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Abstract: In this paper, we introduce and study a new class of coupled and uncoupled systems,
consisting of mixed-type ψ1-Hilfer and ψ2-Caputo fractional differential equations supplemented
with asymmetric and symmetric integro-differential nonlocal boundary conditions (systems (2) and
(13), respectively). As far as we know, this combination of ψ1-Hilfer and ψ2-Caputo fractional
derivatives in coupled systems is new in the literature. The uniqueness result is achieved via the
Banach contraction mapping principle, while the existence result is established by applying the
Leray–Schauder alternative. Numerical examples illustrating the obtained results are also presented.

Keywords: ψ-Hilfer fractional derivative; ψ-Caputo fractional derivative; boundary value problems;
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1. Introduction

The topic of coupled fractional-order systems, complemented with different kinds
of boundary conditions, constitute an interesting area of research, because such systems
appear in mathematical models of real-world problems, such as ecology [1], chaos and
fractional dynamics [2], financial economics [3], bio-engineering [4], etc. Nonlocal bound-
ary conditions are found to be more plausible and practical in contrast to the classical
boundary conditions in view of their applicability to describe the changes happening
within the given domain. In the literature, there are many fractional derivative opera-
tors, such as Riemann–Liouville, Caputo, Hadamard, Hilfer, Katugampola, etc., see the
monographs [5–10]. For a variety of results on nonlocal single-valued and multi-valued
boundary value problems involving different types of fractional-order derivative operators,
we refer to the monograph [11].

A generalization of both Riemann–Liouville and Caputo fractional derivatives was
given by R. Hilfer in [12]. This derivative can be reduced to the Riemann–Liouville and
Caputo fractional derivatives for special cases of the parameters involved in its definition.
For detailed advantages of the Hilfer derivative, see [13] and some recent applications in
calcium diffusion in [14–16]. The Hilfer fractional derivative with another function, known
as ψ-Hilfer fractional derivative, has been introduced in [17]. For some recent results on
existence and uniqueness of initial and boundary value problems including the ψ-Hilfer
fractional derivative, see [18–24] and references therein.

Symmetry 2023, 15, 680. https://doi.org/10.3390/sym15030680 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15030680
https://doi.org/10.3390/sym15030680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7695-2118
https://orcid.org/0000-0001-8185-3539
https://doi.org/10.3390/sym15030680
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15030680?type=check_update&version=1


Symmetry 2023, 15, 680 2 of 15

Recently, in [25], we introduced and studied a new class of boundary value prob-
lems, consisting of mixed-type ψ1-Hilfer and ψ2-Caputo fractional differential equations
supplemented with integro-differential nonlocal boundary conditions of the form:

H Dα,β;ψ1(CDγ;ψ2 π)(s) = Υ1(s, π(s)), 0 < α, β, γ < 1, s ∈ [0, A],

CDγ;ψ2 π(0) = 0, π(A) =
m

∑
i=1

λi
CDγ;ψ2 π(ηi) +

n

∑
j=1

δj Iµj ;ψ2 π(ξ j),
(1)

where H Dα,β;ψ1 and CDγ;ψ2 are the ψ1-Hilfer and ψ2-Caputo fractional derivatives with
respect to functions ψ1 and ψ2, respectively, where ψ′1(s), ψ′2(s) > 0 for all t ∈ [0, A],
λi, δj ∈ R, ηi, ξ j ∈ (0, A), Iµj ;ψ2 is the Riemann–Liouville fractional integral of order µj > 0,
with respect to a function ψ2, for i = 1, · · · , m, j = 1, · · · , n and f : [0, A]×R → R is a
nonlinear continuous function. Existence and uniqueness were established via Banach’s
fixed point theorem and the Leray–Schauder nonlinear alternative.

The novelty of this study lies in the fact that we introduced a new class of boundary
value problems in which we combined ψ1-Hilfer and ψ2-Caputo fractional derivatives and,
as far as we know, this combination is new in the literature.

In the present paper, we continue the above investigation, by considering the follow-
ing system of sequential ψ1-Hilfer and ψ2-Caputo fractional differential equations with
fractional integro-differential nonlocal conditions of the form:

H Dα,β;ψ1(CDγ;ψ2 π)(s) = Υ1(s, π(s), ρ(s)), s ∈ [0, A],
H Dα̂,β̂;ψ1(CDγ̂;ψ2 ρ)(s) = Υ2(s, π(s), ρ(s)), s ∈ [0, A],
CDγ;ψ2 π(0) = 0, π(A) = λ1

CDγ̂;ψ2 ρ(ξ1) + λ2 Iµ̂;ψ2 ρ(ξ2),
CDγ̂;ψ2 ρ(0) = 0, ρ(A) = δ1

CDγ;ψ2 π(η1) + δ2 Iµ;ψ2 π(η2),

(2)

where the differential operators H Dα,β;ψ1 ,H Dα̂,β̂;ψ1 are the ψ1-Hilfer fractional derivative
of orders 0 < α, α̂ < 1 with Hilfer parameters 0 < β, β̂ < 1, CDγ;ψ2 ,C Dγ̂;ψ2 are the ψ2-
Caputo fractional derivatives of orders 0 < γ, γ̂ < 1, λ1, λ2, δ1, δ2 ∈ R are given constants,
η1, η2, ξ1, ξ2 ∈ [0, A], and Υ1, Υ2 : [0, A]×R×R→ R are given continuous functions.

We obtain existence and uniqueness results by applying the classical fixed point
theorems. Thus, the uniqueness result is established via Banach’s contraction mapping
principle, while the basic tool for the existence result is the Leray–Schauder alternative.

The rest of the paper is arranged as follows. In Section 2, we recall some definitions
and lemmas from fractional calculus needed in our study and also we present an auxiliary
lemma which is used to transform the given nonlinear problem into a fixed-point problem.
Section 3 contains the main results, while in Section 4, we indicate the uncoupled fractional
integro-differential boundary conditions. Finally, illustrative examples are constructed
in Section 5.

2. Preliminaries

Now, some notations, definitions, and known results of fractional calculus are re-
minded [6].

Let ψ ∈ C1([0, A],R) with ψ′(s) > 0 for all s ∈ [0, A].

Definition 1 ([6]). Let α > 0 and f ∈ L1([0, A],R). The ψ-Riemann–Liouville fractional integral
of order α to a function f with respect to ψ is defined by

Iα;ψ f (s) =
1

Γ(α)

∫ s

0
ψ′(τ)(ψ(s)− ψ(τ))α−1 f (τ)dτ.



Symmetry 2023, 15, 680 3 of 15

Definition 2 ([17]). Let n− 1 < α < n, n ∈ N and f , ψ ∈ Cn([0, A],R) such that ψ′(s) > 0
for all s ∈ [0, A]. The ψ-Hilfer fractional derivative H Dα,β;ψ(·) of order α to a function f and type
0 ≤ β ≤ 1, is defined by

H Dα,β;ψ f (s) = Iβ(n−α);ψ
(

1
ψ ′(s)

d
ds

)n
I(1−β)(n−α);ψ f (s).

