 (ϕ)r + f (1,2)
2 (ϕ)

f (1,2)
1 = C(1,2)

2 cos ϕ + C(1,2)
3 sin ϕ, f (1,2)

2 = C(1,2)
4 cos ϕ + C(1,2)

5 sin ϕ

u(1)
zz = ε(1) = const, u(2)

zz = ε(2) = const, Ci = const

(6)

Single-valued displacements require the following restriction on the strain:

u(1,2)
rr =

d(ru(1,2)
ϕϕ )

dr
(7)

Restrictions (2) and (7) lead to the following relations between the strains:

u(1)
ϕϕ(ri) = u(2)

ϕϕ(ri), u(1)
rr (ri) 6= u(2)

rr (ri), uzz = ε = ε(1) = ε(2)

Using Hooke’s law (1), equilibrium Equation (5) and restriction on the strains (7), it is
possible to obtain the radial component of the stress field of the tube:

σ(1,2)
rr (r) =

a(1,2)
1 + a(1,2)

+

(
r
ri

)λ
(1,2)
+

+ a(1,2)
−

(
r
ri

)λ
(1,2)
−

ε (8)

Here,

a(1,2)
1 =

s(1,2)
12 − s(1,2)

13

s(1,2)
33 s(1,2)

11 + s(1,2)
12

2
− s(1,2)

13
2
− s(1,2)

11
2

λ(1,2)
± = −1± k(1,2), k(1,2) =

√√√√√ s(1,2)
33 s(1,2)

11 − s(1,2)
13

2

s(1,2)
11

2
− s(1,2)

12
2

Coefficients a(1,2)
± are defined by a system of linear equations which follows from

boundary condition (3) for σ(1,2)
rr :

A


a(1)+

a(1)−
a(2)+

a(2)−

 = b (9)

Here,

A =


1/ρ

λ
(1)
+

1 1/ρ
λ
(1)
−

1 0 0

0 0 ρ
λ
(2)
+

2 ρ
λ
(2)
−

2
1 1 −1 −1

Λ(1)
+ Λ(1)

− Λ(2)
+ Λ(2)

−
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b =



−a(1)1

−a(2)1

a(2)1 − a(1)1

s(2)12

s(2)11

+ a(2)1

(
t(2)11 + t(2)13

)
−

s(1)12

s(1)11

− a(1)1

(
t(1)11 + t(1)13

)


,

where

Λ(1,2)
± = t(1,2)

13 ± k(1,2)t(1,2)
11

t(1,2)
11 = s(1,2)

11 −
s(1,2)

12
2

s(1,2)
11

, t(1,2)
13 = s(1,2)

13 −
s(1,2)

12 s(1,2)
13

s(1,2)
11

ρ1 =
ri
r0

, ρ2 =
R0

ri
, ρ =

R0

r0
= ρ1ρ2

Coefficients a(1,2)
± can be obtained either analytically or numerically. In the article, it is

supposed that the coefficients are obtained numerically. A detailed solution to the discussed
problem and analytical expressions for the coefficients a(1,2)

± are presented in Appendix A.
The remaining components of the stress field can be expressed through the σ(1,2)

rr using
the simplified Hooke’s law (1). With the use of boundary conditions (4) on σzz, Young’s
modulus E = P/ε and Poisson’s ratios (effective) νϕz = −uϕϕ/uzz and νrz = −urr/uzz can
be defined as follows:

E =
1

s(1)11

[(
1− a(1)1 (s(1)12 + s(1)13 )

) 1− 1/ρ2
1

ρ2
2 − 1/ρ2

1

−∑
±

2
s(1)13 +

(
2 + λ

(1)
±

)
s(1)12

λ
(1)
± + 2

a(1)±
1− 1/ρ

λ
(1)
± +2

1
ρ2

2 − 1/ρ2
1

]

+
1

s(2)11

[(
1− a(2)1 (s(2)12 + s(2)13 )

) ρ2
2 − 1

ρ2
2 − 1/ρ2

1

−∑
±

2
s(2)13 +

(
2 + λ

(2)
±

)
s(2)12

λ
(2)
± + 2

a(2)±
ρ

λ
(2)
± +2

2 − 1
ρ2

2 − 1/ρ2
1

]
(10)

ν(1,2)
ϕz = −

[
s(1,2)

12

s(1,2)
11

+ a(1,2)
1 (t(1,2)

13 + t(1,2)
11 )

+∑
±

(
t(1,2)
13 + (1 + λ(1,2)

± )t(1,2)
11

)
a(1,2)
± ξλ

(1,2)
±

] (11)

ν(1,2)
rz = −

[
s(1,2)

13

s(1,2)
11

+ a(1,2)
1

(
t(1,2)
33 + t(1,2)

13

)
+∑
±

(
t(1,2)
33 + (1 + λ(1,2)

± )t(1,2)
13

)
a(1,2)
± ξλ

(1,2)
±

] (12)

Here, ξ = r/ri—dimensionless radial coordinate. Variability analysis is presented
below for Young’s modulus and Poisson’s ratios of two-layered tubes from tetragonal
crystals. In the handbook [55], elasticity coefficients are collected for more than 90 tetragonal
crystals. Excluding tubes with the same material in both layers, for the elastic properties,
9506 combinations were analyzed. The further analysis considers tubes from all possible
combinations of tetragonal crystals. In the present research, crystals with negative−s12/s11
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or −s13/s11 are considered auxetic. According to [55], there are 26 crystals with s12 > 0 or
s13 > 0. Here and after, the values

E(i) =
1

s(i)11

, ν
(i)
12 = −

s(i)12

s(i)11

, ν
(i)
13 = −

s(i)13

s(i)11

, i = 1, 2

are named the Young’s modulus and Poisson’s ratio of the layers, correspondingly. Values
of these engineering constants for the discussed materials are provided in Table 1.

