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Abstract: The problem of the classification of the exact solutions to Maxwell’s vacuum equations for
admissible electromagnetic fields and homogeneous space-time with the group of motions G3(VII I)
according to the Bianchi classification is considered. All non-equivalent solutions are found. The
classification problem for the remaining groups of motion, G3(N), has already been solved in other
papers. All non-equivalent solutions of empty Maxwell equations for all homogeneous spaces with
admissible electromagnetic fields are now known.
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1. Introduction

If the symmetry of space-time and physical fields is given by Killing fields whose
number is no less than three, it is possible to reduce the field equations and the equations
of motion of the tested charged particles to ordinary differential equations.

Spaces admitting complete sets of mutually commutative Killing tensor fields of rank
no greater than two are of special interest in the theory of gravitation. Such spaces are
called Steckel spaces. The theory of Steckel spaces was developed in [1–7] (see also [8–11]
and the bibliographies given there). The equations of motion of test particles in Stackel
spaces can be integrated using the commutative integration method (CIM) (or the method
of complete separation of variables). Exact solutions to the gravitational equations are still
actively used in the study of various aspects of gravitational theory and cosmology (see,
for example, refs. [12–23]).

Another method for exact integration of the equations of motion for a test particle
(the method of non-commutative integration (NCIM)) was proposed in [24]. This method
is applied to spaces admitting non-commutative groups of motion Gr(r), r ≥ 3 (see A.
Petrov [25]). It allows for reducing the equations of motion to systems of ordinary differen-
tial equations. By analogy with Stackel spaces, we call them poststack spaces (PSS). PSS
are also actively studied in gravitational theory and cosmology (see, e.g., [26–34] ). The
classification of electromagnetic fields in which the Klein–Gordon–Fock equations and
Hamilton–Jacobi equations admit non-commutative algebras of symmetry operators for a
charged sample particle was carried out in [35–38].

Commutative and non-commutative integration methods have a similar classification
problem, namely enumerating all non-equivalent metrics and electromagnetic potentials
satisfying the requirements of the given symmetry. For Stackel spaces, the problem of
classifying admissible external electromagnetic fields and electrovacuum solutions of the
Einstein–Maxwell equations was solved in [39].

In previous works ([40–42]), the non-null PSS of all types were considered according
to the Bianchi classification, except type VII I. In the present work, all non-equivalent exact
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solutions of Maxwell’s vacuum equations for non-null PSS of type VII I are obtained. Thus,
this classification is complete for all non-null PSS.

2. Admissible Electromagnetic Fields in Homogeneous Spaces

According to its definition (see [43]), the space-time V4 is homogeneous if its metric
can be represented in a semi-geodesic coordinate system as follows:

ds2 = −du02
+ ηabea

αeb
βduαduβ, gij = −δ0

i δ0
j + δα

i δ
β
j ea

αeb
βηab(u0), det|ηab| = η2 > 0, ėa

α = 0, (1)

where the condition
[Ya, Yb] = Cc

abYc, Ya = eα
a ∂̂α (2)

is satisfied. Here, eα
a are the triad of the dual vectors:

eb
αeα

a = δb
a (3)

and Ca
bc are structural constants of the group G3(N), which acts on V4. The vectors of the

frame ea
α define a non-holonomic coordinate system in the hypersurface of transitivity V3

of the group G3(N). Here and elsewhere, dots denote the derivatives of the variable u0.
The coordinate indices of the semi-geodesic coordinate system are denoted by the letters
i, j, k = 0, 1, . . . 3. The variables of the local coordinate system on V3 are provided with
indices α, β, γ = 1, . . . 3. Indices of a non-holonomic frame are provided with the indices
a, b, c = 1, . . . 3. The rule is used according to which of the the repeating upper and lower
indices are summarized within the index range.