Definition 3 ([26]). Let n− 1 < α < n, n ∈ N and f , ψ ∈ Cn([0, A],R) such that ψ′(s) > 0 for
all s ∈ [0, A]. The ψ-Caputo fractional derivative CDα;ψ(·) of order α to a function f is defined by

CDα;ψ f (s) = In−α;ψ
(

1
ψ ′(s)

d
ds

)n
f (s).

Lemma 1 ([17]). The semigroup property and integration of power function formula. Let α, χ > 0
and δ > 1 be constants. Then, we have

(i) Iα;ψ Iχ;ψh(s) = Iα+χ;ψh(s);

(ii) Iα;ψ(ψ(s)− ψ(a))δ−1 =
Γ(δ)

Γ(α + δ)
(ψ(s)− ψ(a))α+δ−1.

The following lemmas contain the compositional property of the Riemann–Liouville
fractional integral operator with the ψ-Hilfer fractional derivative and ψ-Caputo
fractional derivative.

Lemma 2 ([17]). Let f ∈ L(0, A), n− 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1, γ∗ = α + nβ− αβ,(
I(n−α)(1−β) f

)
∈ ACk[0, A]. Then,

(
Iα;ψ H Dα,β;ψ f

)
(s) = f (s)−

n

∑
k=1

(ψ(s)− ψ(0))γ∗−k

Γ(γ∗ − k + 1)

(
1

ψ′(s)
d
ds

)n−k(
I(1−β)(n−α);ψ f

)
(0).

Lemma 3 ([26]). Let f ∈ L(0, A) and α > 0, we have

(
Iα;ψ CDα;ψ f

)
(s) = f (s)−

n−1

∑
k=0

(
1

ψ′(s)
d
ds

)k
f (0)

k!
(ψ(s)− ψ(0))k.

Our first task is to transform the boundary value problem (2) into an integral equation.

Lemma 4. Let h, ĥ ∈ C([0, A],R) be given functions and Ω 6= 0. Then, the unique solution of the
following linear system

H Dα,β;ψ1(CDγ;ψ2 π)(s) = h(s),
H Dα̂,β̂;ψ1(CDγ̂;ψ2 ρ)(s) = ĥ(s),
CDγ;ψ2 π(0) = 0, π(A) = λ1

CDγ̂;ψ2 ρ(ξ1) + λ2 Iµ̂;ψ2 ρ(ξ2),
CDγ̂;ψ2 ρ(0) = 0, ρ(A) = δ1

CDγ;ψ2 π(η1) + δ2 Iµ;ψ2 π(η2),

(3)

is given by

π(s) =
1
Ω

[
λ1 I α̂;ψ1 ĥ(ξ1)− Iγ;ψ2 Iα;ψ1 h(A) + λ2 Iµ̂+γ̂;ψ2 I α̂;ψ1 ĥ(ξ2)

+Ω2

{
δ1 Iα;ψ1 h(η1)− Iγ̂;ψ2 I α̂;ψ1 ĥ(A) + δ2 Iµ+γ;ψ2 Iα;ψ1 h(η2)

}]
+ Iγ;ψ2 Iα;ψ1 h(s), (4)
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and

ρ(s) =
1
Ω

[(
δ1 Iα;ψ1 h(η1)− Iγ̂;ψ2 I α̂;ψ1 ĥ(A) + δ2 Iµ+γ;ψ2 Iα;ψ1 h(η2)

)
+Ω1

{
λ1 I α̂;ψ1 ĥ(ξ1)− Iγ;ψ2 Iα;ψ1 h(A) + λ2 Iµ̂+γ̂;ψ2 I α̂;ψ1 ĥ(ξ2)

}]
+ Iγ̂;ψ2 I α̂;ψ1 ĥ(s), (5)

where

Ω1 = δ2
[ψ2(η2)− ψ2(0)]

µ

Γ(µ + 1)
, Ω2 = λ2

[ψ2(ξ2)− ψ2(0)]
µ̂

Γ(µ̂ + 1)
, Ω = 1−Ω1Ω2.

Proof. Assume that x, y are solutions of the nonlocal system (3) on [0, A]. Taking the frac-
tional integrals Iα;ψ1 , I α̂;ψ1 on both sides of the first and second equations in (3), respectively,
and using Lemma 2, we obtain for s ∈ [0, A],

CDγ:ψ2 π(s) = c0
[ψ1(s)− ψ1(0)]

α∗−1

Γ(α∗)
+ Iα;ψ1 h(s),

CDγ̂:ψ2 ρ(s) = d0
[ψ1(s)− ψ1(0)]

α̂∗−1

Γ(α̂∗)
+ I α̂;ψ1 ĥ(s),

where α∗ = α+(1− α)β and α̂∗ = α̂+(1− α̂)β̂, c0, d0 ∈ R. Since α∗ ∈ (α, 1) and α̂∗ ∈ (α̂, 1),
and from conditions CDγ:ψ2 π(0) = 0, CDγ̂:ψ2 ρ(0) = 0, we obtain c0 = 0 and d0 = 0. Hence,
we have {

CDγ:ψ2 π(s) = Iα;ψ1 h(s),
CDγ̂:ψ2 ρ(s) = I α̂;ψ1 ĥ(s).

(6)

The fractional integration of the above two equations of orders γ and γ̂, respectively,
leads to {

π(s) = c1 + Iγ;ψ2 Iα;ψ1 h(s),
ρ(s) = d1 + Iγ̂;ψ2 I α̂;ψ1 ĥ(s), c1, d1 ∈ R.

(7)

From (6), we have

CDγ:ψ2 π(η1) = Iα;ψ1 h(η1) and CDγ̂:ψ2 ρ(ξ1) = I α̂;ψ1 ĥ(ξ1). (8)

In addition, the Riemann–Liouville fractional integral with respect to a function ψ2 of
orders µ and µ̂ is applied in (7) to the points η2 and ξ2, respectively, then,

Iµ;ψ2 π(η2) = c1
[ψ2(η2)− ψ2(0)]

µ

Γ(µ + 1)
+ Iµ+γ;ψ2 Iα;ψ1 h(η2), (9)

and

Iµ̂;ψ2 ρ(ξ2) = d1
[ψ2(ξ2)− ψ2(0)]

µ̂

Γ(µ̂ + 1)
+ Iµ̂+γ̂;ψ2 I α̂;ψ1 ĥ(ξ2). (10)

Substituting s = A in (7) and using (8)–(10) in boundary conditions, c1 and d1 can be
expressed as

c1 =
1
Ω

[
λ1 I α̂;ψ1 ĥ(ξ1)− Iγ;ψ2 Iα;ψ1 h(A) + λ2 Iµ̂+γ̂;ψ2 I α̂;ψ1 ĥ(ξ2)

+Ω2

{
δ1 Iα;ψ1 h(η1)− Iγ̂;ψ2 I α̂;ψ1 ĥ(A) + δ2 Iµ+γ;ψ2 Iα;ψ1 h(η2)

}]
,



Symmetry 2023, 15, 680 5 of 15

d1 =
1
Ω

[(
δ1 Iα;ψ1 h(η1)− Iγ̂;ψ2 I α̂;ψ1 ĥ(A) + δ2 Iµ+γ;ψ2 Iα;ψ1 h(η2)

)
+Ω1

{
λ1 I α̂;ψ1 ĥ(ξ1)− Iγ;ψ2 Iα;ψ1 h(A) + λ2 Iµ̂+γ̂;ψ2 I α̂;ψ1 ĥ(ξ2)

}]
.