Table 1. Engineering constants (Young’s modulus E and Poisson’s ratios ν12, ν13) of six-constant
tetragonal crystals.

Material E, GPa ν12 ν13

Ba2Si2TiO8, sE 136 0.26 −0.32
CsH2AsO4 51.5 0.01 0.03

CsNiF3 34.4 0.45 0.06
CoF2 50.3 0.64 0.15
CoPt 175 0.43 0.32

In-17 at% Pb 20.4 0.33 0.45
In-10 at% Tl 4.46 0.43 0.53
In-15 at% Tl 3.76 0.50 0.46

FeGe2 209 −0.04 0.39
LuAsO4 244 −0.02 0.32

HgI2 24.4 −0.11 0.80
Hg2I2 1.85 0.88 0.03
PdPb2 677 0.38 0.35

RbH2AsO4 43.9 −0.37 0.08
Sn 23.6 0.76 0.10

TiO2 147 0.59 0.13
WSi2 403 0.25 0.11

ZrSiO4 377 0.07 0.28
Zr2Ni 46.3 0.76 0.15

3. Elastic Properties of Two-Layered Six-Constant Tetragonal Tubes with Equal
Thicknesses and Volumes of Layers

In the present section, two particular cases of tube geometry are considered: tubes
with equal thicknesses and equal volumes of layers. To be considered as a tube with equal
thicknesses of layers h1 = ri − r0 and h2 = R0− ri, the following relation between thickness
parameters ρ1 and ρ2 has to be met:

ρ1 =
1

2− ρ2
, 1 < ρ1, 1 < ρ2 < 2.

In the case of tubes with equal volumes of layers, values of the thickness parameters
are restricted by the following relations:

R2
0 − r2

i = r2
i − r2

0, ρ1 =
1√

2− ρ2
2

, 1 < ρ1, 1 < ρ2 <
√

2

In the situation considered here, we are discussing tubes with thickness parameters
ρ1 = 1.11, ρ1 = 2 and ρ1 = 10, which correspond to ρ2 = 1.1, ρ2 = 1.5 and ρ2 = 1.9 for
tubes with equal thickness of layers. In the case of tubes with equal volumes of layers,
the same values of ρ1 correspond to ρ2 = 1.09, ρ2 = 1.32 and ρ2 = 1.41, respectively. The
overall thickness of tube ρ is greater for tubes with layers of equal thickness. It equals
ρ = 1.22; 3; 19 and ρ = 1.21; 2.65; 14.1 for ρ1 = 1.11; 2; 10 for the cases of equal thicknesses
and volumes, respectively. For the following discussion, it is convenient to denote Young’s
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modulus of the tube with equal thicknesses of layers as Eth, with equal volumes of layers
as Evr and the largest Young’s modulus of layers as E(1,2)

max = max(E(1), E(2)).
On average, among all materials combinations, ratios 〈Eth/E(1,2)

max〉 and 〈Evr/E(1,2)
max〉

have close values. They equal 〈Eth/E(1,2)
max〉=0.7155; 0.7214; 0.7364 and 〈Evr/E(1,2)

max〉=0.7154;
0.7194; 0.7363 for ρ1 =1.11; 2; 10, correspondingly. The difference in average values is
significant if we consider two particular cases: E(2) > E(1) and E(2) < E(1). In the first
case, the ratios are 0.72, 0.80, 0.88 and 0.71, 0.72, 0.73 for ρ1 =1.11, 2, 10 for 〈Eth/E(1,2)

max〉
and 〈Evr/E(1,2)

max〉, respectively. The average ratio of Young’s moduli 〈Eth/Evr〉 also increases
with ρ1: 1.03, 1.12 and 1.22 for ρ1 1.11, 2 and 10. When the inner layer is stiffer, the ratios of
Young’s modulus to E(1,2)

max are equal 0.69, 0.64, 0.68 and 0.71, 0.72, 0.73. The average ratio
of Young’s moduli is 0.97, 0.88 and 0.77 for ρ1 = 1.11, 2 and 10. The presence of an auxetic
layer has no influence on the average values of Young’s modulus.

For some tubes, Young’s modulus exceeds the largest Young’s modulus of layers E(1,2)
max .

The number of such tubes is relatively small. There are 405, 539 and 823 for ρ1 equal to
1.11, 2 and 10 in the case of equal thicknesses of the layers. In the case of equal volumes,
the numbers are 396, 487 and 710, correspondingly. All of these tubes are characterized
by close values of E(1) and E(2) or by a large difference between ν

(1)
12 and ν

(2)
12 . Values

of Young’s modulus for different combinations are presented in Table 2 for tubes with
equal thicknesses and volumes of layers. For some tubes, the maximum value of Young’s
modulus can correspond to a distinctive peak value, as it happens for tube CoF2–RbH2AsO4
(Figure 2). On this figure, the value of Young’s modulus E is presented over the relative
thickness of the second layer ρ2 at the fixed thickness of the first layer ρ1. For the majority of
the tubes, Young’s modulus E changes monotonously under the same conditions. It shows
that certain combinations of materials allow enhanced effective properties for relatively
low overall thickness.

Table 2. Values of Young’s modulus Eth and Evr for tubes with equal thicknesses and volumes
of layers.