It has been proven in the paper [36] that for a charged test particle moving in the
external electromagnetic field with potential Ai, the Hamilton–Jacobi equation:

gij(pi + Ai)(pj + Aj) = m2 (pi + Ai = Pi), (4)

and the Klein–Gordon–Fock equation:

Ĥϕ = (gij(−i p̂l + Al)(−i p̂j + Aj) = m2 ϕ (−i p̂j + Aj = P̂j) (5)

admit the integrals of motion

Xα = ξ i
α pi (or X̂α = ξ i

α p̂i), (6)

if and only if the condition
ξα

a (ξ
β
b Aβ),α = Cc

abξ
β
b Aβ (7)

is satisfied. Here, pi = ∂i ϕ, p̂k = −ı∇̂k (∇̂k is the covariant derivative operator correspond-
ing to the partial derivative operator ∂̂i and ϕ is a scalar function of the particle with mass
m), ξ i

α is the Killing vector, and Cc
ab are structural constants:

[X̂a, X̂b] = Cc
abX̂c.

If Ai satisfies condition (7), the electromagnetic field is called admissible. All ad-
missible electromagnetic fields for groups of motion Gr(N)(r ≥ 3) acting transitively on
hypersurfaces of space-time have been found in [36–38].

Let us show that solutions of the system of Equation (7) for HPSS of type VII I can be
represented in the form:

Aα = αa(u0)ea
α ⇒ Aa = eα

a Aα = αa(u0). (8)

To prove this, let us find the frame vector using the metric tensor of Bianchi’s VII I-type
space (see [25]).
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ds2 = du12a11 + 2du1du2(a11u12 − 2a13u1 + a12) exp(−u3) + 2du1du3(a13 − a11u1)

+du22
(a11u14 − 4a13u13

+ 2(a12 + 2a33)u12 − 4a23u1 + a22) exp(−2u3)

2du2du3(−a11u13
+ 3a13u12 − 2(a12 + 2a33)u1 + a23) exp(−u2) + du32

(a11u12 − 2a13u1 + a33) + εdu02.

(9)

where aab are arbitrary functions on u0, ε2 = 1. To obtain the functions eα
a , it is sufficient to

consider the components g11, g12, and g13 from system (1). The solution can be represented
in the form:

ea
α =

 1 0 0
u12 exp(−u1) exp(−u3) −2u1 exp(−u3)
−u1 0 1

, eα
a =

 1 0 0
u12 exp(u3) 2u1

u1 0 1

. (10)

The lower index numbers the lines. The solution of the system of Equation (7) has
been found in [36]. It has the form:

A1 = α0(u0), A2 = (α0u12
+ 2β0(u0)u1 + γ0(u0)), A3 = −(α0u1 + β0).

By denoting: α0 = α1, γ0 = α2, β0 = −α3, we obtain (8).

3. Maxwell’s Equations

All exact solutions of empty Maxwell’s equations for solvable groups have been found
in papers [40,41]. The present paper solves the problem for the group G3(VII I).

Consider empty Maxwell’s equations for an admissible electromagnetic field in homo-
geneous space with a group of motions Gr:

1√−g
(
√
−gFij),j = 0. (11)

The metric tensor and the electromagnetic potential are defined by relations (1) and (8).
When i = 0, from Equation (11) it follows:

1√−g
(
√
−gF.α

0. )α =
1
e
(eα

a eηabα̇b),α = ρa
(ηabηα̇b)

η
= 0 (ρa = eα

a,α + eα
a e,α/e). (12)

Here, it is denoted:

g = −det ||gαβ|| = −(ηe)2, where η2 = det ||ηαβ||, e = det ||ea
α||.

Let i = α. Then, from Equation (11), it follows:

1
η
(ηF.α

0. ),0 =
1
e
(eFβα),β ⇒

1
η
(ηηabeα

a α̇b),0 =
1
e
(eβ

b ηabeα
ã eγ

b̃
η ãb̃Fβγeeν

a),ν ⇒ (13)

e(α̇bηηab),0 = ηea
α(eeβ

b eα
ã1

eγ

b̃
Fβγ)|a1

ηa1bη ãb̃. (14)

Let us find components of Fαβ using relation (8).

