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Abstract: The present work is attentive to studying the qualitative analysis for a nonlinear strain
wave equation describing the finite deformation elastic rod taking into account transverse inertia, and
shearing strain. The strain wave equation is rewritten as a dynamic system by applying a particular
transformation. The bifurcation of the solutions is examined, and the phase portrait is depicted.
Based on the bifurcation constraints, the integration of the first integral of the dynamic system along
specified intervals leads to real wave solutions. We prove the strain wave equation has periodic,
solitary wave solutions and does not possess kink (or anti-kink) solutions. In addition, the set of
discovered solutions contains Jacobi-elliptic, trigonometric, and hyperbolic functions. This model
contains many kinds of solutions, which are always symmetric or anti-symmetric in space. We study
how the change in the physical parameters impacts the solutions that are found. Numerically, the
behavior of the strain wave for the elastic rod is examined when particular periodic forces act on
it, and moreover, we clarify the existence of quasi-periodic motion. To clarify these solutions, we
present a 3D representation of them and the corresponding phase orbit.

Keywords: bifurcation theory; phase portrait; quasi-periodic; soliton; flexible rods

1. Introduction

Many natural phenomena, including fluid dynamics, water waves, optical fibers,
plasma, and nuclear physics are governed by nonlinear partial differential Equations
(NLPDEs). It is widely believed that finding exact solutions to these phenomena is one
of the most effective ways to comprehend and interpret them. Thus, the construction of
solutions for NLPDEs has become a more significant and necessary tool for researchers.
Despite this, there is no unified method that can provide all exact solutions of an NLPDE
because these equations involve multifarious states and properties, which make it chal-
lenging to identify their exact analytical solutions. The most important of these methods in
the literature include the extended modified direct algebraic method [1,2], the exponential
function [3], the improved auxiliary equation technique [4], (G′/G2)-expansion function
methods [5], the bilinear formalism method [6], the direct method of the Hirota and the
linear superposition principle [7], the sinh-Gordon expansion method [8], an improved
mapping approach [9], and modified extended rational expansion method [10], a modified
direct algebraic method [11], the first integral method [12], the Sardar-subequation method
(SSM) [13–16], φ6 model expansion technique [17], the Riccati-Bernoulli sub-ODE and
exp(G′/G)-expansion method [18], an extended mapping technique [19], the extended
exponential function method [20], a modified F-expansion method [21], Lie symmetry
analysis [22,23], and for other several methods, see, e.g., [24–30]. Many of these methods
are based on imposing a solution in a specific formula that contains a polynomial satisfying
a certain ordinary differential equation. Another approach is a qualitative analysis of
the traveling wave system related to the given partial differential equation utilizing the

Symmetry 2023, 15, 650. https://doi.org/10.3390/sym15030650 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15030650
https://doi.org/10.3390/sym15030650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9109-9530
https://orcid.org/0000-0002-7191-2010
https://doi.org/10.3390/sym15030650
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15030650?type=check_update&version=2


Symmetry 2023, 15, 650 2 of 17

bifurcation theory of the dynamical system. For more details about this approach, see,
e.g., [31–39]. Moreover, these methods are also applied to solve stochastic partial differ-
ential Equations [40–42]. The most important advantage of the bifurcation method lies in
predicting the solution before calculating it. Recently, Elmandouh and Elborolosy [43–49]
improved the procedures of this approach by presenting the interval of real propagation
which prevents the appearance of complex solutions and permits various solutions for the
same energy level, as well as presenting the degeneracy analysis of the solutions through
the orbits of the phase portrait owing to the change in the initial conditions.

On the other side, numerous technological issues have been addressed using the
nonlinear elastic wave. Nonlinearities of solid structures have various sources, e.g., physical
and geometrical nonlinearities, kinetic nonlinearity, and boundary constraint. Solitary wave
solutions or shock wave solutions are examples of steady traveling wave solutions that may
exist as a result of the interaction between nonlinearity and dispersion or dissipation effect.
There has been a great deal of interest in analyzing and solving nonlinear wave problems
qualitatively using the nonlinear evolution equation since more and more problems involve
nonlinearity. This motivates us to study some nonlinear dynamical behaviors of the wave
strain equation in the form [50]

