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Abstract: The study of the flows of curves is one of the most fascinating research areas in differential
geometry. In this paper, we investigate the geometry of the flows of timelike curves according to
the quasi-frame in Minkowski space R2,1 (In this paper, we refer to these curves as “quasi-timelike
curves”). We investigate the evolution of quasi-timelike curves using the velocity functions and
obtain the necessary and sufficient conditions for inextensibility. Additionally, we obtain the explicit
forms of the time evolution equations for the quasi-orthonormal frames (tangent, quasi-normal,
and quasi-binormal vectors) of the quasi-timelike curve as well as the time evolution equations
of their quasi-curvatures. We present a new application for motion with velocities equal to the
quasi-curvatures of the quasi-timelike curve. In this application, the time evolution equations of the
quasi-curvatures arise as a system of partial differential equations with the form of the heat equation,
and by solving this system, we visualize the evolution of quasi-curvatures and the evolution of the
quasi-timelike curve. In addition, the acceleration functions are used to investigate the flows of
inextensible quasi-timelike curves, and an application for accelerations equal to the quasi-curvatures
is given. Through this application, the position vector of the quasi-timelike curve satisfies the one-
dimensional wave equation, and the time evolution equations of the quasi-curvatures arise as a system
of transport equations. We obtain the solutions and graph them using Wolfram Mathematica 12.
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1. Introduction

The theories of curves and surfaces are essential topics in differential geometry. They
have diverse applications in many fields of science, such as physics, engineering, and
image processing. Researchers have studied the motion and integrability of curves widely.
Geometric characterizations of the integrable curves and the evolution of inelastic plane
curves have been extensively studied in [1–5].

The study of the flows of curves in Euclidean space has attracted the interest of many
researchers. Hasimoto [6] studied the motion of a vortex filament (smoke ring) and obtained
the equations of the time evolution of the curves. In [7], the inextensible flows of curves
(IFC) that move according to the type−2 Bishop frame in R3 were studied. In [8], a general
formulation for IFC on an oriented surface in R3 was derived. In [9], the motion of curves
in Rn was studied, and the time evolution equations for the given orthonormal Frenet
frame and for the higher curvatures were derived. In [10], the surfaces were generated by
the motion of IFC in R3 according to the Frenet frame. The geometric properties of these
surfaces were described and visualized.

In [11], the dynamics of inextensible flows for adjoint curves in three-dimensional
Euclidean space were investigated. A new method for the inextensible flows of adjoint
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curves using the Frenet frame was constructed, and the ferromagnetic and antiferromag-
netic chain equations were given as an application. Gaber [12] constructed new models of
the normal motions of inextensible curves that are moving according to the type−1 Bishop
frame in R3. In [13], an analysis was presented for the acceleration and jerk vectors of
particles that are moving along a space curve in three-dimensional Euclidean space. Based
on the quasi-frame, the alternative resolutions of the accelerations and jerks were derived
by applying this resolution and Siacci’s theorem. An acceleration vector was resolved in the
osculating plane by summing its tangential and radial components. In the rectifying and
osculating planes, the jerk vector was also resolved along the tangential direction and two
special radial directions. According to the jerk vector formula, the maximum permissible
speed on a space curve was determined at all trajectory points.

The flows of curves in Minkowski space and De Sitter space have been investigated by
many authors. In [14], the soliton solutions to the KdV equation were studied, and a motion
of spacelike curves in R2,1 was described. In [15], the IFC of nonnull curves was investigated
in n-dimensional pseudo-Euclidean space according to the Frenet frame. Gaber [16] studied
and described the binormal motions of curves in De Sitter space S2,1 and constructed
Hasimoto surfaces. In [17], a new type of Bishop frame called “Type−2 Bishop Frame” was
introduced by using the binormal vector field of a regular curve. A new spherical image
called type−2 Bishop spherical images was introduced by translating type−2 Bishop frame
vectors into the center of the unit sphere of three-dimensional Euclidean space.

In [18], a new method was constructed for inextensible flows of timelike curves in
a conformally flat, quasi-conformally flat, and conformally symmetric 4-dimensional LP-
Sasakian manifold. The necessary and sufficient condition for the timelike curve to be
inextensible was derived. Some characterizations were given for the curvatures of the
timelike curve in a conformally flat, quasi-conformally flat, and conformally symmetric
4-dimensional LP-Sasakian manifold. Moreover, the flows of some associated curves
of timelike curves were obtained. In [19], some conditions for nonnull curve flows to
be inextensible in the 6-dimensional Lorentzian space L6 were studied. The family of
inextensible nonnull curves was characterized by partial differential equations.