Substituting the constants into (7), we obtain (4) and (5).
On the other hand, taking the ψ2-Caputo fractional derivative of orders γ and γ̂,

to (4) and (5), respectively, we obtain (6) which satisfies the first condition at lines 3 and 4
of (3) when s = 0. Applying the ψ1-Hilfer fractional derivative of orders α and α̂ to the first
and second equations in (6), respectively, leads to the first two equations in (3). Using the
fractional integration ψ2-Riemann–Liouville of orders µ and µ̂ in (4) and (5) with points
s = η2 and s = ξ2, respectively, and from (6) at the points s = η1 and s = η2, we can show
by direct computation that the second condition at lines 3 and 4 of (3) holds. Therefore, this
lemma is proved.

3. Main Results

From Lemma 4, we define an operator M : X×X→ X×X by

M(π, ρ)(s) =
(

M1(π, ρ)(s)
M2(π, ρ)(s)

)
,

where

M1(π, ρ)(s)

=
1
Ω

[
λ1 I α̂;ψ1 Υ2(ξ1, π(ξ1), ρ(ξ1))− Iγ;ψ2 Iα;ψ1 Υ1(A, π(A), ρ(A))

+ λ2 Iµ̂+γ̂;ψ2 I α̂;ψ1 Υ2(ξ2, π(ξ2), ρ(ξ2)) + Ω2

{
δ1 Iα;ψ1 Υ1(η1, π(η1), ρ(η1))

− Iγ̂;ψ2 I α̂;ψ1 Υ2(A, π(A), ρ(A)) + δ2 Iµ+γ;ψ2 Iα;ψ1 Υ1(η2, π(η2), ρ(η2))
}]

+ Iγ;ψ2 Iα;ψ1 Υ1(s, π(s), ρ(s)),

and

M2(π, ρ)(s)

=
1
Ω

[
δ1 Iα;ψ1 Υ1(η1, π(η1), ρ(η1))− Iγ̂;ψ2 I α̂;ψ1 Υ2(A, π(A), ρ(A))

+ δ2 Iµ+γ;ψ2 Iα;ψ1 Υ1(η2, π(η2), ρ(η2)) + Ω1

{
λ1 I α̂;ψ1 Υ2(ξ1, π(ξ1), ρ(ξ1))

− Iγ;ψ2 Iα;ψ1 Υ1(A, π(A), ρ(A)) + λ2 Iµ̂+γ̂;ψ2 I α̂;ψ1 Υ2(ξ2, π(ξ2), ρ(ξ2))
}]

+ Iγ̂;ψ2 I α̂;ψ1 Υ2(s, π(s), ρ(s)),

and X = C([0, A],R) is the Banach space of all continuous functions π from [0, A] to R en-
dowed with the norm ‖π‖ = max{|π(s)|, s ∈ [0, A]}. The product space (X×X, ‖(π, ρ)‖)
is also a Banach space with norm ‖(π, ρ)‖ = ‖π‖+ ‖ρ‖.

For simplicity in computation, we put:

Φα,ϕ
ψ1,ψ2

(b) := Iϕ;ψ2 Iα;ψ1(1)(b)
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=
1

Γ(α + 1)Γ(ϕ)

∫ b

0
ψ′2(u)(ψ1(u)− ψ1(0))α(ψ2(b)− ψ2(u))ϕ−1du,

and

Φ̂ϕ
ψ(b) := Iϕ;ψ(1)(b) =

1
Γ(ϕ)

∫ b

0
ψ′(s)(ψ(b)− ψ(s))ϕ−1ds,

and some constants as

Q1 =
1
|Ω|

[
|Ω2|

(
|δ1|Φ̃α

ψ1
(η1) + |δ2|Φ

α,µ+γ
ψ1,ψ2

(η2)
)
+ (1 + |Ω2|)Φα,γ

ψ1,ψ2
(A)

]
,

Q2 =
1
|Ω|

[
|λ1|Φ̃α̂

ψ1
(ξ1) + |λ2|Φ

α̂,µ̂+γ̂
ψ1,ψ2

(ξ2) + |Ω2|Φα̂,γ̂
ψ1,ψ2

(A)
]
,

Q3 =
1
|Ω|

[
|Ω1|

(
|λ1|Φ̃α̂

ψ1
(ξ1) + |λ2|Φ

α̂,µ̂+γ̂
ψ1,ψ2

(ξ2)
)
+ (1 + |Ω|)Φα̂,γ̂

ψ1,ψ2
(A)

]
,

Q4 =
1
|Ω|

[
|δ1|Φ̃α

ψ1
(η1) + |δ2|Φ

α,µ+γ
ψ1,ψ2

(η2) + |Ω1|Φα,γ
ψ1,ψ2

(A)
]
.

Now, the existence of a unique solution to the coupled system of sequential ψ1-Hilfer
and ψ2-Caputo fractional differential equations with fractional integro-differential nonlocal
conditions (2) is presented by applying Banach’s contraction mapping principle.

Theorem 1. Assume that Ω 6= 0 and Υ1, Υ2 : [0, A]×R2 → R are two functions for which there
exist constants mi, ni, i = 1, 2 such that, for all s ∈ [0, A] and πi, ρi ∈ R, i = 1, 2,

|Υ1(s, π1, ρ1)− Υ1(s, π2, ρ2)| ≤ m1|π1 − π2|+ m2|ρ1 − ρ2|

and
|Υ2(s, π1, ρ1)− Υ2(s, π2, ρ2)| ≤ n1|π1 − π2|+ n2|ρ1 − ρ2|.

If
(Q1 + Q4)(m1 + m2) + (Q2 + Q3)(n1 + n2) < 1,

then the coupled system of sequential ψ1-Hilfer and ψ2-Caputo fractional differential equations with
fractional integro-differential nonlocal conditions (2) has a unique solution (π, ρ) on [0, A].