∂2u
∂t2 − c2

0
∂2u
∂x2 =

∂2

∂x2

[
c2

0
2
(3u2 + u3) +

ν2R2

2

(
∂2u
∂t2 − c2

1
∂2u
∂x2

)]
, (1)

where c0 =
√

E
ρ is the wave velocity of the longitudinal and c1 =

√
µ
ρ is the velocity of

shear wave while ρ is the rod density per unite volume, µ is the material shear modulus,
and E is the elastic modules, u(x, t) is the displacement distribution at each space x and
time t. Equation (1) is a model for an elastic circular-rod waveguide that describes a double
nonlinear wave equation concerning axial displacement gradient. As a consequence of the
transverse Poisson effect, the longitudinal wave propagates simultaneously with the shear
wave. Equation (1) is formulated by applying the Hamilton principle of the least action [50].
Recently, few methods have been proposed for constructing exact solutions to this problem;
see, e.g., [51–53]. Only solitary wave solutions and shock wave solutions can be obtained,
which are typically not able to yield an exact periodic solution. By utilizing the Jacobi
elliptic function expansion method, one can obtain periodic, shock, and the corresponding
solitary wave solutions of the derived nonlinear Equation [54].

This work is organized as follows: In Section 2, we study the bifurcation and introduce
the phase portrait corresponding to the traveling wave system. Some wave solutions as-
sorted into periodic, super-periodic, and solitary wave solutions are introduced in Section 3
as well as the proof of non-existing kink (anti-kink) wave solutions. Section 4 includes some
graphic representations of periodic, super-periodic, and solitary solutions besides the study
of the effect of changing the physical parameters on the obtained solutions. In Section 5, we
examine numerically the existence of quasi-behaviour after allowing certain periodic forces
to act on the rod. Section 6 includes a discussion about the main results while Section 7 is a
summary of the obtained results.

2. Bifurcation Analysis and Phase Portraits

To investigate the dynamical analysis for wave solutions of Equation (1), we apply the
next wave transformation to Equation (1)

u = u(ξ), ξ = k(x−ωt), (2)

where k and ω are constants denoting the number of waves and speed of the waves,
respectively, and ξ is the wave variable, turning Equation (1) into

(ω2 − c0
2)

d2u
dξ2 −

c2
0

2
d2

dξ2 (3u2+u3)− ν2R2k2

2
d2

dξ2 [(ω
2 − c1

2)
d2u
dξ2 ] = 0. (3)



Symmetry 2023, 15, 650 3 of 17

Equation (3) is integrated twice with respect to ξ, we obtain

d2u
dξ2 = cu + 3au2 + au3, (4)

where the integration constants are ignored and the two constants a, c given below are
utilized instead of the main constants for simplicity

c =
2(ω2 − c2

0)

ν2R2k2(ω2 − c2
1)

and a = −
c2

0
ν2R2k2(ω2 − c2

1)
. (5)

Equation (4) is rewritten as a 1D-Hamilton system

u′ = z, z′ = au3 + 3au2 + cu, (6)

where the derivative with regard to ξ is referred by primes, with Hamilton function

H =
1
2

z2 + V(u), (7)

where
V(u) = − c

2
u2 − au3 − a

4
u4, (8)

is a potential function. The Hamilton system (6) is conservative because div(u′, z′) = 0,
and based on ∂H

∂ξ = 0, H is a constant of the motion, i.e., it takes a constant value along any
trajectory of the motion [55,56], i.e.,

1
2

z2 + V(u) = h, (9)

where h is the value of the constant of the motion along a specific trajectory and it is
usually determined from the initial conditions. It is noticeable that both problems of
establishing wave solutions and the solution of the Hamilton system (6) are equivalents.
This equivalence leads to the acquisition of many properties of wave solutions, which will
be discussed later. We acquire the differential form by inserting the first expression in
Equation (6) and splitting the variables.

du√
Q4(u)

= ±dξ, (10)

where
Q4(u) = 2(h−V(u)) = 2h + cu2 + 2au3 +

a
2

u4. (11)

The needed range of the three parameters h, a, and c is required to integrate both sides
of Equation (10). There are two different methods that can be applied to get this range. They
are the bifurcation theory [31] and the complete discriminant system of the polynomial
Q4(u) [57]. The bifurcation theory has various advantages over the other approach, such
as the ability to assort the type of constructed solutions prior to forming them. Homoclinic
orbits, periodic orbits, and heteroclinic orbits, for example, imply the appearance of solitary,
periodic, and kink(or anti-kink) solutions. In other words, utilizing the bifurcation analysis,
we determine the criteria on the parameters that ensure the occurrence of such solutions
besides studying the dependence of the solutions on the initial conditions.