Fαβ = (ea
β,α − ea

β,α)αa = ec
βeγ

c ed
αeν

d(e
a
γ,ν − ea

ν,γ)αa = eb
βea

αec
γ(e

γ
a|b − eγ

b|a)αc = eb
βea

αCc
baαc. (15)

Then,
(eFαβ),β = ηabη ãb̃Cd

b̃bαd((eeα
a )|ã + eeα

a eγ
ã,γ). (16)

We present the structural constants of a group G3 in the form:

Cc
ab = Cc

12ε12
ãb̃ + Cc

13ε13
ãb̃ + Cc

23ε23
ãb̃, (17)
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where
εAB

ab = δA
a δB

b − δA
b δB

a .

Let us denote:
σ1 = Ca

23αa, σ2 = Ca
31αa, σ3 = Ca

12αa;
γ1 = σ1η11 + σ2η12 + σ3η13,
γ2 = σ1η12 + σ2η22 + σ3η23,
γ3 = σ1η13 + σ2η23 + σ3η33.

Equation (16) will take the form:

η(ηηabα̇b),0 = δa
1(γ1(C1

32)− γ2(C1
31 + ρ3) + γ3(C1

21 + ρ2)) + δa
2(γ1(C2

32 + ρ3)+
γ2C2

13 − γ3(C2
12 + ρ1)) + δa

3(−γ1(C3
23 + ρ2) + γ2(C3

13 + ρ1) + γ3C3
21),

(18)

ρaηabα̇b = 0. (19)

To decrease the order of Equation (18), we introduce new independent functions:

ba = δc
abc = ηηabα̇b ⇒ ηα̇a = ηabbb. (20)

Let us introduce the function:

nab = nab(u0) =
ηab
η

⇒ det nab = n =
1
η

. (21)

Then, Maxwell’s Equations (18) and (21) take the form of a system of linear algebraic
equations on the unknown functions nab:

ḃa = δa
1(γ̃1(C1

32)− γ̃2(C1
31 + ρ3) + γ̃3(C1

21 + ρ2)) + δa
2(γ̃1(C2

32 + ρ3)+
γ̃2C2

13 − γ̃3(C2
12 + ρ1)) + δa

3(−γ̃1(C3
23 + ρ2) + γ̃2(C3

13 + ρ1) + γ̃3C3
21) (γ̃a = nγa),

(22)

α̇a = nabbb. (23)

Equation (19):
ρaba = 0 (24)

is a restriction on the function ba (if ρa 6= 0). Let us obtain the Maxwell’s equations for the
group G3(VII I). Non-zero structural constants, in this case, have the form:

C3
12 = 2, C1

13 = 1, C2
32 = 1⇒ (25)

From here, it follows that

σ1 = −α2, σ2 = −α1, σ3 = 2α3.

Using these relations, we obtain Maxwell’s Equation (18) in the form:

B̂n̂ = ω̂, (26)

where

B̂ =



a1 a2 a3 0 0 0
b1 b2 b3 0 0 0
0 a1 0 a2 a3 0
0 b1 0 b2 b3 0
0 0 a1 0 a2 a3
0 0 b1 0 b2 b3

, (27)

n̂T = (n11, n12, n13, n22, n23, n33); ω̂T = (−ḃ2, ȧ2,−ḃ1, ȧ1,
ḃ3

2
,− ȧ3

2
).
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Hereafter, the following notations are used:

α1 = a2, α2 = a1, α3 = − a3

2
. (28)

Let us find the algebraic complement of the matrix B̂ :

V̂ =



b1v2
1 −a1v2

1 b2v2
1 −a2v2

1 b3v2
1 −a3V2

1
b1v1v2 −a1v1v2 b2v1v2 −a2v1v2 b3v1v2 −a3v1v2
b1v1v3 −a1v1v3 b2v1Vv3 −a2v1v3 b3v1v3 −a3v1v3
b1v2

2 −a1v2
2 b2v2

2 −a2v2
2 b3v2

2 −a3v2
2

b1v2v3 −a1v2v3 b2v2v3 −a2v2v3 b3v2v3 −a3v2v3
b1v2

3 −a1v2
3 b2v2

3 −a2v2
3 b3v2

3 −a3V2
3

 (29)

v1 = a2b3 − a3b2, v2 = a3b2 − a2b3, v3 = a1b2 − a2b1.