The flows of curves in Galilean space have been discussed by many researchers. In [20],
the flows of curves were investigated in the pseudo-Galilean three-dimensional space and
its equiform geometry without any constraints, and the motions were described in terms of
the inviscid and viscous Burgers’ equations. In [21], the inextensible flows of curves in three-
dimensional pseudo-Galilean space were studied. The necessary and sufficient conditions
for the inextensible flows of curves were derived according to equiform geometry in pseudo-
Galilean space. In [22], the inextensible flows of curves in three-dimensional Galilean space
were investigated by using the Sabban frame, and the necessary and sufficient conditions
for inextensible flows were derived. In [23], Fermi–Walker derivatives for inextensible
curve flows were investigated in three-dimensional Galilean space G3. A novel approach to
these flows was expressed using Frenet and Darboux frames with the help of Fermi–Walker
derivatives. Sorour [24] studied the inextensible flows of focal curves associated with
tube-like surfaces in Galilean three-dimensional space G3 and gave some characterizations
for the curvatures of the focal curves associated with tube-like surfaces.

The main purpose of the current work is to investigate the geometric flows of timelike
curves by using the quasi-frame in Minkowski space R2,1. Through this work, we derive
the evolution of quasi-timelike curves by velocity and acceleration functions. In addition,
we give some new applications with certain types of velocity and acceleration functions. In
these applications, we choose the velocity and acceleration functions equal to the quasi-
curvatures of the quasi-timelike curve. We obtain and visualize the evolution of the
quasi-timelike curve and the evolution of the quasi-curvatures.

The present work is organized as follows: In Section 2, some geometric concepts of
timelike curves in Minkowski space are given according to the Frenet frame and the quasi
frame. In Section 3, the main results and discussions for the time evolution equations
(TEEs) for quasi-timelike curves (QTIC) in R2,1 are obtained. In Section 4, an application on
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the motion of QTIC by velocity fields is given. In Section 6, the inextensible flows of the
QTIC via acceleration fields are presented, and an application of the motion of the QTIC by
acceleration fields is provided. Finally, we give our conclusions.

2. Basic Geometric Concepts of Timelike Curves in Minkowski Space R2,1

Definition 1. The three dimensional Minkowski space R2,1 is the real vector space R3 provided with
the Lorentzian inner product given by −dx2

0 + dx2
1 + dx2

2 with {X = (x0, x1, x2) | x0, x1, x2 ∈
R} [25]. Consider the vectors X, Y ∈ R2,1, where X = (x0, x1, x2), Y = (y0, y1, y2), the inner
product is defined by 〈X, Y〉 = −x0y0 + x1y1 + x2y2, and the vector product is defined by
X×Y = (x2y1 − x1y2, x2y0 − x0y2, x0y1 − x1y0). The vector u ∈ R2,1 is spacelike if 〈u, u〉 > 0,
timelike if 〈u, u〉 < 0, and null (lightlike) if 〈u, u〉 = 0. The signature of the vector u is 1 if u is
spacelike, −1 if u is timelike, and 0 if u is lightlike.

Definition 2. Let α = α(v), α : I → R2,1 be a regular parameterized curve in R2,1. Then, α
is [25]: 

Spacelike curve , i f 〈α̇, α̇〉 > 0,
Timelike curve , i f 〈α̇, α̇〉 < 0,
Null curve , 〈α̇, α̇〉 = 0.

Definition 3. The angle between any two nonnull vectors X and Y is defined in [26] according to
the classification of vectors in R2,1 as follows:

• Let X and Y be spacelike vectors R2,1; if X and Y span a timelike vector subspace, then
|〈X, Y〉| > ‖X‖‖Y‖, and there is a unique positive real number θ such that

|〈X, Y〉| = ‖X‖‖Y‖ cosh θ,

where the real number θ is called the Lorentz timelike angle between X and Y.

• Let X and Y be spacelike vectors in R2,1 that span a spacelike vector subspace; then, there is a
unique real number θ ∈ [0, π

2 ], such that

|〈X, Y〉| = ‖X‖‖Y‖ cos θ,

where the real number θ is called the Lorentz spacelike angle between X and Y.
• Let X and Y be future pointing (past pointing) timelike vectors in R2,1; then, there is a unique

nonnegative real number θ, such that

|〈X, Y〉| = ‖X‖‖Y‖ cosh θ,

where the real number θ is called the Lorentz timelike angle between X and Y.
• Let X be a spacelike vector and Y a future pointing timelike vector in R2,1; then, there is a

unique nonnegative real number θ ≥ 0, such that

|〈X, Y〉| = ‖X‖‖Y‖ sinh θ,

where the real number θ is called the Lorentz timelike angle between X and Y.

