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Abstract: The effect of a heat source and temperature gradient on Brinkman–Bènard Triple-Diffusive
magneto-Marangoni (BBTDMM) convection in a two-layer system is investigated. The two-layer
system is horizontally infinite and is surrounded on all sides by adiabatic boundaries. It is exposed to
basic uniform and non-uniform temperature profiles and heat sources. The appropriate eigenvalues
and thermal Marangoni numbers (TMNs), which depend on temperature and concentration, are
obtained for the temperature profiles (TPs) for lower rigid and higher free boundaries with surface
tension. The transformed system of ordinary differential equations is solved by using an exact
technique. For all three TPs, the impact of significant relevant parameters on these eigenvalues, and
hence on BBTDMM convection, are investigated versus the thermal ratio. It is observed that, by
increasing the values of the modified internal Rayleigh number for the fluid layer and the solute
Marangoni numbers, the Darcy number, and the viscosity ratio for the set of physical parameters
chosen in the study, one can postpone BBTDMM convection. Higher values of the modified internal
Rayleigh numbers for the porous layer augment BBTDMM convection.

Keywords: temperature profiles; triple-diffusive; magneto-convection; solute Marangoni numbers;
modified internal Rayleigh numbers

MSC: 76-XX; 76-Rxx; 76-Txx; 80-XX

1. Introduction

Many academics are interested in three-component convection problems because the
presence of triple-diffusive components is quite prevalent and natural in practically all
real-time problems. Ravi et al. [1] demonstrated free convection between two vertical
walls by considering temperature-dependent source/sink. Chung Liu et al. [2] studied
the effects of a magnetic field, viscous dissipation, a nonuniform heat source and/or sink,
and thermal radiation on flow and heat transfer in a hydromagnetic liquid film over
an unstable stretched sheet with a prescribed heat flux condition. Srinivasacharya and
Surender [3] studied a viscous fluid using a double stratification method that took into
account the Soret and Dufour effects. MHD effects on heat transmission over a stretching
sheet immersed in a porous medium with changing viscosity, viscous dissipation, and
heat source/sink were investigated by Dessie and Kishan [4]. A Casson fluid with a non-
uniform heat source/sink was considered by Gireesha et al. [5]. The characteristics of a
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heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid submerged
in a porous medium were examined by Hayat et al. [6]. Mabood et al. [7] looked into
micropolar fluids with non-uniform heat sources and sinks. Oni [8] offered an analytical
solution for the combined influence of a heat source, porosity, and thermal radiation on
mixed convection flow in a vertical annulus. According to his research, increases in the
radiation and heat source parameters result in a rise in the fluid temperature and heat
transfer rate. Hakeem et al. [9] conducted nonlinear research on the influence of non-
uniform heat generation/absorption on the hydromagnetic flow of a nanofluid across
a vertical plate. The impacts of viscous dissipation and a non-uniform heat source and
sink on Casson fluid flow for an unstable, inclined, permeable, stretched surface were
investigated by Raju et al. [10]. Khan et al. [11] investigated the influence of a magnetic
field on the flow of a UCMF with the property of a heat source/sink immersed in a
porous medium. The effects of the magnetic field and internal heat generation on three-
component convection in an Oldroyd-B liquid were investigated using the Galerkin method
by Gayathri et al. [12]. Archana et al. [13] studied triple-diffusive flow in the presence of a
nanofluid. Rana et al. [14] used analytical methods to investigate the start of triple-diffusive
linear aperiodic and periodic convection for a magnetic field-exposed closely packed
rotating porous layer saturated with nanofluid. Manjunatha and Sumithra [15] studied the
triple-diffusive convection for composite systems in the absence of a constant heat source.
Taiwo et al. [16] used Riemann sum approximation to investigate the effect of isothermal
and isoflux heating/cooling with a heat source/sink on the unsteady hydromagnetic-free
convective flow of a viscous incompressible fluid in an annulus. Jha and Samaila [17]
presented research on a close form of solution to MHD free convection with nanoparticles
with a generated magnetic field effect. Thirupathi and Mishra [18] investigated the impact
of a heat source/sink, as well as space- and temperature-dependent viscosity and Joule
dissipation, on 3D magnetohydrodynamic radiating Eyring–Powell nanofluid streamline
flow via a stretching sheet under convective conditions. Naveen and Singh [19] investigated
Hall effects and a transverse magnetic field in the presence of a heat source and sink.