Tube ρ1 Eth, GPa Eth/E(1,2)
max Evr , GPa Evr/E(1,2)

max

Sn–RbH2AsO4 1.11 51.5 1.17 50.9 1.16
CoPt–FeGe2 1.11 206 0.98 205 0.98
PdPb2–Sn 1.11 337 0.50 354 0.52

LuAsO4–Hg2I2 1.11 120 0.49 126 0.52
Sn–RbH2AsO4 2 51.9 1.18 49.0 1.12

Hg2I2–RbH2AsO4 2 34.2 0.78 29.8 0.68
RbH2AsO4–Hg2I2 2 22.6 0.52 27.3 0.62

LuAsO4–RbH2AsO4 2 125 0.51 149 0.61
FeGe2–LuAsO4 2 233 0.95 228 0.93
Sn–RbH2AsO4 10 51.7 1.18 48.0 1.09

CsNiF3–RbH2AsO4 10 48.6 1.11 46.5 1.06
In–15 at% Tl-Hg2I2 10 3.76 1.00 3.61 0.96

LuAsO4–FeGe2 10 224 0.91 233 0.95
Sn–FeGe2 10 168 0.80 129 0.62

PdPb2–In-15 at% Tl 10 189 0.28 340 0.50

Poisson’s ratio νϕz can be negative for some tubes with equal thicknesses of layers.
There are 1349 tubes with negative νϕz for ρ1 = 1.11, 2667 for ρ1 = 2 and 3896 for ρ1 = 10,
including tubes from a pair of non-auxetic crystals. There are 46 such combinations for
ρ1 = 1.11, 469 for ρ1 = 2 and 1091 for ρ1 = 10. Poisson’s ratios explicitly depend on the
dimensionless radial coordinate ξ = r/ri and are defined within the range [1/ρ1, ρ2] for
corresponding values of the thickness parameters. Its value can change significantly with
the radial coordinate, and the variety of its behavior will be discussed below. The majority
of auxetic tubes have an area of negative Poisson’s ratio located near one of the surfaces
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and the Poisson’s ratio becomes positive within the corresponding layer. For some tubes,
the change of the sign of Poisson’s ratio can take place within the other layer, or it can
be negative within whole thickness. The majority of auxetic tubes have an auxetic area
near the inner surface, such as, for example CsH2AsO4–FeGe2 (Figure 3a). Every analyzed
tube with negative νϕz consists of crystals with a large difference in the Young’s moduli of
the layers. Many of them have crystals of In and TI alloys(InTl, InCd, InPb) for the inner
layer and a stiff material (WSi2, ZrSiO4) for the outer layer. A fewer amount of tubes have
Poisson’s ratio νϕz as being negative over the thickness. The number of fully auxetic tubes is
747 for ρ1 = 1.11, 139 for ρ1 = 2 and 56 for ρ1 = 10. This behavior can be seen in the example
of tube CsH2AsO4–FeGe2 (Figure 3a) for ρ1 = 1.11 and FeGe2–RbH2AsO4 (Figure 3b) for
various ρ1. The lowest values of νϕz are achieved for the tube (NH2)2CO–RbD2AsO4. The
minimal and maximal values of this Poisson’s ratio are equal to −0.49; −0.38 for ρ1 = 1.11,
−1.40;−0.34 for ρ1 = 2 and −5.56;−0.11 for ρ1 = 10. Only four combinations for ρ1 = 2 and
13 combinations for ρ1 = 10 have negative νϕz near the outer surface.

E
Evr,		ρ2	=	1.32
Eth,		ρ2	=	1.5

E,
	G
Pa

45

50

55

60
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Figure 2. Young’s modulus dependence of tube CoF2–RbH2AsO4 on ρ2 when ρ1 = 2.
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Figure 3. Poisson’s ratio νϕz for CsH2AsO4–FeGe2 (a) and FeGe2–RbH2AsO4 (b) at equal thicknesses
of layers.

Poisson’s ratio νrz, due to its discontinuity at the interface, is characterized by non-
monotonous behavior over the thickness. There are 524, 1417 and 3187 tubes with negative
νrz for ρ1 = 1.11, 2 and 10, respectively. The location of the auxetic area can be different.
It can be located near one of the tube surfaces or interface. Examples of such behavior
are tubes Ba2Si2TiO8, (sE)–WSi2 (Figure 4a) and CsH2AsO4–Ba2Si2TiO8, (sE) (Figure 4b).
There are no tubes found with νrz negative over the whole thickness. There are also tubes
with negative νrz with positive ν

(i)
12 and ν

(i)
13 for both layers. There are 58 tubes for ρ1 = 1.11,

659 for ρ1 = 2 and 1490 for ρ1 = 10 in the case of tubes with equal thicknesses of layers.
In the case of equal volumes of layers, the number of such tubes is 49, 571 and 1533 for
ρ1 = 1.11, 2 and 10, respectively. Tube CoF2–Zr2Ni is an example of this behavior with
both crystals having positive Poisson’s ratios and relatively close values of the Young’s
modulus (see Table 1). For this tube, value νrz reaches −0.57 for ρ1 = 10 and the small
auxetic area: Poisson’s ratio becomes positive for ξ = r/ri > 0.15. Some of the tubes with
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νrz < 0 do not change its sign at the interface. The number of such tubes is 25, 664 and 1937
for ρ1 = 1.11, 2 and 10, correspondingly. Tubes of crystals CsNiF3–RbH2AsO4 (Figure 5)
illustrate such behavior.

(a)
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0

0.2

0.4
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0.1 0.5 1 1.5 1.9

ρ1=10
ρ1=2
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(b)
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Figure 4. Poisson’s ratio νrz for tubes Ba2Si2TiO8, (sE)–WSi2 (a) and CsH2AsO4–Ba2Si2TiO8,
(sE) (b) with equal thicknesses of layers.
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Figure 5. Poisson’s ratios νϕz (a) and νrz (b) for CsNiF3–RbH2AsO4 tube with equal thicknesses
of layers.