Proof. Define sups∈[0,A] Υ1(A, 0, 0) = M < ∞ and sups∈[0,A] Υ2(A, 0, 0) = N < ∞ and
choose

r ≥ (Q1 + Q4)M + (Q2 + Q3)N
1− [(Q1 + Q4)(m1 + m2) + (Q2 + Q3)(n1 + n2)]

,

where r is a radius of the ball Br = {(π, ρ) ∈ X×X : ‖(π, ρ)‖ ≤ r}. Next, we show that
(MBr) ⊂ Br. For each (π, ρ) ∈ Br, we have

|M1(π, ρ)(s)|

≤ 1
|Ω|

[(
|λ1|I α̂;ψ1

[
|Υ2(ξ1, π(ξ1), ρ(ξ1))− Υ2(ξ1, 0, 0)|+ |Υ2(ξ1, 0, 0)|

]
+ Iγ;ψ2 Iα;ψ1

[
|Υ1(A, π(A), ρ(A))− Υ1(A, 0, 0)|+ |Υ1(A, 0, 0)|

]
+ |λ2|Iµ̂+γ̂;ψ2 I α̂;ψ1

[
|Υ2(ξ2, π(ξ2), ρ(ξ2)− Υ2(ξ2, 0, 0))|+ |Υ2(ξ2, 0, 0)|

])
+ |Ω2|

{
|δ1|Iα;ψ1

[
|Υ1(η1, π(η1), ρ(η1))− Υ1(η1, 0, 0)|+ |Υ1(η1, 0, 0)|

]
+ Iγ̂;ψ2 I α̂;ψ1

[
|Υ2(A, π(A), ρ(A))− Υ2(A, 0, 0)|+ |Υ2(A, 0, 0)|

]
+ |δ2|Iµ+γ;ψ2 Iα;ψ1

[
|Υ1(η2, π(η2), ρ(η2))− Υ1(η2, 0, 0)|+ |Υ1(η2, 0, 0)|

]}]
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+ Iγ;ψ2 Iα;ψ1
[
|Υ1(A, π(A), ρ(A))− Υ1(A, 0, 0)|+ |Υ1(A, 0, 0)|

]
≤ 1
|Ω|

[(
|λ1|[n1‖π‖+ n2‖ρ‖+ N]I α̂;ψ1(1)(ξ1)

+ [m1‖π‖+ m2‖ρ‖+ M]Iγ;ψ2 Iα;ψ1(1)(A)

+ |λ2|[n1‖π‖+ n2‖ρ‖+ N]Iµ̂+γ̂;ψ2 I α̂;ψ1(1)(ξ2)

)
+ |Ω2|

{
|δ1|[m1‖π‖+ m2‖ρ‖+ M]Iα;ψ1(1)(η1)

+ [n1‖π‖+ n2‖ρ‖+ N]Iγ̂;ψ2 I α̂;ψ1(1)(A)

+ |δ2|[m1‖π‖+ m2‖ρ‖+ M]Iµ+γ;ψ2 Iα;ψ1(1)(η2)

}]
+ [m1‖π‖+ m2‖ρ‖+ M]Iγ;ψ2 Iα;ψ1(1)(s),

by using the following relations |Υ1(s, π, ρ)| ≤ |Υ1(s, π, ρ)− Υ1(s, 0, 0)|+ |Υ1(s, 0, 0)| ≤
m1|x| + m2|y| + M and |Υ2(s, π, ρ)| ≤ |Υ2(s, π, ρ) − Υ2(s, 0, 0)| + |Υ2(s, 0, 0)| ≤ n1|x| +
n2|y|+ N. Then, we have

|M1(π, ρ)(s)|

≤ 1
|Ω|

[
|Ω2|

(
|δ1|Φ̃α

ψ1
(η1) + |δ2|Φ

α,µ+γ
ψ1,ψ2

(η2)
)
+ (1 + |Ω2|)Φα,γ

ψ1,ψ2
(A)

]
[m1‖π‖+ m2‖ρ‖+ M]

+
1
|Ω|

[
|λ1|Φ̃α̂

ψ1
(ξ1) + |λ2|Φ

α̂,µ̂+γ̂
ψ1,ψ2

(ξ2) + |Ω2|Φα̂,γ̂
ψ1,ψ2

(A)
]
[n1‖π‖+ n2‖ρ‖+ N]

= Q1[m1‖π‖+ m2‖ρ‖+ M] + Q2[n1‖π‖+ n2‖ρ‖+ N]

= (Q1m1 + Q2n1)‖π‖+ (Q1m2 + Q2n2)‖ρ‖+ Q1 M + Q2N

≤ (Q1m1 + Q2n1 + Q1m2 + Q2n2)r + Q1 M + Q2N.

Next, we consider boundedness of the operator M2 as

M2(π, ρ)(s) ≤ 1
|Ω|

[
|δ1|[m1‖π‖+ m2‖ρ‖+ M]Iα;ψ1(1)(η1)

+ [n1‖π‖+ n2‖ρ‖+ N]Iγ̂;ψ2 I α̂;ψ1(1)(A)

+ |δ2|[m1‖π‖+ m2‖ρ‖+ M]Iµ+γ;ψ2 Iα;ψ1(1)(η2)

+ |Ω1|
{
|λ1|[n1‖π‖+ n2‖ρ‖+ N]I α̂;ψ1(1)(ξ1)

+ [m1‖π‖+ m2‖ρ‖+ M]Iγ;ψ2 Iα;ψ1(1)(A)

+ |λ2|[n1‖π‖+ n2‖ρ‖+ N]Iµ̂+γ̂;ψ2 I α̂;ψ1(1)(ξ2)
}]

+ [n1‖π‖+ n2‖ρ‖+ N]Iγ̂;ψ2 I α̂;ψ1(1)(A)

= Q3[n1‖π‖+ n2‖ρ‖+ N] + Q4[m1‖π‖+ m2‖ρ‖+ M]

= (Q4m1 + Q3n1)‖π‖+ (Q4m2 + Q3n2)‖ρ‖+ Q4M + Q3N

≤ (Q4m1 + Q3n1 + Q4m2 + Q3n2)r + Q4M + Q3N.

Then, we have

‖M(π, ρ)‖ = ‖M1(π, ρ)‖+ ‖M2(π, ρ)‖
≤ (Q1m1 + Q2n1 + Q1m2 + Q2n2)r + Q1M + Q2N

+(Q4m1 + Q3n1 + Q4m2 + Q3n2)r + Q4M + Q3N

= [(Q1 + Q4)(m1 + m2) + (Q2 + Q3)(n1 + n2)]r
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+(Q1 + Q4)M + (Q2 + Q3)N ≤ r,

which implies the fact that (MBr) ⊂ Br.
Now, we show that the operator M is a contraction. For each (π2, ρ2), (π1, ρ1) ∈ X×X,

and for any t ∈ [0, A], we obtain:

|M1(π2, ρ2)(s)−M1(π1, ρ1)(s)|

≤ 1
|Ω|

[(
|λ1|I α̂;ψ1 |Υ2(ξ1, π2(ξ1), ρ2(ξ1))− Υ2(ξ1, π1(ξ1), ρ1(ξ1))|

+ Iγ;ψ2 Iα;ψ1 |Υ1(A, π2(A), ρ2(A))− Υ1(A, π1(A), ρ1(A))|

+ |λ2|Iµ̂+γ̂;ψ2 I α̂;ψ1 |Υ2(ξ2, π2(ξ2), ρ2(ξ2))− Υ2(ξ2, π1(ξ2), ρ1(ξ2))|
)

+ |Ω2|
{
|δ1|Iα;ψ1 |Υ1(η1, π2(η1), ρ2(η1))− Υ1(η1, π1(η1), ρ1(η1))|

+ Iγ̂;ψ2 I α̂;ψ1 |Υ2(A, π2(A), ρ2(A))− Υ2(A, π1(A), ρ1(A))|

+ |δ2|Iµ+γ;ψ2 Iα;ψ1 |Υ1(η2, π2(η2), ρ2(η2))− Υ1(η2, π1(η2), ρ1(η2))|
}]