To study the bifurcation and phase portraits for the Hamilton system (6), we first find
the equilibrium points which are the critical points for the potential function (8), i.e., the
equilibria are (u0, 0), where (u0, 0) satisfies

dV(u0)

du
= u0(au2

0 + 3au0 + c) = 0. (12)
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The nature of the equilibrium points (u0, 0) can be determined by evaluating the
eigenvalues of the linearized system for the Hamilton system (6), that takes the form

λ1,2 = ±
√
−d2V(u0)

du2 = ±
√

3au2
0 + 6au0 + c. (13)

Thus, the equilibrium point (u0, 0) is either center if it is a local minimum for the
potential function (8) or saddle if it is local maximum or cusp if V′′(u0) = 0.

Depending on the value of ∆ = a(9a− 4c), we find the equilibrium points and specify
their nature in the next cases:

Case I: If ∆ < 0, the Hamiltonian system (6) has only one equilibrium point O = (0, 0).
The eigenvalues (13) calculated at O are λ1,2 = ±

√
c. It is clear that the two parameters a

and c have the same sign, i.e., ac > 0. Hence, O is either a saddle point if c > 0 (a > 0) as
outlined by Figure 1a or a center if c < 0 (a < 0) as outlined by Figure 1b.
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)
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0.8

z
(

)

(a) (b)

Figure 1. Phase plane orbits for the system (6) if ∆ < 0. Equilibria are shown by black solid circles;
(a) a = 1, c = 3; (b) a = −1, c =−3.

Case II: If ∆ = 0, then the two points O = (0, 0) and E1 = (− 3
2 , 0) are equilibria for

system (6), where a 6= 0. The eigenvalues (13) evaluated at the points O and E1 are

λ1,2(O) = ±3
√

a
2

, λ1,2(E1) = 0. (14)

Taking into account the existence condition ∆ = 0 for two equilibrium points, the two
parameters a and c have the same sign, i.e., ac > 0. Hence, they are either saddle and cusp
if a > 0 (c > 0) as outlined by Figure 2a or center and cusp, respectively, as clarified by
Figure 2b if a < 0 (c < 0).

Case III: If ∆ > 0, system (6) owns three equilibria. They are O = (0, 0) and
E2,3 = (−3a±

√
∆

2a , 0). The eigenvalues (13) calculated at these points are

λ1,2 (O) = ±
√

c, λ1,2 (E2) = ±

√
2a(∆− 3a

√
∆)

2a
, λ1,2 (E3) = ±

√
2a(∆ + 3a

√
∆)

2a
. (15)

Based on the eigenvalues (15), we sum up the classification of the equilibria, O and
E2,3, in Table 1 so as to avoid confusion.
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Table 1. Classification of the equilibria O, E2,3 if ∆ > 0.

Case
Conditions Nature

Figure
a c O E2 E3

1. + + saddle center saddle Figure 3a
2. − − center center saddle Figure 3b

3. + − center saddle saddle Figure 4a
4. − + saddle center center Figure 4b

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
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0
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0

0.5

1
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2

z
(

)

(a) (b)

Figure 2. Phase plane orbits for the system (6) if ∆ = 0. The equilibria are indicated by the black
solid circles; (a) a = 2, c = 2, (b) a = −2, c=−2.

-4 -3 -2 -1 0 1
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z
(

)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
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2

z
(

)

(a) (b)

Figure 3. Phase portrait for the Hamiltonian system (6) in the phase plane (u, z) if ∆ > 0 and ac > 0.
The black solid circles are the equilibrium points; (a) a = 1, c = 5/4; (b) a = −1, c = −5/4.

The values of the parameter h at the equilibrium points are given by

h0 = V(0) = 0, h1 = V(
−3
2

) = −27a
64

,

h2 = V(
−3a +

√
∆

2a
) =
−(3a−

√
∆)2

32a2 [2c− 3a +
√

∆],

h3 = V(
−3a−

√
∆

2a
) =
−(3a +

√
∆)2

32a2 [2c− 3a−
√

∆].

(16)
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Figure 4. Phase plane orbits for the system (6) if ∆ > 0 and ac < 0. The equilibria are indicated by
the black solid circles; (a) a = 1/15, c = −7/28; (b) a = −1/15, c = 7/28.