2.1. Frenet Frame for Timelike Curves in R2,1

The Frenet frame is the most famous adapted frame for curves. It plays a significant
role in investigating curves and tube surfaces in the classical differential geometry of curves.
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Definition 4. Let v ∈ I be the parameter of the timelike curve α and define s(v) as the arc length
of the regular parameterized timelike curve α by [25]

s(v) =
∫ v

0
‖dα(σ)

dσ
‖dσ, ( ˙) =

d
dv

. (1)

For a regular timelike curve α, we define g > 0 by ds
dv = ‖ dα(σ)

dσ ‖ =
√

g. If ‖ dα(σ)
dσ ‖ = 1 for all

v ∈ I, then the timelike curve called an arc-length parameterized curve (α = α(s) ).

Definition 5. Let α be an arc-length parameterized timelike curve. Assume 〈α′′(s), α′′(s)〉 6= 0,
where (

′
) = d

ds . Define the unit tangent vector T, the unit principal normal vector N, and the
unit binormal vector B to the timelike curve α, and let {T, N, B} be the Frenet–Serret frame for the
timelike curve α. The Frenet–Serret frame {T, N, B} in R2,1 satisfies the following properties [27]:

• Sign(T) = −1, Sign(T′) = 1, α′ = T, and B = T × N.
• 〈T, N〉 = 0, 〈N, B〉 = 0, 〈T, B〉 = 0, 〈T, T〉 = −1, and 〈N, N〉 = 〈B, B〉 = 1.
• N × B = −T, and B× T = N.
• N = 1

k T′, k = ‖T′‖, τ = 〈N′, B〉, where k and τ are the curvature and torsion for the
timelike curve, respectively.

Lemma 1. Let α(s) be the timelike curve in R2,1, then the Frenet–Serret equations are given by [27]:

dF
ds

= A · F, (2)

where

F =

T
N
B

 and A =

0 k 0
k 0 τ
0 −τ 0

.

2.2. Quasi-Frame for Timelike Curves in R2,1

The Frenet–Serret frame is inadequate to study space curves when the curvatures
have discrete zero points. To solve this problem, we use a quasi-frame and a formula that
corresponds to the Frenet–Serret equations. We study the timelike curves according to a
quasi-frame (q-frame) and we call them the quasi-timelike curve (QTIC). The q-frame has
some advantages, such as that it can be defined even along the tangent line equal to zero.
Moreover, whether or not the space curve has unit speed does not affect the construction of
the q-frame. In addition, the q-frame can be easily calculated.

Definition 6. Let v ∈ I be the parameter of the timelike curve α. The q-frame consists of three
orthonormal vectors {T, Nq, Bq}, where T is the unit tangent vector, Nq is the quasi-normal vector,
and Bq is the quasi-binormal vector. The q-frame {T, Nq, Bq, u} is defined by [28]:

T =
α′(v)
‖α′(v)‖ ,

Nq =
T ∧ u
‖T ∧ u‖ ,

Bq = T ∧ Nq ,

(3)

where u is the projection vector, and for simplicity, we can choose it as the unit vector u = (1, 0, 0).
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Definition 7. Let {T, Nq, Bq} be the q-frame of the timelike curve α(s) on a point p, and let
{T, N, B} be the Frenet frame at the same point p on the same timelike curve. The relation between
these frames is defined in [28] by: T

Nq
Bq

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 T
N
B

, (4)

or  T
N
B

 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 T
Nq
Bq

. (5)

Definition 8. The q-frame {T, Nq, Bq} has the following properties [28]:

〈T, T〉 = −1, 〈Nq, Nq〉 = 〈Bq, Bq〉 = 1,

〈T, Nq〉 = 〈T, Bq〉 = 〈Nq, Bq〉 = 0,

〈N, Nq〉 = cos θ , 〈B, Bq〉 = cos θ.

(6)

Definition 9. The relation between the curvature k and torsion τ of the timelike curve specified by
the Frenet frame and the curvatures k1, k2, and k3 specified by the q-frame are defined in [28] by:

k1 = k cos θ, k2 = −k sin θ, k3 = dθ + τ. (7)

In this paper, we call k1, k2, and k3 quasi-curvatures, and they are defined by:

k1 = 〈T′, Nq〉,
k2 = 〈T′, Bq〉,
k3 = 〈N′, Bq〉.