As B̂ is a singular matrix, V̂ is the annulling matrix for B̂:

V̂B̂ = 0. (30)

Therefore, when v1
2 + v2

2 + v3
2 6= 0, one of the equations from system (26) can be

replaced by the equation:

a3
2 + b3

2 = 4(a1a2 + b1b2 + c) (c = const). (31)

Depending on the rank of the matrix B̂, one or more functions nab(u0) are independent.
It is possible to express the remaining functions nab through the functions aa, ba. To find
non-equivalent solutions of the system (26), one should consider the following variants:

1. a1 6= 0; 2. a1 = 0, a2 6= 0; 3. a1 = a2 = 0, a3 6= 0. Taking this observation into
account, let us consider all non-equivalent options.

4. Solutions of Maxwell Equations

Since the functions aa satisfy the condition:

a2
1 + a2

2 + a2
3 6= 0,

the rank of matrix (29) cannot be less than three if

v2
1 + v2

2 + v2
3 6= 0⇒ rank||B̂|| = 5.

In order to obtain a complete solution to the classification problem, it is necessary:
(I) To consider all non-equivalent variants with non-zero minors of rank = 5 of the

matrix B̂;
(II) To consider all non-equivalent variants under the condition: va = 0 (rank ≤ 3).
The components of the matrix η̂ and the functions αa are given by formulae (21)

and (28). In view of these circumstances, let us list all exact solutions of empty Maxwell
equations for PSS of type VIII.

I. rank||B̂|| = 5.
1. a1v1 6= 0⇒ the minor B̂12 and its inverse matrix P̂ = B̂−1

12 have the form:

B̂12 =


a2 a3 0 0 0
a1 0 a2 a3 0
b1 0 b2 b3 0
0 a1 0 a2 a3
0 b1 0 b2 b3

, (32)
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P̂ =



− v2
a1v1

− a3b2
α1v1

a2a3
a1v1

− a3b3
a1v1

a2
3

a1v1

− V3
a1v1

a2b2
a1v1

− a2
2

a1v1

a2b3
a1v1

− a2a3
a1v1

− V2
2

a1v2
1

(a3b1v1−a2b3v3)

a1v2
1

a3(a2v2−a1v1)

a1v2
1

− a3b3v2
a1v2

1

a2
2v2

a1v2
1

− v2v3
a1v2

1

a2b2v2
a1v2

1
− a2

2V2
a1v2

1
− a3b3v3

a1v2
1

a2
3v3

a1v2
1

− v2
3

a1v2
1

a2b2v3
a1v2

1
− a2

2v2
3

a1v2
1

(a3b2v3−a2b1v1)

a1v2
1

a2(a1v1−a3v3)

a1v2
1


(33)

Then, the solution to Equation (26) is as follows:

n̂1 = P̂1ω̂1, (34)

where
n̂T

1 = (n12, n13, n22, n23, n33);

ω̂T
1 = (−(ḃ2 + a1n11),−ḃ1, ȧ1,

ḃ3

2
,− ȧ3

2
).

Functions n11, aa, and ba are arbitrary functions of u0 that obey condition (31).

2. a2v1 6= 0. Obviously, we obtain a non-equivalent solution to the previous one only
if a1 = 0. In order to implement the classification, a similar choice should be made for all
other variants. The matrix B̂14 and its inverse matrix P̂2 = B̂−1

14 have the form:

B̂14 =


a2 α3 0 0 0
b2 b3 0 0 0
0 0 a2 a3 0
0 0 0 a2 a3
0 b1 0 b2 b3

, P̂2 =



b3
v1

− a3
v1

0 0 0
− b2

v1

α2
v1

0 0 0
a2

3b1b2
a2v2

1
− a2

3b1
v2

1

1
a2
− a3b3

a2v1

a2
3

a2v1

− a3b1b2
v2

1

a2a3b1
v2

1
0 b3

v1
− a3

v1

a2b1b2
v2

1
− a2

2b1
v2

1
0 − b2

v1

a2
v1


(35)

Then, the solution to Equation (26) is as follows:

n̂2 = P̂2ω̂2, (36)

where
n̂T

2 = (n12, n13, n22, n23, n33);

ω̂2 = (−ḃ2, (ȧ2 − b1n11),−ḃ1,
ḃ3

2
,− ȧ3

2
).