3. Solutions

The aim of this section is to obtain some bounded wave solutions for Equation (1).
These solutions are assorted into periodic, solitary, and kink (anti-kink) wave solutions.
Besides, the same techniques can also be employed to construct unbounded wave solutions,
but we avoid them because they are not physically meaningful. We now present the
subsequent lemma, which will be substantial in the next analysis.

Lemma 1. (see, e.g., [56,58,59]). Let system (6) has a continuous solution u = u(k(x− ct)) =
u(ξ) for ξ ∈]−∞, ∞[ and assume limξ→∞ u(ξ) = κ1, and limξ→−∞ u(ξ) = κ2.

(i) If κ1 = κ2, then the solution u(ξ) is solitary which corresponds to a homoclinic orbit for the
system (6).

(ii) If κ1 6= κ2, then the solution u(ξ) is a kink (or anti-kink) wave that corresponds to a heteroclinic
orbit for the system (6).

(iii) If system (6) possesses a periodic orbit, then its corresponding solution u(ξ) is also periodic.
(iv) If system (6) has a closed orbit in the phase portrait evolved by at least two centers and one

separatrix layer, then its corresponding solution u(ξ) is a super periodic wave.

Based on the bifurcation theory and Lemma 1, we prove the next theorem.

Theorem 1. Equation (1) does not possess any kink or anti-kink solutions.

Proof. The bifurcation analysis, outlined in Section 2, shows that system (6) has not any
heteroclinic orbit. Taking into account Lemma 1, we then proved that Equation (1) has not
any kink or anti-kink solutions.

3.1. Periodic Solutions

We are interested in this subsection in deriving all periodic solutions of Equation (1).
As we can see from the bifurcation analysis, Equation (1) has several periodic and super
periodic solutions of different shapes. The following theorems enumerate these cases

Theorem 2. Assume Equation (1) has a solution in the form of (2).

(i) If (∆, a, c, h) ∈ (R− ×R− ×R− ×R+) ∪ ({0} ×R− ×R−×]0, h1[) ∪ (R+ ×R− ×R−
×]h2, 0[) ∪ (R+ ×R− ×R+×]h2, h3[), then Equation (1) has new periodic solutions in the
form

u(ξ) =
1

A− B

Au1 − Bu2 −
2AB(u1 − u2)

A + B + (A− B)cn(
√
−aAB

2 ξ, k1)

, (17)
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for u1 < u < u2, where A2 = (u2 − Re.u3)
2 + Im2u3, B2 = (u1 − Re.u3)

2 + Im2u3,
k2

1 = 1
4AB [(u1 − u2)

2 − (A− B)2] and u1, u2 are the two real roots while u3, u∗3 are the two
complex conjugate roots of Q4(u).

(ii) If (∆, a, c, h) ∈ ({0} ×R− ×R−×]h1, ∞[) ∪ (R+ ×R− ×R−×]h3, ∞[)) ∪ (R+ ×R− ×
R+×]0, ∞[), then Equation (1) has super periodic solutions as in the form (17) but with
different arguments.

Proof.

(i) For fixed values of ∆, a, c, h in the given range, system (6) owns different families
of phase orbits. An orbit belonging to these families passes through the u−axis
twice which proves the existence of two real roots u1, u2 and two complex conjugate
complex roots u3, u∗3 for Q4(u). This enables us to write Q4(u) = −a

2 (u1 − u)(u −
u2)(u− u3)(u− u∗3) and consequently, the interval of real propagation is u ∈]u1, u2[.
Therefore, we assume u(0) = u1. Integration of Equation (10) gives

∫ u

u1

du√
(u1 − u)(u− u2)(u− u3)(u− u∗3)

=

√
−a
2

∫ ξ

0
dξ. (18)

The last equation gives the new periodic solutions (17) with a period of

4
√

2
−aAB K(k1) [60].

(ii) For certain values of ∆, a, c, h in the specific range, system (6) different families of
super periodic orbits. An orbit of them includes all equilibrium points of the system
and intersects the u−axis in two points as in case (i). consequently, we get solutions as
in (17) but with different arguments.

Theorem 3. Assume Equation (1) has a solution in the form of (2). If (∆, a, c, h) ∈ (R+ ×R− ×
R− × {0}) ∪ (R+ ×R− ×R+ × {h3}), then Equation (1) has periodic solutions in the form

u(ξ) = ue −
2(u4 − ue)(u5 − ue)

2ue − u4 − u5 − (u5 − u4) cos
√

−a
8(u4−ue)(u5−ue)

(u5 − u4)ξ
, (19)

for u4 < u < u5 where

ue =

{
0 , if h = 0
−3a−

√
∆

2a , if h = h3
(20)

and u4 < u5 < ue are the real roots of Q4(u).