(8)

3. Main Results and Discussion

Time Evolution Equations for the Quasi-Timelike Curves (QTIC) in R2,1

Theorem 1. Let α(s) be the QTIC with a spacelike quasi-normal vector Nq and a spacelike quasi-
binormal vector Bq; then,

αs = T. (9)

 T′(s)
N′q(s)
B′q(s)

 =

 0 k1(s) k2(s)
k1(s) 0 k3(s)
k2(s) −k3(s) 0

 T(s)
Nq(s)
Bq(s)

, (′) =
d
ds

. (10)

Proof. The tangent vector T is the same tangent vector in both frames (the Frenet frame
and the quasi-frame), where

T′ = k N. (11)

Substituting (5) and (7) into (11),

T′ = k1Nq + k2Bq. (12)

From (4), we have
Nq = cos θN + sin θB. (13)

Taking the s−derivative of (13) and using (2), (4), and (7), we obtain:

N′q = k1T + k3Bq. (14)
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From (4), we have
Bq = − sin θN + cos θB. (15)

Taking the s-derivative of (15), and using (2), (4), and (7),

B′q = k2T − k3Nq. (16)

From (12), (14), and (16), the theorem holds.

Definition 10. Let α(s, 0) : I = [0, l] −→ R2,1 be the initial QTIC in R2,1, where s is the arc
length and it is defined by (1). Assume that the curve moves with the time parameter t. The family
of curves α(s, t) represents the flows of the QTIC at different time values, and it can be defined as
α(s, t) : I × [0, ∞) −→ R2,1. The time evolution equation that describes the motion of the QTIC
according to the q-frame in R2,1 is expressed by the velocity functions W1, W2, and W3 as follows:

∂α(s, t)
∂t

= W1T + W2Nq + W3Bq, (17)

where W1, W2, and W3 are the velocity functions in the direction of the tangent vector T, the quasi-
normal vector Nq, and the quasi binormal vector Bq. In this study, we call W1 the q-tangential
velocity, W2 the q-normal velocity, and W3 the q-binormal velocity.

Theorem 2. The TEEs for the q-frame in R2,1 are given by:

Tt = ψ1Nq + ψ2Bq,

Nq,t = ψ1T,

Bq,t = ψ2T,

(18)

and the TEEs for the quasi-curvatures k1, k2, and k3 are:

κ1,t = −
gt

2g
k1 + ψ1,s − k3ψ2,

κ2,t = −
gt

2g
k2 + ψ2,s + k3ψ1,

κ3,t = −
gt

2g
k3 − k1ψ2 + k2ψ1,

(19)

where
ψ1 = W2,s + k1W1 − k3W3 ,
ψ2 = W3,s + k2W1 + k3W2.

(20)

Proof. Since α = α(v, t), by differentiating this equation with respect to v we obtain:

∂α

∂v
=
√

gT, (21)

Taking the derivative of (21) with respect to t, we have:

∂2α

∂t∂v
=
√

g
( gt

2g
T + Tt

)
. (22)

Differentiating (17) with respect to v, we have:

∂α

∂v∂t
=
√

g
(
(W1,s + k1W2 + k2W3)T + (W2,s + k1W1 − k3W3)Nq + (W3,s + k2W1 + k3W2)Bq

)
. (23)
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For simplicity, we choose:

W2,s + k1W1 − k3W3 = ψ1,
W3,s + k2W1 + k3W2 = ψ2.

(24)

Then,
∂α

∂v∂t
=
√

g
(
(W1,s + k1W2 + k2W3)T + ψ1Nq + ψ2Bq

)
. (25)

Applying the compatibility condition ( ∂α
∂t∂v = ∂α

∂v∂t ) for Equations (22) and (25), we obtain:

gt = 2g
(
W1,s + k1W2 + k2W3

)
, (26)

and
Tt = ψ1Nq + ψ2Bq. (27)

Taking the derivative of (27) with respect to v and by a straightforward computation,
we obtain:

Ttv =
√

g
(
(k1ψ1 + k2ψ2)T + (ψ1,s − k3ψ2)Nq + (ψ2,s + k3ψ1)Bq

)
. (28)

From (10), we have Tv =
√

g(k1Nq + k2Bq); by taking the t−derivative of this equation,
we obtain:

Tvt =
√

g
(
(k1,t +

gt

2g
k1)Nq + (k2,t +

gt

2g
k2)Bq + k1

∂Nq

∂t
+ k2

∂Bq

∂t

)
. (29)

Substituting (28) and (29) into the compatibility condition (Ttv = Tvt), we obtain:

k1,t = −
gt

2g
k1 + ψ1,s − k3ψ2 ,

k2,t = −
gt

2g
k2 + ψ2,s + k3ψ1 ,

(30)

and

κ1
∂Nq

∂t
+ k2

∂Bq

∂t
= (k1ψ1 + k2ψ2)T. (31)

To determine ∂Nq
∂t and ∂Bq

∂t explicitly, we assume that:

∂Nq

∂t
= a11T + a12Nq + a13Bq ,

∂Bq

∂t
= a21T + a22Nq + a23Bq .