Functions n11, aa, and βa are arbitrary functions of u0 that obey condition (31).

3. a3v1 6= 0 ⇒ a1 = a2 = 0 ⇒ the minor B̂−1
16 and its inverse matrix P̂3 = B̂−1

16 have
the form:

B̂16 =


0 a3 0 0 0
b2 b3 0 0 0
0 0 0 a3 0
b1 0 b2 b3 0
0 0 0 0 a3

, P̂3 =


− b3

a3b2
1
b3

0 0 0
1
a3

0 0 0 0
b1b3
a3b2

2
− b1

b2
2
− b3

b2a3
1
b2

0

0 0 1
a3

0 0
0 0 0 0 1

a3

 (37)

Then, the solution to Equation (26) is as follows:

n̂3 = P̂3ω̂3, (38)
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where

n̂T
3 = (n12, n13, n22, n23, n33), ω̂3 = (−ḃ2, (ȧ2 − b1n11),−ḃ1, 0,

ḃ3

2
). (39)

4. α1v2 6= 0,⇒ v1 = 0 ⇒ the minor B̂−1
24 and its inverse matrix P̂4 = B̂−1

24 have
the form:

B̂24 =


a1 a2 a3 0 0
0 a1 0 a3 0
0 b1 0 b3 0
0 0 a1 a2 a3
0 0 b1 b2 b3

, P̂4 =



1
α1

a2b3
a1v2

− a2a3
a1v2

a3b3
a1v2

− a2
3

a1v2

0 − b3
v2

a3
v2

0 0
0 0 0 − b3

v2

a3
v2

0 b1
v2

− a1
v2

0 0
0 b1v3

v2
2
− a1v3

v2

b1
v2

− a1
v2


(40)

Then, the solution to Equation (26) is as follows:

n̂4 = P̂4ω̂4, (41)

where

n̂T
4 = (n11, n12, n13, n23, n33), ω̂4 = (−ḃ2,−(ḃ1 + a2n22), (ȧ1 − b2n22),

ḃ3

2
,− ȧ3

2
) (42)

Functions n22, aa, and βa are arbitrary functions of u0 that obey condition (31) and
a2β3 = a3β2.

5. α2V2 6= 0,⇒ a1 = V1 = 0⇒ the minor B̂−1
44 and its inverse matrix P̂5 = Ŵ−1

44 have
the form:

B̂44 =


0 a2 a3 0 0
b1 b2 b3 0 0
0 0 0 a3 0
0 0 0 a2 a3
0 0 b1 b2 b3

, P̂5 =



− b2
b1a2

1
b1

0 0 0
1
a2

0 0 b3
a2b1

− a3
a2b1

0 0 0 − b3
a3b1

1
b1

0 0 1
a3

0 0
0 0 − a2

a2
3

1
a3

0


(43)

Then, the solution to Equation (26) is as follows:

n̂5 = P̂2ω̂5, (44)

where

n̂T
5 = (n11, n12, n13, n23, n33); ω̂5 = (−ḃ2, α̇2,−(ḃ1 + a2n22),

ḃ3

2
,− α̇3

2
) (45)

Functions n22, aa, and ba are arbitrary functions of u0 that obey condition (31) and
a2b3 = a3b2.