Proof. For selecting values of ∆, a, c, h in the given range, system (6) possesses a single orbit
in red as illustrated by Figure 3b and it intersects u−axis in u4, u5 and ue. Thus, Q4(u) reads
as Q4(u) = −a

2 (u− ue)2(u4 − u)(u− u5). The possible interval of real wave propagation
]u4, u5[. Assuming u(0) = u4, the integration of (10) yields∫ u

u4

du
u
√
(u− u4)(u5 − u)

=

√
−a
2

∫ ξ

0
dξ, (21)

which gives the solution as in the form (19).

Theorem 4. Assume Equation (1) has a solution in the form of (2). If (∆, a, c, h) ∈ (R+ ×R− ×
R−×]0, h3[) ∪ (R+ ×R− ×R+×]h3, 0[), then Equation (1) has periodic solutions in the form

u(ξ) = u9 +
(u9 − u7)(u9 − u6)

(u7 − u9)− (u7 − u6)sn2(Ω1ξ, k2)
, (22)
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for u6 < u < u7, and

u(ξ) = u6 −
(u9 − u6)(u8 − u6)

u6 − u8 + (u8 − u9)sn2(Ω1ξ, k2)
, (23)

for u8 < u < u9, where Ω1 =
√
−a
8 (u9 − u7)(u8 − u6), k2

2 = (u9−u8)(u7−u6)
(u9−u7)(u8−u6)

and u6 < u7 <

u8 < u9 are the four real roots of Q4(u).

Proof. For selecting values of ∆, a, c, h in the given range, system (6) has two periodic
families of orbits as outlined in Figures 3b and 4b in green. An orbit belonging these
families passes four times through u−axis which indicates the existence of four real zeros
for Q4(u), i.e., Q4(u) = −a

2 (u6 − u)(u − u7)(u − u8)(u − u9). There are two possible
intervals of real wave propagation. They are u ∈]u6, u7[∪]u8, u9[. We calculate the periodic
wave solution along each interval individually.

• If u ∈]u6, u7[, we assume u(0) = u6, the integration of Equation (10) yields

∫ u

u6

du√
(u6 − u)(u− u7)(u− u8)(u− u9)

=

√
−a
2

∫ ξ

0
dξ. (24)

The last equation gives the new periodic solution (22) with a period of 2
Ω1

K(k2).
• If u ∈]u8, u9[, we postulate u(0) = u9. The integration of Equation (10) implies

∫ u

u9

du√
(u6 − u)(u− u7)(u− u8)(u− u9)

=

√
−a
2

∫ ξ

0
dξ. (25)

The last equation gives the new periodic solution (23) with a period of 2
Ω1

K(k2).

Theorem 5. Assume Equation (1) has a solution in the form of (2). If (∆, a, c, h) ∈ (R+ ×R+ ×
R+×]h2, 0[) ∪ (R+ ×R+ ×R−×]0, h2[), then Equation (1) has periodic solutions in the form

u(ξ) = u11 +
(u10 − u12)(u10 − u11)

u12 − u10 + (u11 − u12)sn2(Ω2ξ, k3)
, (26)

for u11 < u < u12 where Ω2 =
√

a
8 (u13 − u11)(u12 − u10), k2

3 = (u12−u11)(u13−u10)
(u13−u11)(u12−u10)

and
u10 < u11 < u12 < u13 are the real roots of Q4(u).

Proof. For selecting values of ∆, a, c, h in the given range, system (6) has one periodic
families of orbits as outlined in Figures 3a and 4a in green. An orbit belonging these family
intersects u−axis in u10, u11, u12, u13 which indicates the existence of four real zeros for
Q4(u), i.e., Q4(u) = a

2 (u10− u)(u11− u)(u12− u)(u13− u). We calculate the periodic wave
solution along u ∈]u11, u12[ with u(0) = u11 to give

∫ u

u11

du√
(u10 − u)(u11 − u)(u12 − u)(u13 − u)

=

√
a
2

∫ ξ

0
dξ, (27)

which gives the new periodic solution as in the form (26) with a period of 2
Ω2

K(k3).