In the case of tubes with equal volumes of layers, the difference with the case of equal
thicknesses is only quantitative. There are 1336, 2652 and 3875 tubes with νϕz for ρ1 = 1.11,
2 and 10, respectively. The number of fully auxetic tubes is 747 for ρ1 = 1, 139 for ρ1 = 2 and
56 for ρ1 = 10. This is also correct for Poisson’s ratio νrz of tubes with equal volumes. There
were found 692 tubes with νrz < 0 for ρ1 = 1.11, 1543 for ρ1 = 2 and 3102 for ρ1 = 10.

Except for the aforementioned cases, the auxetic area can be located in such a way
that the inner or outer surface of the tube is not included. In this case, Poisson’s ratio will
change sign multiple times within the thicknesses of the tube, as it is for CsNiF3–LuAsO4
on Figure 6a. In the present analysis, Poisson’s ratio νϕz for tubes with equal thicknesses
of layers changes its sign 2 or more times for 9 combinations when ρ1 = 2 and 53 when
ρ1 = 10. There are no such tubes found for ρ1 = 1.11. Tubes CsNiF3–LuAsO4 (Figure 6a)
and LuAsO4–RbH2AsO4 (Figure 6b) show the particular case of an area with negative νϕz
that includes the interface and typical case of multiple roots for νϕz, respectively. On this
and the following figures, thin dotted lines show points where Poisson’s ratio is equal to
zero. They also can be interpreted as a boundary between auxetic and non-auxetic areas
within a tube. Other examples of non-monotonous behavior are tubes FeGe2–RbH2AsO2
(Figure 3b) and Ba2Si2TiO8, (sE)–WSi2 (Figure 4a). Poisson’s ratio νrz also exhibits such
non-monotonous behavior. It was found for 41 tubes for ρ1 = 2 and 134 tubes for ρ1 = 10
when the thicknesses of the layers are equal. In the example of tubes HgI2–RbH2AsO4
(Figure 7), νrz can change its sign multiple times, even within a layer. Non-monotonous
behavior is also observed for homogeneous tubes from six-constant tetragonal crystals, as
it can be seen in the example of FeGe2 tube (Figure 8).
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Figure 6. Poisson’s ratio νϕz for tubes CsNiF3–LuAsO4 (a) and LuAsO4–RbH2AsO4 (b) at equal
thicknesses of layers.
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Figure 7. Poisson’s ratio νrz for tubes HgI2–RbH2AsO4 at equal thicknesses of layers.
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Figure 8. Poisson’s ratios νϕz (a) and νrz (b) of tube FeGe2 with equal thicknesses of layers.

4. Effective Properties Variability for Two-Layered Tubes from Six-Constant
Tetragonal Crystals with Arbitrary Thicknesses of Layers

In this section, the results of the analysis are discussed for the case of thickness
parameters ρ1 and ρ2 varying within the range [1.01, 2].

Young’s modulus exceeds Emax by more than 5% for 593 of the analyzed combinations.
Values of Young’s modulus for some tubes are presented in Table 3, where values of ρ1 and
ρ2 corresponding to the maximum are also presented. For analyzed tubes, the extrema of
Young’s modulus correspond to the ends of the range [1.01, 2].

Poisson’s ratio νϕz is negative for 5010 combinations, and its extreme values correspond
to one of the surfaces or the interface. More than 1000 of them are fully auxetic. There are
5 tubes for which the sign of the Poisson’s ratio changes twice and one (LuAsO4–FeGe2)
with the change of sign occurring three times (Figure 9a). It also can be noticed from
Figure 9a, that the tube has the area where νrz and νϕz are simultaneously negative. These
materials have close values of Young’s moduli and a close to zero negative Poisson’s ratio
(see Table 1). The majority of fully auxetic tubes correspond to a combination of a thin layer
(ρ = 1.01) with a positive Poisson’s ratio and a thick auxetic layer (ρ = 2). Young’s moduli
can differ by dozens of GPa. Values of Poisson’s ratio νrz can be negative for 2948 tubes, and
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almost every of them (2369) are tubes from crystals with positive ν13. There is a significant
number of tubes (1488 combinations) with negative νrz which do not change their sign at
the interface. Tube CsNiF3–RbH2AsO4 is an example (Figure 9b) of such behavior. The
major difference from the case of equal thicknesses (Figure 5) is that this tube has negative
νϕz over the thickness and simultaneously negative Poisson’s ratios for some values of
dimensionless radial coordinate ξ.

The extrema of Young’s modulus and Poisson’s ratios of some tubes can correspond
to values of thickness parameters ρ1 and ρ2 different from 1.01 and 2. The maximum of
Young’s modulus corresponds to the intermediate value of ρ1 or ρ2 for 461 tubes, some of
which are listed in Table 3. The same behavior takes place for the minimum of Poisson’s
ratio νϕz for 384 tubes and 613 for the maximum. In the case of Poisson’s ratio νrz, the
number of such tubes is 1808 and 1959 for the minimum and maximum, correspondingly.
In Tables 4 and 5, the values of Poisson’s ratios νϕz and νrz and corresponding values of
thickness parameters and dimensionless radial coordinate ξ are presented.

Table 3. Values of Young’s modulus E, its ratio to the largest Young’s modulus of layers
E(1,2)

max = max(E(1), E(2)) and corresponding thickness parameters ρ1, ρ2 for two-layered tubes from
six-constant tetragonal crystals.