+ Iγ;ψ2 Iα;ψ1 |Υ1(A, π2(A), ρ2(A))− Υ1(A, π2(A), ρ2(A))|

≤ [m1‖π2 − π1‖+ m2‖ρ2 − ρ1‖]
1
|Ω|

[
|Ω2|

(
|δ1|Φ̃α

ψ1
(η1) + |δ2|Φ

α,µ+γ
ψ1,ψ2

(η2)
)

+ (1 + |Ω|)Φα,γ
ψ1,ψ2

(A)
]
+ [n1‖π2 − π1‖+ n2‖ρ2 − ρ1‖]

1
|Ω|

×
[
|λ1|Φ̃α̂

ψ1
(ξ1) + |λ2|Φ

α̂,µ̂+γ̂
ψ1,ψ2

(ξ2) + |Ω2|Φα̂,γ̂
ψ1,ψ2

(A)
]

= [m1‖π2 − π1‖+ m2‖ρ2 − ρ1‖]Q1 + [n1‖π2 − π1‖+ n2‖ρ2 − ρ1‖]Q2,

≤ (m1Q1 + n1Q2 + m2Q1 + n2Q2)[‖π2 − π1‖+ ‖ρ2 − ρ1‖]. (11)

By the same way of computation, we have

|M2(π2, ρ2)(s)−M2(π1, ρ1)(s)|
≤ (m1Q4 + n1Q3 + m2Q4 + n2Q3)[‖π2 − π1‖+ ‖ρ2 − ρ1‖]. (12)

From the two inequalities (11) and (12) above, we can conclude that

‖M(π2, ρ2)−M(π1, ρ1)‖
≤ [(Q1 + Q4)(m1 + m2) + (Q2 + Q3)(n1 + n2)][‖π2 − π1‖+ ‖ρ2 − ρ1‖].

From the assumption that [(Q1 + Q4)(m1 + m2) + (Q2 + Q3)(n1 + n2)] < 1, M is a
contraction operator. Applying Banach’s contraction mapping principle, a unique solution
of the operator M exists on the interval [0, A].

Next, the Leray–Schauder alternative is used to prove an existence result [27].

Theorem 2. Assume that Ω 6= 0 and Υ1, Υ2 : [0, A] × R2 → R are continuous functions
such that

|Υ1(s, π, ρ)| ≤ F0 + F1|π|+ F2|ρ| and |Υ2(s, π, ρ)| ≤ G0 + G1|π|+ G2|ρ|,

for all π, ρ ∈ R, where constants Fi, Gi ≥ 0 (i = 1, 2) and F0 > 0, G0 > 0. In addition, it is
assumed that

(Q1 + Q4)F1 + (Q2 + Q3)G1 < 1 and (Q1 + Q4)F2 + (Q2 + Q3)G2 < 1.
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Then, there exists at least one solution to the coupled system of sequential ψ1-Hilfer and ψ2-
Caputo fractional differential equations with fractional integro-differential nonlocal conditions (2)
on [0, A].

Proof. In view of the continuity of functions Υ1 and Υ2, the operator M is continuous. Next,
we show that the operator M is completely continuous. Let Kζ ⊂ X×X be a bounded set
defined by

Kζ = {(π, ρ) ∈ X×X : ‖(π, ρ)‖ ≤ ζ}.

Then, there exist L1, L2 > 0 such that

|Υ1(s, π(s), ρ(s)| ≤ F0 + (F1 + F2)ζ := L1,

and
|Υ2(s, π(s), ρ(s)| ≤ G0 + (G1 + G2)ζ := L2, ∀(π, ρ) ∈ Kζ .

Then, for any (π, ρ) ∈ Kζ , we have

|M1(π, ρ)(s)| ≤ 1
|Ω|

[
|Ω2|

(
|δ1|Φ̃α

ψ1
(η1) + |δ2|Φ

α,µ+γ
ψ1,ψ2

(η2)
)
+ (1 + |Ω|)Φα,γ

ψ1,ψ2
(A)

]
L1

+
1
|Ω|

[
|λ1|Φ̃α̂

ψ1
(ξ1) + |λ2|Φ

α̂,µ̂+γ̂
ψ1,ψ2

(ξ2) + |Ω2|Φα̂,γ̂
ψ1,ψ2

(A)
]

L2,

which leads to

‖M1(π, ρ)‖ ≤ Q1L1 + Q2L2.

In the same way, we have

‖M2(π, ρ)‖ ≤ Q4L1 + Q3L2.

Hence,

‖M(π, ρ)‖ = ‖M1(π, ρ)‖+ ‖M2(π, ρ)‖ ≤ (Q1 + Q4)L1 + (Q2 + Q3)L2,

which implies the uniformly bounded property of the operator M.
For the equicontinuity of M, we set s1, s2 ∈ [0, A] such that s1 < s2. Then, by putting

(Υ1)πρ(s) = Υ1(s, π(s), ρ(s)) and (Υ2)πρ(s) = Υ2(s, π(s), ρ(s)), we obtain:

|M1(π, ρ)(s2)−M1(π, ρ)(s1)|
= |Iγ;ψ2 Iα;ψ1(Υ1)πρ(s2)− Iγ;ψ2 Iα;ψ1(Υ1)πρ(s1)|

=
∣∣∣ 1
Γ(α + 1)Γ(γ)

∫ s2

0
ψ′2(u)(ψ1(u)− ψ1(0))α(ψ2(s2)− ψ2(u))γ−1(Υ1)πρ(u)du

− 1
Γ(α + 1)Γ(γ)

∫ s1

0
ψ′2(u)(ψ1(u)− ψ1(0))α(ψ2(s1)− ψ2(u))γ−1(Υ1)πρ(u)du

∣∣∣
≤ L1

∣∣∣ 1
Γ(α + 1)Γ(γ)

∫ s1

0
ψ′2(u)(ψ1(u)− ψ1(0))α

{
(ψ2(s2)− ψ2(u))γ−1

−(ψ2(s1)− ψ2(u))γ−1
}

du

+
1

Γ(α + 1)Γ(γ)

∫ s2

s1

ψ′2(u)(ψ1(u)− ψ1(0))α(ψ2(s2)− ψ2(u))γ−1du
∣∣∣

which is independent of (π, ρ) and tends to zero as s2− s1 → 0. Analogously, we can obtain
|M2(π, ρ)(s2)−M2(π, ρ)(s1)| → 0 as s1 → s2.

Consequently, the set (MKζ) is equicontinuous. By the Arzelá–Ascoli theorem, the op-
erator M(π, ρ) is completely continuous.
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This final step shows the boundedness of the set E = {(π, ρ) ∈ X× X : (π, ρ) =
λM(π, ρ), 0 ≤ λ ≤ 1}. Suppose that (π, ρ) ∈ E , then we obtain (π, ρ) = λM(π, ρ). For any
s ∈ [0, A], we have

π(s) = λM1(π, ρ)(s), ρ(s) = λM2(π, ρ)(s).