(32)

By using the properties of the q-frame that are given in Definition 8, we obtain

a12 = a23 = 0,

a11 = ψ1, a21 = ψ2, a13 = −a22.
(33)

Substituting (33) into (32), we have:

∂Nq

∂t
= ψ1T + a13Bq ,

∂Bq

∂t
= ψ2T − a13Nq .

(34)

Substituting (34) into (31), we obtain:

(k1Bq − k2Nq)a13 = 0. (35)
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Assuming that k1 6= 0 and k2 6= 0; then a13 = 0. Hence, we obtain

∂Nq

∂t
= ψ1T (36)

∂Bq

∂t
= ψ2T . (37)

Since ∂Nq
∂v =

√
g ∂Nq

∂s , we have:

∂Nq

∂v
=
√

g(k1T + k3Bq). (38)

By taking the t-derivative of (38) and then using (27) and (37), we obtain:

∂2Nq

∂t∂v
=
√

g
(
(

gt

2g
k1 + k1,t + k3ψ2)T + k1ψ1Nq + (

gt

2g
k3 + k1ψ2 + k3,t)Bq

)
. (39)

Taking the v-derivative of (36),

∂2Nq

∂v∂t
=
√

g(ψ1,sT + ψ1k1Nq + ψ1k2Bq) . (40)

We apply the compatibility condition ( ∂2 Nq
∂t∂v =

∂2 Nq
∂v∂t ) for the Equations (39) and (40). By

using the properties of the q-frame in Definition 8,

〈
∂2Nq

∂t∂v
, Bq〉 = 〈

∂2Nq

∂v∂t
, Bq〉.

Hence,
k3,t = −

gt

2g
k3 − k1ψ2 + k2ψ1.

Based on the above, the theorem holds.

Lemma 2. Let α(v, t) be the QTIC; if α(v, t) is inextensible (the arc length of the curve is preserved
along the motion; so, gt = 0); then, from (26), we obtain the following condition:

W1,s = −k1W2 − k2W3 , (41)

and the quasi-curvatures that are given by (19) take the form:

k1,t = ψ1,s − k3ψ2 ,

k2,t = ψ2,s + k3ψ1 ,

k3,t = −k1ψ2 + k2ψ1 ,

(42)

or  k1
k2
k3


,t

=

 0 0 −ψ2
0 0 ψ1
−ψ2 ψ1 0

.

 k1
k2
k3

+

 ψ1,s
ψ2,s

0

, (43)

where
ψ1 = W2,s + k1W1 − k3W3 ,
ψ2 = W3,s + k2W1 + k3W2 .

(44)
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4. An Application for the Motion of the QTIC by Velocity Fields

Consider the inextensible flows of the QTIC, and assume that k3 = 0. Suppose that
the QTIC evolves with q-tangential velocity W1 = 0; then from (41), we have W3 = − k1

k2
W2.

Substituting in (42), we obtain the TEEs for the quasi-curvatures:

k1,t = ψ1,s ,

k2,t = ψ2,s ,

ψ2k1 = k2ψ1 .

(45)

From (44), we have
ψ1 = W2,s ,
ψ2 = W3,s .

(46)

Substituting (46) into (45),

k1,t = W2,ss ,

k2,t = W3,ss ,

k1W3,s = k2W2,s .

(47)

Now, we study the case when W2 = k2 and W3 = −k1. Then, the TEEs (47) for the
quasi-curvatures k1 and k2 take the form of heat equations:

k1,t = k2,ss ,

k2,t = −k1,ss ,

−k1k1,s = k2k2,s .

(48)

One solution of the system (48) takes the following form:

k1(s, t) = A0 cos(c1s + c2
1t + c2) ,

k2(s, t) = A0 sin(c1s + c2
1t + c2) .

(49)

Hence, the curve is defined by their quasi-curvatures k1, k2, and k3 = 0; these curvatures
are illustrated in Figures 1 and 2.

Substituting (49) into (9), (10), (17), and (18) and solving the PDE systems numerically,
we can determine and plot the surface α(s, t) = (α1, α2, α3) that is generated by the flows
of the QTIC. It is important to use the properties of the q-frame defined by Definition 8,
which can be rewritten explicitly as:

−α2
1,s + α2

2,s + α2
3,s = −1 ,

−α2
1,ss + α2

2,ss + α2
3,ss = k2

1 + k2
2 .

(50)

The conditions (50) are necessary to validate the general solution. The surface generated by
the motion of the QTIC α(s, t) is illustrated in Figure 3.

Figure 1a represents the evolution of the first quasi-curvature k1 of the QTIC for
different time values at t = 0, 1.5, 2 in two dimensions. Figure 1b represents the three-
dimensional graph of the first quasi-curvature k1 of the QTIC for s ∈ [0, 5] and t = [0, 2.5],
A0 = 0.7, c1 = 1.6, and c2 = 0.1. The blue, green, and black curves represent the flows
of the QTIC at time t = 0, 1.5, 2, respectively. It is obvious that the flows of the first
quasi-curvature k1 had a forward shift with increasing time, but the shape did not change.