6. a3v2 6= 0, v1 = 0,⇒ a1 = a2 = b2 = 0. From condition (31) it follows:

a3 = c cos 2ϕ, b3 = c sin 2ϕ,

where ϕ is an arbitrary function of u0. The minor B̂−1
46 and its inverse matrix P̂6 = B̂−1

46 have
the form:
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B̂64 =


0 0 c cos ϕ 0 0
b1 0 0 0
0 0 0 c cos ϕ 0
0 b1 0 c sin ϕ 0
0 0 0 0 c cos ϕ

, Ω̂6 =


− sin ϕ

b1 cos ϕ
1
b1

0 0 0

0 0 − sin ϕ
b1 cos ϕ

1
b1

0
1

c cos ϕ 0 0 0 0
0 0 1

c cos ϕ 0 0
0 0 0 0 1

c cos ϕ

. (46)

Then, the solution to Equation (26) is as follows:

n̂6 = P̂6ω̂6, (47)

where
n̂T

6 = (n11, n12, n13, n23, n33); ω̂6 = (0, 0,−ḃ1, 0, cϕ̇ cos ϕ).

Functions n22, b1, and ϕ are arbitrary functions of u0.

7. a1v3 6= 0⇒ v1 = v2 = 0, otherwise, we obtain a solution equivalent to the previous
ones. As v3 6= 0 ⇒ a3 = b3 = 0, the minor B̂26 and its inverse matrix P̂7 = B̂−1

26 have
the form:

B̂26 =


α1 α2 0 0 0
0 α1 0 a2 0
0 b1 0 b2 0
0 0 α1 0 α2
0 0 b1 0 b2

, P̂7 =



1
α1
− α2b2

α1v3

α2
2

α1v3
0 0

0 b2
v3

− α2
v3

0 0
0 0 0 b2

v3
− α2

v3

0 − b1
v3

α1
v3

0 0
0 0 0 − b1

v3

α1
v3


. (48)

Then, the solution to Equation (26) is as follows:

n̂3a = P̂7ω̂7. (49)

where
n̂T

7 = (n11, n12, n13, n22, n23);

ω̂T
7 = (−ḃ2,−ḃ1, ȧ1, 0, 0).

8. a2v3 6= 0⇒ a1 = v1 = v2 = 0, otherwise, we obtain a solution equivalent to the
previous ones. As v3 6= 0⇒ α3 = b3 = 0, the minor B̂64 and its inverse matrix P̂8 = B̂−1

64
have the form:

B̂64 =


0 α2 0 0 0
b1 α2 0 0 0
0 0 0 a2 0
0 0 0 0 α2
0 0 b1 0 b2

, P̂8 =


− b2

a2b1
− 1

b1
0 0 0

1
a2

0 0 0 0
0 0 0 − b2

b1a2
1
b1

0 0 1
a2

0 0
0 0 0 1

a2
0

. (50)

Then, the solution to Equation (26) is as follows:

n̂8 = P̂8ω̂8. (51)

where
n̂T

8 = (n11, n12, n13, n22, n23), ω̂T
8 = (−ḃ2,−ḃ1, 0, 0, 0).

Functions n33, a2β1, and β2 are arbitrary functions of u0 that obey condition (31).

II. rank||B̂|| < 5
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9. va = 0. Let us represent the system of Maxwell’s equations in the form:

Q̂n̂I = ω̂I , (52)

where

Q̂ =



a1 a2 a3 0 0 0
0 a1 0 a2 a3 0
0 0 a1 0 a2 a3
b1 b2 b3 0 0 0
0 b1 0 b2 b3 0
0 0 b1 0 b2 b3

,

ω̂I = (ω̂β, ω̂α); ω̂T
β = (−ḃ2,−ḃ1,

ḃ3

2
), ω̂T

α = (ȧ2, ȧ1,− ȧ3

2
)

n̂I = (n̂α, b̂α); n̂T
α = (n11, n12, n13), n̂T

β = (n22, n23, n33)

Consider all possible options.

(a) a1 6= 0⇒ ba =
αab1
α1

. Maxwell’s Equation (52) take the form:

B̂I n̂α = (ω̂β − B̂I I n̂β)⇒ n̂α = B̂−1
I (ω̂β − B̂I I n̂β),

b1B̂I n̂α = a1ω̂α − b1B̂I I n̂β ⇒ b1ω̂β − a1ω̂α = 0⇒


a1 ȧ2 + b1ḃ2 = 0,
a1 ȧ3 + b1ḃ3 = 0,
a1 ȧ1 + b1ḃ1 = 0.