3.2. Solitary Solution

This subsection aims to construct solitary wave solutions for Equation (1) which
correspond to the homoclinic orbits for the traveling wave system (6).
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Theorem 6. Assume Equation (1) has a solution in the form of (2). If (∆, a, c, h) ∈ (R+ ×R− ×
R− × {h3})∪ (R+ ×R− ×R+ × {0}), then Equation (1) has solitary wave solutions in the form

u(ξ) = ue −
2(s2 − ue)(s1 − ue)

(s1 − s2)coshΩ3ξ + 2ue − s1 − s2
. (28)

for s1 < u < ue, and

u(ξ) = ue +
2(s2 − ue)(s1 − ue)

(s1 − s2)coshΩ3ξ + s1 + s2 − 2ue
, (29)

for ue < u < s2, where Ω3 =
√
−a
2 (ue − s1)(s2 − ue), and s1 < ue < s2 are the real roots of

Q4(u).

Proof. For selecting values of ∆, a, c, h in the given range, system (6) has homoclinic orbits
in black as outlined as Figures 3b and 4b, and an orbit of them cuts u−axis in three
points. Therefore, the polynomial Q4(u) has two simple roots s1, s2 and the other ue is
double. Q4(u) reads as Q4(u) = − a

2 (ue− u)2(u− s1)(s2− u) and the intervals of real wave
propagation is u ∈]s1, ue[∪]ue, s2[. Integrate both sides of Equation (10) for u ∈]s1, ue[ and
u ∈]ue, s2[ assuming u(0) = s1 and u(0) = s2, respectively, we get the new solitary wave
solutions (28) and (29).

4. Graphical Representation

There are two goals for this section. The first is to graphically illustrate some of
the solutions we have found, and the second is to investigate how altering one physical
parameter while keeping the others constants, will affect the solution’s attitude. It is noted
from Equation (3) that the variation in the parameters ν, R, and k have the same effect on
the solutions, so we will only study one of them, say ν.

Let us assume a = −1, c = −3 and select a suitable initial condition implying to
h = 0.2. System (6) has a periodic orbit around the center point (0, 0) as outlined by Fig-
ure 5a. Thus, the polynomial (11) has two real roots u1 = −0.4221201674, u2 = 0.3283297824
and two complex conjugate roots u3, u∗3 = −1.953104807± 1.399146643i. Thanks to theorem
2, Equation (1) has a periodic solution in the form

u(x, t) =
13.83235869

4.750306908 + 0.602283150cn(−1.665933324x + 0.3331866648t, 0.09501209619)
− 3.006356686. (30)

The 3D graphic representation of the solution (30) shows it is periodic as it is illustrated
by Figure 5b.
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(
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(a) (b)

Figure 5. Graphic representation for the periodic solution (30) and its corresponding orbit; (a) Periodic
orbit; (b) 3D-periodic solution.
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The influence of varying the parameters on the periodic solutions is clarified in Figure 6,
where the wave contracts as both its wavelength and its amplitude decrease with the
increase of c0 and c1 as in Figure 6a,b, assuming the other parameters are fixed, while it
expands with the increase of ν and w as in Figure 6c,d.
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Figure 6. The influence of parameters c0, c1, ν and w on the periodic solutions; (a) Influence of c0;
(b) Influence of c1; (c) Influence of ν; (d) Influence of w.

For the values a = −1, c = −1.25, we select a suitable initial condition implying
h = 0.08 that satisfies h > h2 = −1.953125. Consequently, system (6) has a super periodic
orbit as outlined by Figure 7a. The polynomial Q(u) in (11) has two real zeros which
are also the intersection points of the orbit with u−axis (see Figure 7a), i.e., u1 = −3.237,
u2 = 0.291637 and the two conjugate complex roots u3, u∗3 = −0.5274221118± 0.2457027386i.
Following Theorem 2, Equation (1) has a super-periodic solution in the form

u(x, t) = − 8.807117860
3.576302665− 1.865383825cn(−1.078788901x + 0.2157577802t, 0.9818388414)

+ 1.910446655, (31)

that is sketched in Figure 7b.

Remark 1. It is worth mentioning that the previous two cases clarify the difference between the
two parts in Theorem 2. This is due to the two solutions (30) and (31) are obtained from the same
Equation (17).
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Figure 7. Graphic representation for the super-periodic solution (31) and its corresponding orbit;
(a) Super-periodic orbit; (b) 3D-super-periodic solution.

Figure 8 illustrates the impacts of changing the parameters on the super periodic
solutions. It is noted that the wave shrinks by increasing the values of each c0 and c1 as in
Figure 8a,b, while it grows by increasing values of ν and w as in Figure 8c,d.