Tube E,
GPa E/E(1,2)

max ρ1 ρ2

RbH2AsO4–Zr2Ni 68.5 1.48 1.34 1.18
Zr2Ni–RbH2AsO4 67.9 1.47 1.01 1.01

HgI2–Sn 31.0 1.27 1.15 1.09
Sn–HgI2 31.0 1.27 1.01 1.02

RbH2AsO4–CoF2 63.6 1.26 1.25 1.19
CoF2–RbH2AsO4 63.3 1.26 1.01 1.01

HgI2–Zr2Ni 49.5 1.07 1.84 2
Zr2Ni–HgI2 47.5 1.03 2 1.01
PdPb2–WSi2 670 0.99 2 1.01

TiO2–In-17 at% Pb 146 0.99 2 1.01
RbH2AsO4–Hg2I2 43.3 0.99 2 1.01

WSi2–FeGe2 399 0.99 2 1.01
ZrSiO4–CoPt 373 0.99 2 1.01
ZrSiO4–TiO2 373 0.99 2 1.01

LuAsO4–Zr2Ni 242 0.99 2 1.01
FeGe2–CoF2 207 0.99 2 1.01
WSi2–CoPt 398 0.99 2 1.01

PdPb2–Hg2I2 659 0.97 2 1.01
PdPb2–In-15 at% Tl 659 0.97 2 1.01
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Figure 9. Poisson’s ratios νϕz and νrz for tube LuAsO4–FeGe2 (a) and CsNiF3–RbH2AsO4 (b) for
ρ1 = 2 and ρ2 = 2.
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Table 4. Minimal values of two-layered tubes for Poisson’s ratio νϕz and corresponding thickness
parameters ρ1, ρ2 and radial coordinate ξ.

Tube νϕz ρ1 ρ2 ξ

In-15 at% Tl-RbH2AsO4 −2.56 2 2 0.5
In-15 at% Tl–LuAsO4 −1.77 2 2 0.5
In-15 at% Tl–FeGe2 −1.61 2 2 0.5

HgI2–LuAsO4 −1.03 2 2 0.5
FeGe2–RbH2AsO4 −0.54 1.01 2 1.0
WSi2–RbH2AsO4 −0.46 1.01 2 1.0

HgI2–Sn −0.45 2 1.01 0.5
FeGe2–LuAsO4 −0.23 1.55 2 0.65

Sn–LuAsO4 −0.23 1.49 2 0.67
CoF2–LuAsO4 −0.19 1.34 2 0.75
FeGe2–Hg2I2 −0.17 2 1.01 0.5
CoF2–ZrSiO4 −0.07 1.62 2 0.62

Zr2Ni–CsH2AsO4 0.02 1.01 2 1.45
CoPt–CsH2AsO4 0.03 1.01 2 1.55
CsH2AsO4–Zr2Ni 0.04 2 1.01 0.61
CsH2AsO4–WSi2 0.04 2 1.01 0.68

Table 5. Minimal values of two-layered tubes for Poisson’s ratio νrz and corresponding thickness
parameters ρ1, ρ2 and radial coordinate ξ.

Tube νrz ρ1 ρ2 ξ

PdPb2–FeGe2 −1.20 2 2 1
TiO2–FeGe2 −1.14 2 2 1
CoPt–FeGe2 −1.02 2 2 1

CoF2–RbH2AsO4 −0.50 2 2 1
TiO2–CsH2AsO4 −0.27 1.76 2 1

Zr2Ni–HgI2 −0.21 1.90 2 1
Sn–HgI2 −0.08 2 2 1

RbH2AsO4–TiO2 0.01 1.28 2 1
RbH2AsO4–HgI2 0.02 2 2 0.78

RbH2AsO4–CsH2AsO4 0.03 1.01 2 1.68
TiO2–WSi2 0.06 1.94 1.77 1
CoF2–WSi2 0.07 1.30 1.01 1
HgI2–FeGe2 0.13 2 2 1.21

5. Conclusions

Analytical analysis and numerical processing of the longitudinal elastic tension of
two-layered tubes from six-constant tetragonal crystals were performed. It was found that
the effective Young’s modulus of two-layered tubes with different layer thicknesses exceeds
the Young’s moduli of both layers in many cases. The effective Poisson’s ratio becomes
even more negative in such a situation (that is, the composite will be an auxetic). It was
also found that the effective Poisson’s ratio is negative for many non-auxetic pairs in the
layers of the same thickness, and effective Poisson’s ratios can change sign several times
over the tube cross section.

An important influence on the variability of the elastic properties of tubes of two
crystalline layers is exerted by their mutual angular orientation. The relative rotation of the
crystals layers around the common axis of the tube by some angle (the angle of chirality)
causes the effect of tension on the torsion and vice versa. This requires further research.
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Appendix A. Detailed Solution to the Problem of Longitudinal Tension of
Two-Layered Tubes from Six-Constant Tetragonal Crystals

Differential relations between the displacement and strain fields have the following
form for a cylindrical coordinate system:

∂ur(r, ϕ, z)
∂r

= urr(r),
∂uz(r, ϕ, z)

∂z
= uzz(r)

1
r

∂uϕ(r, ϕ, z)
∂ϕ

+
ur(r, ϕ, z)

∂r
= uϕϕ(r)

1
r

∂ur(r, ϕ, z)
∂ϕ

+ r
∂

∂r

(
uϕ(r, ϕ, z)

r

)
= 2urϕ(r)

∂uϕ(r, ϕ, z)
∂z

+
1
r

uz(r, ϕ, z)
∂ϕ

= 2uϕz(r)

ur(r, ϕ, z)
∂z

+
∂uz(r, ϕ, z)