Figure 2a represents the evolution of the second quasi-curvature k2 of the QTIC for
some different time values at t = 0, 1.5, 2 in two dimensions. Figure 2b represents the
three-dimensional graph of the second quasi-curvature k2 of the QTIC for s ∈ [0, 5] and
t = [0, 2.5], A0 = 0.7, c1 = 1.6, and c2 = 0.1. The blue, green, and black curves represent
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the flows of the QTIC at time t = 0, 1.5, 2, respectively. We note that the flows of the second
quasi-curvature k2 had a forward shift with increasing time, but the shape did not change.

(a) The quasi-curvature k1(s, t) in 2-D. (b) The quasi-curvature k1(s, t) in 3-D.

Figure 1. The time evolution of the quasi-curvature k1(s, t) = A0 cos(c1s + c2
1t + c2) of the QTIC and its

evolution in 2-D and 3-D for s ∈ [0, 5], t = [0, 2.5], A0 = 0.7, c1 = 1.6, and c2 = 0.1. The blue, green, and
black curves represent the flows of the quasi-curvatures of the QTIC at time t = 0, 1.5, 2, respectively.

(a) The quasi-curvature k2(s, t) in 2-D. (b) The quasi-curvature k2(s, t) in 3-D.

Figure 2. The time evolution of the quasi-curvature k2(s, t) = A0 sin(c1s + c2
1t + c2) of the QTIC

and its evolution in 2-D and 3-D for s ∈ [0, 5], t = [0, 2.5], A0 = 0.7, c1 = 1.6, and c2 = 0.1.
The blue, green, and black curves represent the flows of the quasi-curvatures of the QTIC at time
t = 0, 1.5, 2, respectively.

(a) (b)

Figure 3. The evolution of the QTIC via velocity functions (W1 = 0, W2 = k1(s, t), W3 = k2(s, t)) for
s ∈ [0, 1], t = [0, 2.5], A0 = 0.7, c1 = 1.6, and c2 = 0.1. The blue, green, and black curves represent the
flows of the QTIC at time t = 0.05, 0.7, 1.3, respectively. (a) The evolution of the QTIC for s ∈ [0, 1]
and time t = [0, 2.5]; (b) the evolution of the QTIC for s ∈ [0, 1] at time t = 0.05, 0.7, 1.3.
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Figure 3a represents the flows of the QTIC via the velocity functions (W1 = 0, W2 =
k1(s, t), W3 = k2(s, t)) for s ∈ [0, 1] and t = [0, 2.5], A0 = 0.7, c1 = 1.6, and c2 = 0.1.
The blue, green, and black curves in Figure 3a,b represent the flows of the QTIC at time
t = 0.05, 0.7, 1.3, respectively.

5. The Flows of the QTIC via the Acceleration Fields

Let α(s, 0) : I −→ R2,1 be the initial inextensible QTIC in R2,1. Let Ct be the family of
curves, it represents the flows of the QTIC, where Ct = α(s, t) : I = [0, l]× [0, ∞) −→ R2,1,
and t represents the time parameter. Assume that the inextensible QTIC evolves by the
acceleration fields v1, v2, and v3 in the direction of the q-tangent vector T, q-normal
vector Nq, and q-principal binormal vector Bq, where vi, i = 1, 2, 3 are functions in the
quasi-curvatures and their derivatives. The QTIC evolves according to the acceleration
fields in the q-frame by the following law:

∂2α

∂t2 = v1 T + v2 Nq + v3 Bq. (51)

Lemma 3. The relation between the acceleration fields v1, v2, and v3 that describe the evolution of
the QTIC by (51) and the velocity fields W1, W2, and W3 that describe the evolution of the QTIC (17)
is given by:

v1 = W1,t + W2ψ1 + W3ψ2 ,

v2 = W2,t + W1ψ1 ,

v3 = W3,t + W1ψ2 ,

(52)

or

v1,s + v2k1 + v3k2 = ψ2
1 + ψ2

2 ,

v2,s + v1k1 −v3k3 = ψ1,t ,

v3,s + v1k2 + v2k3 = ψ2,t ,

(53)

where ψ1 and ψ2 are given by (20).