Assuming a = −1, c = −1.25 and selecting a suitable initial condition providing
h = 0.046875, system (6) has two homoclinic orbits each of them connecting the saddle
point (0, 0) with it self as outlined by Figure 9a and it intersects u−axis in the points
(s1, 0) = (−3.232050808, 0) and (s2, 0) = (0.2320508076, 0). Following [56], by virtue of
Theorem 6, there are two types of solitary wave solutions in the form

u(x, t) =

{
−0.5− 4

−3.464101616cosh(−x+0.2t)+2 , if − 3.232050808 < u ≤ −0.5,
−0.5 + 4

−3.464101616cosh(−x+0.2t)+2 , if − 0.5 ≤ u < 0.23205080765.
(32)
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Figure 8. The influence of parameters c0, c1, ν and w on the super-periodic solutions; (a) Influence of
c0; (b) Influence of c1; (c) Influence of ν; (d) Influence of w.
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These solutions are named rarefactive wave solitary and compressive wave solitary,
for more details about these solutions see, e.g., [56]. These solutions are clarified graphically
by Figure 9. We examine graphically the influence of the included parameters on the the
compressive soliton solution by introducing Figure 10. We find that both wavelength and
the height decrease with the increase of c0 as in Figure 10a, the wavelength decreases
while the height remains constant with the increase of c1 as in Figure 10b, the wavelength
increases while the height remains constant with the increase of ν as in Figure 10c, and both
wavelength and the height enlarge with the increase of w as in Figure 10d.
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Figure 9. Graphic representation for the solitary solutions (28) and (29) and their corresponding orbit;
(a) Homoclinic orbit; (b) rarefactive solitary; (c) Compressive solitary.
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Figure 10. The influence of parameters c0, c1, ν and w on compressive wave solitary solution;
(a) Influence of c0; (b) Influence of c1; (c) Influence of ν; (d) Influence of w.

5. Quasi Periodic Behaviour

In this section, we are concerned with a discussion of the autoresonance behavior
for the non-autonomous system, i.e., the oscillator self-adjusts by subjecting the system
to a variable periodic force. The perturbed form of problem (1) after inserting a periodic
external force d cos(e(x− ct)) will be
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∂2u
∂t2 − c2

0
∂2u
∂x2 =

∂2

∂x2

[
3E
2ρ

u2 +
E
2ρ

u3 +
ν2R2

2

(
∂2u
∂t2 − c2

1
∂2u
∂x2

)
+ d cos(e(x− ct))

]
. (33)

Performing the transformation (2) to Equation (33), the corresponding perturbed
dynamical system takes the form

u′ = z,
z′ = au3 + 3au2 + cu + αcos(θ),
θ′ = β,

(34)

where θ = βξ while α = − 2d
v2R2k2(c−c2

1)
and β = e

k refer, respectively, to the strength

and frequency of the external periodic force. We investigate the behavior of the per-
turbed system (34) for distinct values of α by fixing both the remaining parameters and
initial condition.

For fixed values a = c = −2, β = 0.09, we select a suitable initial condition u(0) = 0.5,
z(0) = −1 which implies the existence of a super periodic phase orbit outlined in Figure 3b
in blue, for unperturbed system (6). The value of h corresponding to the initial condition
is h = 1.0325 satisfying the condition h > h3 = 1.0325. In the absence of the external
periodic force, i.e., α = 0, the 2D and 3D phase portraits for the unperturbed system (6) are
displayed in Figure 11a,d. To examine the behaviour for growing values of α, we introduce
the 2D and 3D phase portraits for perturbed system (34) for α = 2, α = 5 as outlined in
Figure 11b,e and Figure 11c,f, respectively. We see that an increase in the strength of the
external force reveals an increase in the periodic irregularity of the wave. It is noticeable
the existence of a quasi-periodic behavior is due to the existence of two incommensurable
frequencies in system (34).
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Figure 11. 2D and 3D phase portrait for the perturbed system (34) when a = c = −2 and initial
condition u(0) = 0.5, z(0) = −1 for fixed values of the parameters a, c and various values of α;
(a) α = 0; (b) α = 2; (c) α = 5; (d) α = 0; (e) α = 2; (f) α = 5.