∂r
= 2urz(r)

(A1)

Integration of the second, fifth and sixth relations gives the following expressions for
the displacement components:

uz(r, ϕ, z) = uzzr + g1(r, ϕ)

uϕ(r, ϕ, z) = 2uϕz(r)z−
z
r

∂g1(r, ϕ)

∂ϕ
+ g2(r, ϕ)

ur(r, ϕ, z) = −∂uzz(r)
∂r

z2

2
−
(

∂g1(r, ϕ)

∂r
− 2urz(r)

)
z + g3(r, ϕ)

(A2)

Here, gi(r, ϕ) are functions of radial and angular coordinates, which will be determined
later. After constitution of (A2) into the remaining Equation (A1) and grouping the results
on degrees of z, we obtain the following systems of equations:

d2uzz(r)
dr2 = 0

duzz(r)
dr

= 0



2
∂urz(r)

∂r
=

∂2g1(r, ϕ)

∂r2

− 1
r2

∂2g1(r, ϕ)

∂ϕ2 − 1
r

∂g1(r, ϕ)

∂r
+ urz(r) = 0

∂uϕz(r)
∂r

−
uϕz(r)

r
− ∂2

∂r∂ϕ

(
g1(r, ϕ)

r

)
= 0



urr(r) =
∂g3(r, ϕ)

∂r

ruϕϕ(r) =
∂g2(r, ϕ)

∂ϕ
+ g3(r, ϕ)

2urϕ(r) = r
∂

∂r

(
g2(r, ϕ)

r

)
+

1
r

∂g3(r, ϕ)

∂ϕ

(A3)
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It can be seen from the first system that the longitudinal strain uzz(r) is constant. With
use of the first equation of the second system (A3), g1 has the following form:

g1(r, ϕ) =
∫

2urz(r)dr + r(A1 cos ϕ + A2 sin ϕ) + A3 ϕ + A4, Ai = const (A4)

Substitution of g1(r, ϕ) into the third equation of the same system defines the uϕz
strain component:

d
dr

(uϕz(r)

r

)
= −A3

r
, 2uϕz(r) = A3r−1 + A5r, Ai = const (A5)

Integration of the first equation of the third system (A3) gives

g3(r, ϕ) =
∫

urr(r)dr + F(ϕ) (A6)

The difference of the second and the third equations of the system, after differentiation
on r and ϕ correspondingly, leads to the following equality:(

r
d
dr
− 1
)[∫

urr(r)dr− ruϕϕ(r)
]
=

(
d2

dϕ2 + 1
)

F(ϕ) (A7)

This equality is possible only when both sides are equal to a constant (A6), which
leads to the following expressions:

F(ϕ) = A7 cos ϕ + A8 sin ϕ + A6,
∫

urr(r)dr− ruϕϕ(r) = A9r− A6 (A8)

The third equation of the third system (A3), (A6) and (A8) gives function g2:

g2(r, ϕ) = r
∫ 2urϕ(r)

r
dr +

dF(ϕ)

dϕ
+ K(ϕ)r (A9)

The function K(ϕ) can be determined from the third equation of the third system,
(A9) and (A6):

K(ϕ) = −A9 ϕ + A10 (A10)

Single-valued displacements require

A3 = 0, A9 = 0 (A11)

Taking into account (A2)–(A11), the displacement field for each layer is expressed
as follows:

uz = εz +
∫

2urz(r)dr− r f1(ϕ) + C0

uϕ = τrz + C1r + z
d f1(ϕ)

dϕ
+

d f2(ϕ)

dϕ
+ r

∫ 2urϕ(r)
r

dr

ur = ruϕϕ(r) + z f1(ϕ) + f2(ϕ)

(A12)

Here,
f1(ϕ) = F1 cos ϕ + F2 sin ϕ, f2(ϕ) = F3 cos ϕ + F4 sin ϕ

Fi = const, Ci = const, ε = uzz = const, τr = 2uϕz(r)

Second expression of (A8), taking into account (A11), can be presented in the following
form:

urr(r) =
d
dr
(
ruϕϕ(r)

)
(A13)
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These expressions for displacement field are obtained under the assumption of the
radially nonuniform stress–strain state and are valid for each layer of the two-layered tube.
It is supposed that displacements are continuous at the interface r = ri. Requirement

u(1)
r = u(2)

r , u(1)
ϕ = u(2)

ϕ , u(1)
z = u(2)

z

leads to requiring the equality of every coefficient in the displacement expression:

F(1)
1 (ϕ) = F(2)

1 (ϕ), F(1)
2 (ϕ) = F(2)

2 (ϕ), C(1)
i = C(2)

i

ε(1) = ε(2) = ε, τ(1) = τ(2) = τ, u(1)
ϕϕ(r) = u(2)

ϕϕ(r)

This leads to the following relations between the strains:

u(1)
ϕϕ(ri) = u(2)

ϕϕ(ri), u(1)
rr (ri) 6= u(2)

rr (ri), uzz = ε = ε(1) = ε(2)

From Hooke’s law, the stress component σ(1,2)
rr can be expressed as follows:

σ(1,2)
zz =

1

s(1,2)
11

[
ε(1,2) − s(1,2)

12 σ(1,2)
ϕϕ − s(1,2)

13 σ(1,2)
rr

]
Using this expression, the strain components u(1,2)

ϕϕ , u(1,2)
rr can be expressed as follows:

u(1,2)
ϕϕ =

s(1,2)
12

s(1,2)
11

ε +

s(1,2)
11 −

s(1,2)
12

2

s(1,2)
11

σ(1,2)
ϕϕ +

(
s(1,2)