(53)

Here,

B̂I =

a1 a2 a3
0 a1 0
0 0 a1

, B̂−1
I =


1
a1
− a2

a2
1
− a3

a2
1

0 1
a1

0
0 0 1

a1

, B̂I I =

 0 0 0
a2 a3 0
0 a2 a3,


From the last equation of system (53) it follows that

a1 = e0 sin ϕ, b1 = e0 cos ϕ, e0 = const.

Thus, b2 = a2
cos ϕ
sin ϕ and b3 = a3

cos ϕ
sin ϕ , and from the previous equations, it follows that

aa = e0qa sin ϕ, ba = e0qa cos ϕ, qa = const, q1 = 1.

Then, matrices B̂I , B̂−1
I , and B̂I I and line ω̂T take the form:

B̂I = ŵ1 sin ϕ, B̂−1
I =

1
sin ϕ

ŵ−1
1 , B̂I I = ŵ2 sin ϕ.

ŵ1 =

1 q2 q3
0 1 0
0 0 1

, ŵ−1
1 =

1 −q2 −q3
0 1 0
0 0 1

, ŵ2 =

 0 0 0
q2 q3 0
0 q2 q3,


ω̂T

β = ϕ̇ĉT = ϕ̇ sin ϕ(q2, 1,− q3

2
)

Then, the solution to Equation (26) is as follows:

n̂α = ŵ−1(ϕ̇ĉ− q̂n̂β)
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(b) a1 = 0 ⇒ a2 6= 0. Let us use the previous results, in which the indices 1 and 2 are
reversed: 1⇔ 2. The solution of Maxwell’s equation has the form:

n̂α = ŵ−1(ϕ̇ĉ− q̂n̂β)

n̂T
α = (n22, n12, n23), n̂T

β = (n11, n13, n33),

ŵ−1 =

1 0 −q
0 1 0
0 0 1

, q̂ =

0 0 0
0 q 0
0 0 q,

, ĉT = (0, 1,− q
2
).

a2 = e0 sin ϕ, b2 = e0 cos ϕ, a3 = e0q sin ϕ, b3 = e0q cos ϕ, q = const, ϕ = ϕ(u0).

(c) a3 6= 0. The solutions, which are not equivalent to the previous ones, can be
obtained under the conditions a1 = a2 = 0 ⇒ b1 = b2 = 0. From Maxwell’s equations it
follows that

a3n13 = a3n23 = 0, a3n33 =
ḃ3

2
, b3n33 = − ȧ3

2
⇒ a3 ȧ3 + b3ḃ3 = 0.

The solution has the form

n33 = ϕ̇, n13 = n23 = a1 = a2 = b1 = b2 = 0, a3 = q cos 2ϕ, b3 = q sin 2ϕ.

Functions ϕ, n11, n12, and n22 are arbitrary functions on u0.

5. Conclusions

In previous works [40–42], all non-equivalent solutions of Maxwell’s empty equations
for admissible electromagnetic fields in homogeneous space-time metrics of all types accord-
ing to Bianchi’s classification (except type VII I) were found. The present work completes
the first stage of the classification problem formulated in the introduction. The next step is
the classification of the corresponding exact solutions of the Einstein–Maxwell equations.
All solutions obtained in the completed classification have a form suitable for further use
and have sufficient arbitrariness so that the Einstein–Maxwell equations have nontrivial
solutions. The use of the triad of frame vectors (see [43]) allows us to reduce the Einstein–
Maxwell equations with the energy-momentum tensor of the admissible electromagnetic
field to an overcrowded system of ordinary differential equations. To perform the classifica-
tion, we need to study the coexistence conditions of these systems of equations. It is possible
to use additional symmetries of homogeneous spaces and admissible electromagnetic fields
(see [38]). In the future, we will begin to solve this classification problem.
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