Then, we can compute that

|π(s)| ≤ 1
|Ω|

[
|Ω2|

(
|δ1|Φ̃α

ψ1
(η1) + |δ2|Φ

α,µ+γ
ψ1,ψ2

(η2)
)
+ (1 + |Ω|)Φα,γ

ψ1,ψ2
(A)

]
×(F0 + F1|π|+ F2|ρ|)

+
1
|Ω|

[
|λ1|Φ̃α̂

ψ1
(ξ1) + |λ2|Φ

α̂,µ̂+γ̂
ψ1,ψ2

(ξ2) + |Ω2|Φα̂,γ̂
ψ1,ψ2

(s)
]
(G0 + G1|π|+ G2|ρ|),

and

|ρ(s)| ≤ 1
|Ω|

[
|Ω1|

(
|λ1|Φ̃α̂

ψ1
(ξ1) + |λ2|Φ

α̂,µ̂+γ̂
ψ1,ψ2

(ξ2)
)
+ (1 + |Ω|)Φα̂,γ̂

ψ1,ψ2
(A)

]
×(G0 + G1|π|+ G2|ρ|)

+
1
|Ω|

[
|δ1|Φ̃α

ψ1
(η1) + |δ2|Φ

α,µ+γ
ψ1,ψ2

(η2) + |Ω1|Φα,γ
ψ1,ψ2

(s)
]
(F0 + F1|π|+ F2|ρ|).

Therefore, we obtain:

‖π‖ ≤ Q1(F0 + F1‖π‖+ F2‖ρ‖) + Q2(G0 + G1‖π‖+ G2‖ρ‖)

and
‖ρ‖ ≤ Q3(G0 + G1‖π‖+ G2‖ρ‖) + Q4(F0 + F1‖π‖+ F2‖ρ‖),

which yield

‖π‖+ ‖ρ‖ ≤ (Q1 + Q4)F0 + (Q2 + Q3)G0 + [(Q1 + Q4)F1 + (Q2 + Q3)G1]‖π‖
+[(Q1 + Q4)F2 + (Q2 + Q3)G2]‖ρ‖.

Then, we have

M0(‖π‖+ ‖ρ‖) ≤ (1− [(Q1 + Q4)F1 + (Q2 + Q3)G1])‖π‖
+(1− [(Q1 + Q4)F2 + (Q2 + Q3)G2])‖ρ‖

≤ (Q1 + Q4)F0 + (Q2 + Q3)G0,

which implies that

‖(π, ρ)‖ ≤ (Q1 + Q4)F0 + (Q2 + Q3)G0

M0
,

where M0 is defined as

M0 = min{1− [(Q1 + Q4)F1 + (Q2 + Q3)G1], 1− [(Q1 + Q4)F2 + (Q2 + Q3)G2]},

which shows that E is bounded. By the Leray–Schauder alternative, we deduce that the
operator M has at least one fixed point, which is a solution of the system (2) on [0, A]. The
proof is finished.
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4. Uncoupled Fractional Integro-Differential Boundary Conditions

In this section, we consider the following system of sequential ψ1-Hilfer and ψ2-
Caputo fractional differential equations with uncoupled fractional integro-differential
nonlocal conditions:

H Dα,β;ψ1(CDγ;ψ2 π)(s) = Υ1(s, π(s), ρ(s)), s ∈ [0, A],
H Dα̂,β̂;ψ1(CDγ̂;ψ2 ρ)(s) = Υ2(s, π(s), ρ(s)), s ∈ [0, A],
CDγ;ψ2 π(0) = 0, π(s) = λ1

CDγ;ψ2 π(η1) + λ2 Iµ;ψ2 π(η2),
CDγ̂;ψ2 ρ(0) = 0, ρ(s) = δ1

CDγ̂;ψ2 ρ(ξ1) + δ2 Iµ̂;ψ2 ρ(ξ2),

(13)

where all constants and notations are as in the problem (2). The following lemma is not
difficult to derive and, therefore, we omit the proof.

Lemma 5. For h ∈ C([0, A],R) and Λ1 6= 0, the unique solution of the problem{
H Dα,β;ψ1(CDγ;ψ2 π)(s) = h(s), s ∈ [0, A],
CDγ;ψ2 π(0) = 0, π(s) = λ1

CDγ:ψ2 π(η1) + λ2 Iµ;ψ2 π(η2),
(14)

is given by

π(s) =
1

Λ1

(
λ1 Iα;ψ1 h(η1)− Iγ;ψ2 Iα;ψ1 h(A) + λ2 Iγ+µ;ψ2 Iα;ψ1 h(η2)

)
+ Iγ;ψ2 Iα;ψ1 h(s), (15)

where

Λ1 = 1− λ2
(ψ2(η2)− ψ2(0))

µ

Γ(µ + 1)
.

From the above Lemma, we can define operator P : X×X→ X×X by

P(π, ρ)(s) =
(

P1(π, ρ)(s)
P2(π, ρ)(s)

)
,

to prove the existence criteria to the system of uncoupled boundary conditions in (13),
where

P1(π, ρ)(s) =
1

Λ1

{
λ1 Iα;ψ1 Υ1(η1, π(η1), ρ(η1))− Iγ;ψ2 Iα;ψ1 Υ1(A, π(A), ρ(A))

+ λ2 Iγ+µ;ψ2 Iα;ψ1 Υ1(η2, π(η2), ρ(η2))
}
+ Iγ;ψ2 Iα;ψ1 Υ1(s, π(s), ρ(s)),

and

P2(π, ρ)(s) =
1

Λ2

{
δ1 I α̂;ψ1 Υ2(ξ1, π(ξ1), ρ(ξ1))− Iγ̂;ψ2 I α̂;ψ1 Υ2(A, π(A), ρ(A))

+ δ2 Iγ̂+µ̂;ψ2 I α̂;ψ1 Υ2(ξ2, π(ξ2), ρ(ξ2))
}
+ Iγ̂;ψ2 I α̂;ψ1 Υ2(s, π(s), ρ(s)).

The following existence theorems can be presented without proof by using the Banach
contraction principle and also the Leray–Schauder alternative technique. In addition, we
have to give some constants as

Q5 =
1
|Λ1|

[
|λ1|Φ̃α

ψ1
(η1) + (1 + |Λ1|)Φα,γ

ψ1,ψ2
(A) + |λ2|Φ

α,µ+γ
ψ1,ψ2

(η2)
]
,

Q6 =
1
|Λ2|

[
|δ1|Φ̃α̂

ψ1
(ξ1) + (1 + |Λ1|)Φα̂,γ̂

ψ1,ψ2
(A) + |δ2|Φ

α̂,µ̂+γ̂
ψ1,ψ2

(ξ2)
]
,
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and

Λ2 = 1− δ2
(ψ2(ξ2)− ψ2(0))

µ̂

γ(µ̂ + 1)
6= 0.

Theorem 3. Let f , g be two functions satisfy the Lipschitz conditions in Theorem 1. If (m1 +
m2)Q5 + (n1 + n2)Q6 < 1, then problem (13) has a unique solution on the interval [0, A].

Theorem 4. Suppose that the continuous functions f , g satisfy the growth conditions as in
Theorem 2. If Q5F1 + Q6G1 < 1 and Q5F2 + Q6G2 < 1, then the problem of fractional integro-
differential nonlocal conditions (13) has at least one solution on [0, A].