13 −
s(1,2)

12 s(1,2)
13

s(1,2)
11

)
σ(1,2)

rr

u(1,2)
rr =

s(1,2)
13

s(1,2)
11

ε +

(
s(1,2)

13 −
s(1,2)

12 s(1,2)
13

s(1,2)
11

)
σ(1,2)

ϕϕ +

s(1,2)
33 −

s(1,2)
13

2

s(1,2)
11

σ(1,2)
rr

(A14)

It is convenient to use notations

t(1,2)
11 = s(1,2)

11 −
s(1,2)

12
2

s(1,2)
11

, t(1,2)
13 = s(1,2)

13 −
s(1,2)

12 s(1,2)
13

s(1,2)
11

, t(1,2)
33 = s(1,2)

33 −
s(1,2)

13
2

s(1,2)
11

Using (A14), (5) and (A13), the system of differential equations for the stress compo-
nents σ(1,2)

rr can be obtained:

d
dr

(
r

d
dr

(
rσ(1,2)

rr

))
− k(1,2)2

σ(1,2)
rr +

s(1,2)
12 − s(1,2)

13

s(1,2)
11

2
− s(1,2)

12
2 ε = 0

The solution to such equations has the form

σrr(r) = A1ε + A+r−1+k + A−r1−k

After constitution of the general solution to the differential equations, the stress
component for each layer can be written as

σ(1,2)
rr (r) =

a(1,2)
1 + a(1,2)

+

(
r
ri

)λ
(1,2)
+

+ a(1,2)
−

(
r
ri

)λ
(1,2)
−

ε (A15)
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Here,

a(1,2)
1 =

s(1,2)
12 − s(1,2)

13

s(1,2)
33 s(1,2)

11 + s(1,2)
12

2
− s(1,2)

13
2
− s(1,2)

11
2

λ(1,2)
± = −1± k(1,2), k(1,2) =

√√√√√ s(1,2)
33 s(1,2)

11 − s(1,2)
13

2

s(1,2)
11

2
− s(1,2)

12
2

Coefficients a(1,2)
± can be obtained from boundary conditions (3), and requirements on

radial stress σrr and angular strain uϕϕ are continuous at the interface r = ri. The leads to
the system of Equation (9):

A


a(1)+

a(1)−
a(2)+

a(2)−

 = b

Here

A =


1/ρ

λ
(1)
+

1 1/ρ
λ
(1)
−

1 0 0

0 0 ρ
λ
(2)
+

2 ρ
λ
(2)
−

2
1 1 −1 −1

Λ(1)
+ Λ(1)

− Λ(2)
+ Λ(2)

−



b =



−a(1)1

−a(2)1

a(2)1 − a(1)1

s(2)12

s(2)11

+ a(2)1

(
t(2)11 + t(2)13

)
−

s(1)12

s(1)11

− a(1)1

(
t(1)11 + t(1)13

)


,

where

Λ(1,2)
± = t(1,2)

13 ± k(1,2)t(1,2)
11

ρ1 =
ri
r0

, ρ2 =
R0

ri
, ρ =

R0

r0
= ρ1ρ2

The coefficients a(1,2)
± can be obtained by the elimination of variables, for example, and

have the form

Ba(1)+ = −
{

s(2)12

s(2)11

− s(1)12

s(1)11

}(
1− ρ−2k(2)

2

)
+

+a(1)1

(
t(2)13 − t(1)13

)
ρ

λ
(1)
+

1

(
1− ρ

−λ
(1)
−

1

)(
1− ρ

λ
(2)
− −λ

(2)
+

2

)
−

−a(1)1 t(2)11 k(2)
(

1 + ρ−2k(2)
2

)
ρ

λ
(1)
+

1

(
1− ρ

−λ
(1)
−

1

)
+

+a(1)1 t(1)11

(
k(1)ρ−λ

(1)
−

1

)(
1− ρ−2k(2)

2

)
−

−a(2)1 t(2)11

{
2k(2)ρ−λ

(2)
+

2 + λ
(2)
− − λ

(2)
+ ρ−2k(2)

2

}
ρ2k(1)

1
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Ba(1)− =

{
s(2)12

s(2)11

− s(1)12

s(1)11

}(
1− ρ−2k(2)

2

)
−

−a(1)1

(
t(2)13 − t(1)13

)(
1− ρ−2k(2)

2

)(
1− ρ

λ
(1)
+

1

)
−

−a(1)1 t(2)11 k(2)
(

1 + ρ−2k(2)
2

)(
1− ρ

λ
(1)
+

1

)
−

−a(1)1 t(1)11

(
1− k(1)ρλ

(1)
+

1

)(
1− ρ−2k(2)

2

)
−

−a(2)1 t(2)11

{
2k(2)ρ−λ

(2)
+

2 + λ
(2)
− − λ

(2)
+ ρ−2k(2)

2

}

Ba(2)+ = −
{

s(2)12

s(2)11

− s(1)12

s(1)11

}
ρ−2k(2)

2

(
1− ρ2k(1)

1

)
−

−a(1)1 t(1)11

{
2k(1)ρλ

(1)
+

1 + λ
(1)
− − λ

(1)
+ ρ2k(1)

1

}
ρ−2k(2)

2 +

+a(2)1

(
t(2)13 − t(1)13

)
ρ
−λ

(2)
+

2

(
1− ρ

λ
(2)
−

2

)(
1− ρ2k(1)

1

)
−

−a(2)1 t(2)11

(
k(2) + ρ

λ2
−

2

)
ρ
−λ

(2)
+

2

(
1− ρ2k(1)