Proof. We differentiate (17) with respect to t; then, we have:

αtt = W1,t T + W1 Tt + W2,t Nq + W2 Nq,t + W3,t Bq + W3 Bq,t. (54)

Substituting (18) and (20) into (54). Hence (52) holds.
Another relation between the velocity fields and acceleration fields can be given as

follows: Taking the s-derivative of (51), we obtain

αtts = (v1,s + v2k1 + v3k2)T + (v2,s + v1k1 −v3k3)Nq + (v3,s + v1k2 + v2k3)Bq. (55)

Since αs = T, then αstt = Ttt. Taking the second derivative of the first equation of (18) with
respect to t and using (18), we have:

αstt = Ttt = (ψ2
1 + ψ2

2)T + ψ1,tNq + ψ2,tBq. (56)

Since the QTIC is inextensible, the compatibility condition αtts = αstt is satisfied, equating (55)
and (56). Hence, (53) holds.

An Application for the Motion of the QTIC by the Acceleration Fields

Assume that α(s, t) is the QTIC evolving by the accelerations functions:

v1 = 0, v2 = k1, v3 = k2. (57)



Symmetry 2023, 15, 654 12 of 16

Assume k3 = 0; then, the TEE described by (51) takes the form:

∂2α

∂t2 = k1 Nq + k2 Bq . (58)

Substituting (57) into (53) gives the form:

ψ1,t = k1,s ,

ψ2,t = k2,s ,
(59)

with the following condition:
ψ2

1 + ψ2
2 = k2

1 + k2
2 . (60)

Since k3 = 0, then the third equation of (42) gives:

ψ2 =
κ2

κ1
ψ1. (61)

Substituting (61) into (60), hence ψ1 = k1, and ψ2 = k2, and the PDE system (59) takes
the form of transport equations:

k1,t = k1,s ,

k2,t = k2,s .
(62)

This system of transport equations has the following general solution:

k1(s, t) = η1(s + t) ,

k2(s, t) = η2(s + t) ,
(63)

where η1(s + t) and η2(s + t) are arbitrary functions.
Since αs = T, by taking the s-derivative of this equation and using (10),

αss = k1Nq + k2Bq. (64)

Comparing (58) and (64), hence

αtt = αss. (65)

This represents the one-dimensional wave equation. If we consider the initial con-
ditions α(s, 0) = h(s) and αt(s, 0) = f (s), we obtain the general solution of the form:

α(s, t) =
1
2

(
h(s + t) + h(s− t) +

∫ s+t

s−t
f (x)dx

)
. (66)

In this application, we take the following initial conditions:

α(s, 0) = h(s) = (
√

2 sinh s,
√

2 cosh s, s) ,

αt(s, 0) = f (s) = (
√

2 cosh s,
√

2 sinh s,−1) .
(67)

Then, we obtain the general solution:

α(s, t) = (
√

2 sinh(s + t),
√

2 cosh(s + t), s− t). (68)

The evolution α(s, t) represents the family of quasi-timelike curves for different time
values t. This family of QTIC is plotted for different time values in Figure 4.
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(a) (b)

Figure 4. The evolution of the QTIC via accelerations (v1 = 0, v2 = k1 and v3 = k2) for s ∈ [0, 0.5]
and t = [0, 0.5]. The blue, green, and black curves represent the quasi-curvatures of the QTIC at time
t = 0, 0.1, 0.4, respectively. (a) The evolution of the QTIC for s ∈ [0, 0.5] and time t = [0, 0.5]; (b) The
evolution of the QTIC for s ∈ [0, 0.5] at time t = 0, 0.1, 0.4.

Figure 4a represents the evolution of the QTIC described by the acceleration functions
(v1 = 0, v2 = k1 and v3 = k2) for s ∈ [0, 0.5] and t = [0, 0.5]. The blue, green, and black
curves in Figure 4b represent the evolution of the QTIC at time t = 0, 0.1, 0.4, respectively.

We consider the QTIC with the parametrization (68); the first and second quasi-
curvatures k1 and k2 given by (63) can be computed using (3) and (8); hence:

k1(s, t) = η1(s + t) =
√

2 cosh(s + t)√
cosh(2(s + t))

,

k2(s, t) = η2(s + t) =
√

2 sinh(s + t)√
cosh(2(s + t))

.

(69)

We can verify the solutions by using the properties of the q-frame in Definition 8,
where the QTIC (68) satisfies the following PDEs:

−α2
1,s + α2

2,s + α2
3,s = −1 ,

−α2
1,ss + α2

2,ss + α2
3,ss = k2

1 + k2
2 = η2

1(s + t) + η2
2(s + t) = 2 .

(70)

The quasi-curvatures k1 and k2 are plotted at different time values in Figures 5 and 6.
Figure 5a represents the evolution of the first quasi-curvature k1 of the QTIC for

different time values at t = 0, 0.1, 0.4 in two dimensions. Figure 5b represents the three-
dimensional graph of the flows of the first quasi-curvature k1 for s ∈ [−3, 3] and t = [0, 0.5].
The blue, green, and black curves represent the evolution of the first quasi-curvature at
time t = 0, 0.1, 0.4, respectively. It is obvious that the evolution of the first quasi-curvature
k1 had a right shift with an increase in time, and the shape did not change.