6. Discussion

This section aims to discuss the obtained results. We investigate the dynamical behav-
ior for Equation (1) that is modeled for the elastic circular-rod wave-guide. It describes
a double nonlinear wave equation with respect to the axial displacement gradient. As a
consequence of the transverse Poisson effect, the longitudinal wave propagates simultane-
ously with the shear wave. Certain transformation involving wave variable (2) is applied
to Equation (1) in order to convert it to second order differential equation that is followed
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by writing it as a dynamical system which is equivalent to the Hamilton system describing
the one dimension motion of a particle. This equivalent has two significant roles in the
current study. We summarize them in the next items:

(a) It enables us to determine the interval of real wave propagation which corresponds to
the interval of real motions in Hamilton systems.

(b) The process of finding the wave solutions for Equation (1) is reduced to quadrature as
we see above. This is due to the Hamilton system (1) having one degree of freedom
and consequently, it is integrable. All integrable systems are solved by quadrature.

The integration of both sides of Equation (10) requires the range of the parameters
a, c, h. This range can be obtained by two distinct methods. They are bifurcation analysis
and complete discriminate method of a polynomial Q4(u). We apply the bifurcation
analysis in this work for two reasons. They are

(a) It gives us the required range of the parameters a, c, and h. It also enables us to
determine the type of the solution before constructing them via the type of the phase
plane orbits as it is clarified in Lemma 1. By virtue of these facts, we prove the non-
existence of kink or (anti-kink) wave solutions for Equation (1) as a result of system
(6) has no heteroclinic phase orbit.

(b) It manages us to clarify the dependence of the solutions on the initial conditions.
The constant h in Equation (9) is determined from the initial conditions. Thus, for dis-
tinct values of h, or equivalently, for different initial conditions, there are different
wave solutions. Let us illustrate this point by providing an example. If (∆, a, c) ∈
R+ ×R− ×R−, then Equation (1) has either supper-periodic solution if h ∈]h3, ∞[,
see theorem 2 or solitary solution if h = h3, see Theorem 6. Hence, for the same
conditions on the physical parameters, the type of the solution depends on h which is
always calculated from the initial conditions. Or, equivalently, the type of the solution
depends on the initial conditions. Thus, we can also conclude that the bifurcation
analysis enables us to find all possible wave solutions.

We illustrate graphically some of the obtained solutions by displaying the 3D-graphical
representation and the corresponding phase orbit. Moreover, we investigate the influence
of the included parameters c0, c1, ν, and ω on the solutions when one of them varies while
the others are kept fixed. Figures 6, 8 and 10 , clarify the influence of the parameters
c0, c1, ν, ω on periodic, supper-periodic and solitary solutions, respectively. These effects
appear on both the amplitude and the width of the solutions.

Finally, we study the existence of quasi-behavior for the Hamilton system (6) after
allowing a periodic perturbed term which is an external periodic force to act on the rod.
After adding this term, system (6) which is named here as an unperturbed system is
converted into perturbed system (34). For selected values of the parameters a, c, α, β and
suitable choice of the initial condition, the 2D and 3D phase portrait is outlined by Figure 11.

7. Conclusions

The study of some qualitative properties for the problem of a finite deformation
flexible rod is really the focus of the present work. The governing equations, which
are nonlinear partial differential equations, have been derived by applying Hamilton’s
variational principle. The governing equation has been converted into one degree of
freedom Hamiltonian system describing the one-dimensional motion of a particle utilizing
specific wave transformation. In this context, the problem of finding wave solutions and
the problem of establishing the solution of the Hamiltonian are equivalent. This equivalence
is significant because it enables us to find the real wave solutions which have been limited
by determining the interval of real wave propagation, which is also a permitted interval of
particle real motions. In other words, it enables us to find bounded real-wave solutions
that are desirable in real-world applications instead of complex solutions. Analyses of
bifurcation and phase plane description have been carried out. This study has been utilized
to prove the governing equation has no kink or anti-kink solutions and has solitary, periodic,
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and unbounded wave solutions. Based on the bifurcation constraints on the problem’s
parameters, the conserved quantity has been integrated along the bounded phase plane
orbits. Thus, we have discovered various periodic and solitary wave solutions that are
displayed of them by exhibiting a 3D, contour, and the appropriate phase orbit. We have
investigated how altering one physical parameter while preserving the other’s constant
will affect the solutions we have found. Finally, We have examined numerically the phase
plane after allowing periodic forces to act on the rod. We have concluded the perturbed
system has a quasi-periodic behavior.

The investigation of chaotic behavior for system (34) and its applications to image
encryption will be considered in our upcoming work.
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