5. Illustrative Examples

Example 1. Let us consider the following coupled system of sequential ψ1-Hilfer and ψ2-Caputo
fractional differential equations with fractional integro-differential nonlocal conditions of the form:{

H D
1
8 , 5

8 ;es/12
(CD

3
4 ;s2+tπ)(s) = Υ1(s, π(s), ρ(s)), s ∈ [0, 3/2],

H D
7
8 , 3

8 ;es/12
(CD

1
4 ;s2+tρ)(s) = Υ2(s, π(s), ρ(s)), s ∈ [0, 3/2],

(16)

subject to
CD

3
4 ;s2+sπ(0) = 0, π

(
3
2

)
=

2
55

CD
1
4 ;s2+sρ

(
1
4

)
+

4
77

I
3
2 ;s2+sρ

(
5
4

)
,

CD
1
4 ;s2+sρ(0) = 0, ρ

(
3
2

)
=

3
88

CD
3
4 ;s2+sπ

(
1
2

)
+

5
99

I
11
8 ;s2+sπ

(
3
4

)
.

(17)

From the above problem: α = 1/8, α̂ = 7/8, β = 5/8, β̂ = 3/8, γ = 3/4, γ̂ = 1/4,
A = 3/2, λ1 = 2/55, λ2 = 4/77, δ1 = 3/88, δ2 = 5/99, ξ1 = 1/4, ξ2 = 5/4, η1 = 1/2,
η2 = 3/4, µ = 11/8, µ̂ = 3/2 and functions ψ1(s) = e(s/12) and ψ2(s) = s2 + s. This infor-
mation leads to constants as Ω1 ≈ 0.0600563771, Ω2 ≈ 0.1843197460, Ω ≈ 0.9889304238,
Q1 ≈ 1.276579172, Q2 ≈ 0.2900508368, Q3 ≈ 2.069536146 and Q4 ≈ 0.1538946945.

(i) Let the functions Υ1 and Υ2 are given on [0, 3/2] as
Υ1(s, π, ρ) =

1
2(s + 7)

(
π2 + 2|π|

1 + |π|

)
+

1
3s + 8

sin |ρ|+ 1
4

s2 + 2s + 3,

Υ2(s, π, ρ) =
1

s + 9
tan−1 |π|+ 1

3(s + 10)

(
3|ρ|+ ρ2

1 + |ρ|

)
+
√

s2 + 1.
(18)

Then, we have

|Υ1(s, π1, ρ1)− Υ1(s, π2, ρ2)| ≤
1
7
|π1 − π2|+

1
8
|ρ1 − ρ2|,

and
|Υ2(s, π1, ρ1)− Υ2(s, π2, ρ2)| ≤

1
9
|π1 − π2|+

1
10
|ρ1 − ρ2|,

t ∈ [0, 3/2], (πi, ρi) ∈ R2, i = 1, 2 and, hence, Υ1 and Υ2 satisfy the Lipschitz condition
with Lipschitz constants m1 = 1/7, m2 = 1/8, n1 = 1/9, and n2 = 1/10. The last condition in
Theorem 1 is fulfilled since (Q1 + Q4)(m1 + m2) + (Q2 + Q3)(n1 + n2) ≈ 0.8812976724 < 1.
Therefore, the nonlinear coupled system of sequential ψ1-Hilfer and ψ2-Caputo fractional
differential equations with fractional integro-differential nonlocal conditions (16) and (17)
with Υ1 and Υ2 given by (18) has a unique solution (π, ρ) on [0, 3/2].
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(ii) Now, we consider the functions Υ1 and Υ2 defined on [0, 3/2], as
Υ1(s, π, ρ) =

2
s + 4

+
π130e−ρ2

(s + 3)(1 + |π|129)
+
|ρ5| cos2 π4

(s + 5)(1 + ρ4)
,

Υ2(s, π, ρ) =
1
6

s +
π8 sin4 ρ6

(s2 + 5)(1 + |π|7) +
|ρ|2023 tan−1 π

2π(1 + y2022)
.

(19)

Observe that the above two nonlinear functions in (19) are non-Lipschitzian, but we
can find the bounded planes as follows:

|Υ1(s, π, ρ)| ≤ 1
2
+

1
3
|π|+ 1

5
|ρ| and |Υ2(s, π, ρ)| ≤ 1

4
+

1
5
|π|+ 1

4
|ρ|.

Hence, we choose the constants F0 = 1/2, F1 = 1/3, F2 = 1/5, G0 = 1/4, G1 = 1/5, and
G2 = 1/4. Then, we obtain two inequalities (Q1 + Q4)F1 + (Q2 + Q3)G1 ≈ 0.9487420186 < 1
and (Q1 + Q4)F2 + (Q2 + Q3)G2 ≈ 0.8759915190 < 1. Thus, all conditions of Theorem 2
are satisfied. So, the coupled system (16) and (17), with Υ1 and Υ2 given by (19) has at least
one solution (π, ρ) on [0, 3/2].

Example 2. Assume that the sequential ψ1-Hilfer and ψ2-Caputo fractional differential Equation (16)
subject to the following uncoupled fractional integro-differential boundary conditions:

CD
3
4 ;s2+sπ(0) = 0, π

(
3
2

)
=

2
55

CD
3
4 ;s2+sπ

(
1
2

)
+

4
77

I
11
8 ;s2+sπ

(
3
4

)
,

CD
1
4 ;s2+sρ(0) = 0, ρ

(
3
2

)
=

3
88

CD
1
4 ;s2+sy

(
1
4

)
+

5
99

I
3
2 ;s2+sρ

(
5
4

)
.

(20)

Then, we can find the constants Λ1 ≈ 0.9382277264, Λ2 ≈ 0.8208002471, Q5 ≈
2.159965388, and Q6 ≈ 2.321388442.

(I) If two nonlinear functions are presented on [0, 3/2] by
Υ1(s, π, ρ) =

|π|
(s + 8)(1 + |π|) +

1√
s + 11

sin |ρ|+ 1
3

s + 1,

Υ2(s, π, ρ) =
π2 + 2|π|

6(s2 + 3)(1 + |π|) +
1

s + 10
tan−1 |ρ|+ s2 +

1
5

,

(21)

then it is obvious by direct computation that Υ1 and Υ2 satisfy the Lipschitz condition with
Lipschitz constants m1 = 1/8, m2 = 1/11, n1 = 1/9, and n2 = 1/10. Then, the relation
(m1 + m2)Q5 + (n1 + n2)Q6 ≈ 0.9564270566 < 1 holds. By Theorem 3, the sequential ψ1-
Hilfer and ψ2-Caputo fractional differential Equation (16), subject to uncoupled fractional
integro-differential boundary conditions (16)–(20) with Υ1 and Υ2 given by (21), has a
unique solution (π(s), ρ(s)), s ∈ [0, 3/2].