Figure 6a represents the evolution of the second quasi-curvature k2 of the QTIC for
some different time values at t = 0, 0.1, 0.4 in two dimensions. Figure 6b represents the
three-dimensional graph of the flows of the second quasi-curvature k2 for s ∈ [−3, 3]
and t = [0, 0.5]. The blue, green, and black curves represent the evolution of the second
quasi-curvature at time t = 0, 0.1, 0.4, respectively. There was not any obvious shift for the
evolution of the second quasi-curvature k2 with the increase in time, and the shape did
not change.
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(a) (b)

Figure 5. The time evolution of the quasi-curvatures of the QTIC, k1(s, t) =
√

2 cosh(s+t)√
cosh(2(s+t)

in 2-D and

3-D for s ∈ [−3, 3] and t = [0, 0.5]. The blue, green, and black curves represent the quasi-curvature
of the QTIC at time t = 0, 0.1, 0.4, respectively. (a) The 2-D graph for the evolution of k1(s) at
t = 0, 0.1, 0.4; (b) the 3-D graph for the evolution of k1(s, t) for s ∈ [−3, 3] and t = [0, 0.5].

(a) (b)

Figure 6. The time evolution of the quasi-curvatures of the QTIC, k2(s, t) =
√

2 sinh(s+t)√
cosh(2(s+t)

in 2-D and

3-D for s ∈ [−3, 3] and t = [0, 0.5]. The blue, green, and black curves represent the quasi-curvature
of the QTIC at time t = 0, 0.1, 0.4, respectively. (a) The 2-D graph for the evolution of k2(s) at
t = 0, 0.1, 0.4; (b) the 3-D graph for the evolution of k2 for s ∈ [−3, 3] and t = [0, 0.5].

6. Discussion

The study of the evolution of curves is an attractive research topic in differential
geometry. In this paper, we investigated the flows of timelike curves in Minkowski space
according to a quasi-frame, which we called “quasi-timelike curves”. The quasi-frame is an
important frame in the study of the evolution of curves; it is very effective at the points
where the curvature of the curve vanishes. In this work, the motion of quasi-timelike curves
was specified by velocity and acceleration. The equations of the evolution of the quasi-
frame and the evolution of the curvatures (we called them quasi-curvatures) were derived,
and some applications were given. In these applications, partial differential equations
played an important role in describing the motion of the QTIC. They arose in the form
of heat equations and transport equations. Moreover, the flows of the QTIC satisfied the
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one-dimensional wave equation. With the aid of Wolfram Mathematica 12, we obtained the
solutions of these partial differential equations and graphed them.

7. Conclusions

The present paper investigated the motion of the quasi-timelike curve (QTIC) in
Minkowski space R2,1. The results of this paper are summarized as follows:

1. We studied the motion of the QTIC by the velocity fields W1, W2, and W3, with the

equation of motion ∂α(s,t)
∂t = W1T +W2Nq +W3Bq, where W1, W2, and W3 represented

the velocity functions in the direction of the q- frame T, Nq, Bq.
2. The time evolution equations (TEEs) for the q-frame T, Nq, Bq of the QTIC in Minkowski

space R2,1 were derived, and the TEEs for the quasi-curvatures k1, k2, and k3 were
obtained as a system of PDEs (Theorem 2).

3. We gave an application of the motion of the QTIC by the velocity functions W1 =

0, W2 = k2, and W3 = −k1, with the quasi-curvatures k1(s, t) = A0 cos(c1s + c2
1t + c2),

k2(s, t) = A0 sin(c1s + c2
1t + c2), and k3 = 0. We plotted the evolution of the quasi-

curvatures k1 and k2 ( Figures 1 and 2) and the evolution of the QTIC (Figure 3).
4. We studied the motion of the QTIC described by the acceleration fields with the

equation of motion ∂2α
∂t2 = v1 T + v2 Nq + v3 Bq.

5. We gave an application of the motion of the QTIC by the acceleration functions

v1 = 0, v2 = k1, and v3 = k2, with the quasi-curvatures k1(s, t) =
√

2 cosh(s+t)√
cosh(2(s+t)

,

k2(s, t) =
√

2 sinh(s+t)√
cosh(2(s+t)

, and k3 = 0. We plotted the evolution of the quasi-curvatures

k1 and k2 as illustrated in Figures 5 and 6 and the evolution of the QTIC, shown in
Figure 4.

6. Through the given applications, we presented the description of the graphs, which indi-
cated the flows of the quasi-timelike curves and their first and second quasi-curvatures.
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