1

)
+

+a(2)1 t(1)11 k(1)
(

1 + ρ2k(1)
1

)
ρ
−λ

(2)
+

2

(
1− ρ

λ
(2)
−

2

)

Ba(2)− =

{
s(2)12

s(2)11

− s(1)12

s(1)11

}(
1− ρ2k(1)

1

)
+

+a(1)1 t(1)11

{
2k(1)ρλ

(1)
+

1 + λ
(1)
− − λ

(1)
+ ρ

λ
(1)
+ −λ

(1)
−

1

}(
1− ρ

−λ
(2)
+

2

)
−

−a(2)1

(
t(2)13 − t(1)13

)(
1− ρ2k(1)

1

)(
1− ρ

−λ
(2)
+

2

)
+

+a(2)1 t(2)11

(
1− k(2)ρλ

(2)
+

2

)(
1− ρ2k(1)

1

)
+

+a(2)1 t(1)11 k(1)
(

1 + ρ2k(1)
1

)(
1− ρ

−λ
(2)
+

2

)

B =

{[(
t(1)11 + t(1)13

)(
1− ρ2k(1)

1

)
+ t(1)11

(
λ
(1)
− − λ

(1)
+ ρ2k(1)

1

)](
1− ρ−2k(2)

2

)
−

[(
t(2)11 + t(2)13

)(
1− ρ−2k(2)

2

)
+ t(2)11

(
λ
(2)
− − λ

(2)
+ ρ−2k(2)

2

)](
1− ρ2k(1)

1

)}
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37. Pigłowski, P.; Narojczyk, J.; Poźniak, A.; Wojciechowski, K.; Tretiakov, K. Auxeticity of Yukawa Systems with Nanolayers in the

(111) Crystallographic Plane. Materials 2017, 10, 1338. [CrossRef]
38. Tretiakov, K.V.; Pigłowski, P.M.; Narojczyk, J.W.; Wojciechowski, K.W. Selective enhancement of auxeticity through changing a

diameter of nanochannels in Yukawa systems. Smart Mater. Struct. 2018, 27, 115021. [CrossRef]
39. Tretiakov, K.V.; Pigłowski, P.M.; Narojczyk, J.W.; Bilski, M.; Wojciechowski, K.W. High Partial Auxeticity Induced by Nanochannels

in [111]-Direction in a Simple Model with Yukawa Interactions. Materials 2018, 11, 2550. [CrossRef]

http://dx.doi.org/10.1002/pssb.200460376
http://dx.doi.org/10.1002/pssb.200880269
http://dx.doi.org/10.1109/84.585787
http://dx.doi.org/10.1007/s42114-021-00267-4
http://dx.doi.org/10.1098/rsos.210593
http://dx.doi.org/10.1016/j.compstruct.2021.114605
http://dx.doi.org/10.1016/j.jsamd.2021.11.003
http://dx.doi.org/10.1038/32842
http://dx.doi.org/10.12921/cmst.2004.10.02.183-195
http://dx.doi.org/10.1002/pssb.200460389
http://dx.doi.org/10.1098/rspa.2006.1726
http://dx.doi.org/10.1002/pssb.200572715
http://dx.doi.org/10.1088/1742-6596/104/1/012038
http://dx.doi.org/10.1002/pssb.200982037
http://dx.doi.org/10.1002/pssb.201083981
http://dx.doi.org/10.1016/j.ijsolstr.2010.02.002
http://dx.doi.org/10.1134/S1028335811070081
http://dx.doi.org/10.1002/pssb.201084222
http://dx.doi.org/10.1134/S102833581204009X
http://dx.doi.org/10.1002/pssb.201384233
http://dx.doi.org/10.1002/pssb.201451129
http://dx.doi.org/10.1002/pssb.201600017
http://dx.doi.org/10.1002/pssb.201600049
http://dx.doi.org/10.1134/S1063784216100121
http://dx.doi.org/10.3103/S0025654420040044
http://dx.doi.org/10.3103/S0025654422060206
http://dx.doi.org/10.1088/0964-1726/25/5/054007
http://dx.doi.org/10.1002/pssb.201600212
http://dx.doi.org/10.1002/pssr.201600119
http://dx.doi.org/10.3390/ma10111338
http://dx.doi.org/10.1088/1361-665X/aae6a4
http://dx.doi.org/10.3390/ma11122550


Symmetry 2023, 15, 685 19 of 19

40. Narojczyk, J.W.; Wojciechowski, K.W. Poisson’s Ratio of the f.c.c. Hard Sphere Crystals with Periodically Stacked (001)-Nanolayers
of Hard Spheres of Another Diameter. Materials 2019, 12, 700. [CrossRef]

41. Narojczyk, J.W.; Wojciechowski, K.W.; Tretiakov, K.V.; Smardzewski, J.; Scarpa, F.; Piglowski, P.M.; Kowalik, M.; Imre, A.R.; Bilski,
M. Auxetic Properties of a f.c.c. Crystal of Hard Spheres with an Array of [001]-Nanochannels Filled by Hard Spheres of Another
Diameter (Phys. Status Solidi B 1/2019). Phys. Status Solidi B 2019, 256, 1970012. [CrossRef]

42. Narojczyk, J.W.; Wojciechowski, K.W.; Smardzewski, J.; Imre, A.R.; Grima, J.N.; Bilski, M. Cancellation of Auxetic Properties in
F.C.C. Hard Sphere Crystals by Hybrid Layer-Channel Nanoinclusions Filled by Hard Spheres of Another Diameter. Materials
2021, 14, 3008. [CrossRef]
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