(I I) Let f and g be two nonlinear functions defined by
Υ1(s, π, ρ) =

1
2

s2 +
(1 + |ρ|)π

(s + 2)2(2 + |ρ|) +
1

s + 5

(
ρ4e−π2

1 + |ρ|3

)
,

Υ2(s, π, ρ) =
1
3

s +
1
2
+

πe−|ρ|

2(s + 3)
+

1
s + 7

(
2−|π||ρ|5

1 + ρ6

)
.

(22)

It is easy to see that the above two functions are bounded, for s ∈ [0, 3/2], by

|Υ1(s, π, ρ)| ≤ 9
8
+

1
4
|π|+ 1

5
|ρ| and |Υ2(s, π, ρ)| ≤ 1 +

1
6
|π|+ 1

7
|ρ|.

Setting constants F0 = 9/8, F1 = 1/4, F2 = 1/5, G0 = 1, G1 = 1/6, and G2 = 1/7 leads
to the relations Q5F1 + Q6G1 ≈ 0.9268894207 < 1 and Q5F2 + Q6G2 ≈ 0.7636199979 < 1.
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By Theorem 4, the uncoupled system (16)–(20), with Υ1 and Υ2 given by (22), has at least
one solution (π, ρ) on the interval [0, 3/2].

6. Conclusions

In the present work, we presented the criteria concerning the existence and unique-
ness of solutions for a coupled system of mixed-type ψ1-Hilfer and ψ2-Caputo fractional
differential equations subjected to integro-differential nonlocal boundary conditions. Af-
ter transforming the given nonlinear problem into an equivalent fixed point problem, we
applied the Banach contraction mapping principle to establish the existence of a unique
solution, while an existence result is proved via the Leray–Schaude alternative. Numerical
examples are also constructed for illustrating the obtained results. The results obtained
here are new and initiate the study of mixed nonlocal systems of ψ1-Hilfer and ψ2-Caputo
fractional differential equations. Hence, our results enrich the existing literature with this
new research area of nonlocal fractional coupled systems. In addition, our results yield
several new results as special cases by fixing the parameters involved in the problems
appropriately. For example, our results correspond to the ones with: (i) coupled system of
Hilfer and Caputo fractional differential equations supplemented with integro-differential
boundary conditions if ψ1(s) = ψ2(s) = s; (ii) coupled system of Hilfer and ψ2-Caputo frac-
tional differential equations supplemented with integro-differential boundary conditions
if ψ1(s) = s; (iii) coupled system of ψ1-Hilfer and Caputo fractional differential equations
supplemented with integro-differential boundary conditions if ψ2(s) = s.

For future work, we plan to study boundary value problems and coupled systems of
mixed-type ψ1-Hilfer and ψ2-Caputo fractional differential equations subject to new kinds
of boundary conditions.

Author Contributions: Conceptualization, S.K.N. and J.T.; methodology, S.S., S.K.N., C.S. and J.T.;
formal analysis, S.S., S.K.N., C.S. and J.T.; writing—original draft preparation, S.S. and C.S.; writing—
review and editing, S.K.N. and J.T.; supervision, S.K.N.; funding acquisition, J.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by King Mongkut’s University of Technology North Bangkok.
Contract no. KMUTNB-62-KNOW-41.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton–zooplankton system. Ecol.

Model. 2015, 318, 8–18. [CrossRef]
2. Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005.
3. Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics.

Theory and Application; Elsevier: Amsterdam, The Netherlands; Academic Press: London, UK, 2017.
4. Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006.
5. Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010.
6. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics

Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204.
7. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: NewYork, NY, USA, 1993.
8. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
9. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities;

Springer: Cham, Switzerland, 2017.
10. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014.
11. Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021.
12. Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.

http://doi.org/10.1016/j.ecolmodel.2015.06.016


Symmetry 2023, 15, 680 15 of 15

13. Kamocki, R. A new representation formula for the Hilfer fractional derivative and its application. J. Comput. Appl. Math. 2016, 308,
39–45. [CrossRef]

14. Joshi, H.; Jha, B.K. Chaos of calcium diffusion in Parkinson’s infectious disease model and treatment mechanism via Hilfer
fractional derivative. Math. Model. Numer. Simul. Appl. 2021, 1, 84–94.

15. Joshi, H.; Jha, B.K. 2D dynamic analysis of the disturbances in the calcium neuronal model and its implications in neurodegenerative
disease. Cogn. Neurodyn. 2022, 1–12. [CrossRef]

16. Joshi, H.; Jha, B.K. 2D memory-based mathematical analysis for the combined impact of calcium influx and efflux on nerve cells.
Comput. Math. Appl. 2023, 134, 33–44. [CrossRef]

17. Sousa, J.V.d.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91.
[CrossRef]

18. Sousa, J.V.d.; de Oliveira, E.C. On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the
ψ–Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 96. [CrossRef]

19. Sousa, J.V.d.; Kucche, K.D.; de Oliveira, E.C. On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential
equation with abstract Volterra operator. Math. Methods Appl. Sci. 2019, 42, 3021–3032. [CrossRef]

20. Nuchpong, C.; Ntouyas, S.K.; Vivek, D.; Tariboon, J. Nonlocal boundary value problems for ψ-Hilfer fractional-order Langevin
equations. Bound. Value Probl. 2021, 2021, 34. [CrossRef]

21. Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential
equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [CrossRef]

22. Kiataramkul, C.; Ntouyas, S.K.; Tariboon, J. An existence result for ψ-Hilfer fractional integro-differential hybrid three-point
boundary value problems. Fractal Fract. 2021, 5, 136. [CrossRef]

23. Asawasamrit, S.; Ntouyas, S.K.; Tariboon, J.; Nithiarayaphaks, W. Coupled systems of sequential Caputo and Hadamard fractional
differential equations with coupled separated boundary conditions. Symmetry 2018, 10, 701. [CrossRef]

24. Samadi, A.; Ntouyas, S.K.; Tariboon, J. On a nonlocal coupled system of Hilfer generalized proportional fractional differential
equations. Symmetry 2022, 14, 738. [CrossRef]

25. Sitho, S.; Ntouyas, S.K.; Sudprasert, C.; Tariboon, J. Integro-differential boundary conditions to the sequential ψ1-Hilfer and
ψ2-Caputo fractional differential equations. Mathematics 2023, 11, 867. [CrossRef]

26. Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul.
2016, 44, 460–481. [CrossRef]

27. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cam.2016.05.014
http://dx.doi.org/10.1007/s11571-022-09903-1
http://dx.doi.org/10.1016/j.camwa.2022.12.016
http://dx.doi.org/10.1016/j.cnsns.2018.01.005
http://dx.doi.org/10.1007/s11784-018-0587-5
http://dx.doi.org/10.1002/mma.5562
http://dx.doi.org/10.1186/s13661-021-01511-y
http://dx.doi.org/10.3390/math9091001
http://dx.doi.org/10.3390/fractalfract5040136
http://dx.doi.org/10.3390/sym10120701
http://dx.doi.org/10.3390/sym14040738
http://dx.doi.org/10.3390/math11040867
http://dx.doi.org/10.1016/j.cnsns.2016.09.006

	Introduction
	Preliminaries
	Main Results
	Uncoupled Fractional Integro-Differential Boundary Conditions
	Illustrative Examples 
	Conclusions
	References