The symmetry laws serve as the foundation for theoretical and mathematical physics.
They are frequently used as selection rules, making it possible to pick out of a group of
mathematically valid equations that have the desired properties. Such symmetry selection
can occasionally produce an original equation. We investigate the symmetry character-
istics of the heat, momentum, and species equation for a convection-related problem.
The impact of the heat source/sink parameter on the laminar transient free convective
flow through a vertical cylinder filled with a permeable material was investigated by
Anurag and Singh [20] using the Laplace transform scheme. Anurag et al. [21] exam-
ined the effect of Newtonian heating/cooling in the presence of a heat source/sink on
laminar free convective flow in a vertical annular permeability zone. They discovered
that in the case of Newtonian heating, velocity and temperature are increased, whereas
in the case of Newtonian cooling, the opposite is true for both the source and sink.
Rudziva et al. [22] investigated the three types of rotational modulations in salted wa-
ter triple-diffusive convection. Pranesh et al. [23] used linear and non-linear techniques
to investigate three-component convection in a Newtonian fluid. A regular perturbation
method is used in linear theory to obtain the equations for the Rayleigh number and the
corrected Rayleigh number. Nagendramma et al. [24] use Lie-group transformation to
examine the dynamics of triple-diffusive convection. They discovered that as the Lewis
number rises, the impact of the heat and mass transfer rates declined for both fluid flow
instances. Investigation of mixed convection under the influence of MHD, velocity slip,
and heat source/sink was conducted by Zainodin et al. [25]. The importance of radiation
and Soret and Dufour’s impacts for MHD flow regarding slip, temperature, and concen-
tration were all examined by Lakshmi Devi et al. [26]. The Soret and Dufour effects, heat
generation, heat radiation, and chemical reactions in a Casson fluid were all investigated by
Kune et al. [27]. Different effects on an Oldroyd-B bio-nanofluid inside a confined channel
were observed by Kaleem et al. [28]. Khan et al. [29] investigated stability analysis with a
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heat source present. Khan et al. [30] investigated the effects of an inclined magnetic field
and double-diffusive convection in nanofluids. With an internal heat source modelled by
Darcy’s law, Rafeek et al. [31] investigated the effects of throughflow and the Coriolis force
on the beginning of double-diffusive convection. Corcione and Quintino [32] explored
the numerical analysis of Rayleigh–Benard convection in nanofluids. Using single-mode
equations, Liu and Knobloch [33] investigated convection and double-diffusive convection
in a porous medium. Manjunatha and Sumithra [34] and Manjunatha et al. [35] examined
the single- and double-diffusive convection for composite layer systems using an exact
technique. They found that an inverted parabolic profile is more stable and stabilises
the system.

According to the papers cited above, several investigations on magneto-convection in a
single, double, or porous layer in the presence of a heat source have indeed been conducted.
However, the reality of constant heat sources and sinks and uneven temperature gradients
is one that is rarely addressed. In this work, the impacts of a continuous heat source/sink
and an applied magnetic field as well as those of temperature gradients (linear, parabolic,
and inverted parabolic profiles) on triple-diffusive natural convection are researched using
a two-layer structure. The eigenvalue problem has been solved utilising an exact approach
while accounting for the heat source using the Darcy–Brinkman model. It has been found
that one can delay BBTDMM convection by raising the values for the set of physical
parameters selected for the investigation. BBTDMM convection is enhanced by higher
values of the modified internal Rayleigh numbers for the porous layer. This research will
undoubtedly be useful in a variety of applications in engineering, geophysics, climatology,
and astronomy.

2. Formulation of the Problem and Physical Model

Consider a horizontally infinite, electrically conducting, fluid-saturated, isotropic,
incompressible, sparsely packed three-component fluid layer of thickness df underlying a
porous layer of thickness dp with a vertical Z-direction-imposed magnetic field of intensity
B0 and constant heat sources Φ f and Φp. The porous layer’s lower surface is rigid, while
the fluid layer’s upper surface is free, with surface tension effects depending on temper-
ature and concentration. The interface between the fluid and saturated porous medium
is at z = 0 = zp; the temperature and concentration differences between the lower and
upper bounds are denoted ∆T&∆C, respectively. Also, T0, C0 are the initial temperature
and concentration respectively. As shown in Figure 1, a Cartesian coordinate system is
used, with the origin at the interface between the fluid layer (region I) and porous layer
(region II) and the Z-axis running vertically upwards. The following model takes the
relevant equations with an Oberbeck–Boussinesq approximation (refer to Barna and
Matyas [36], Barna et al. [37], and Shivakumara et al. [38,39]).

Fluid layer: region I

∇.
→
V f = 0 (1)

∇.
→
B = 0 (2)

ρ0

∂
→
V f

∂t
+ (
→
V f .∇)

→
V f

 = −∇Pf + µ f∇2
→
V f + γ f (

→
B .∇)

→
B (3)

∂Tf

∂t
+ (
→
V f .∇)Tf = κ f∇2Tf + Φ f (4)

∂S1

∂t
+ (
→
V f .∇)S1 = κ f 1∇2S f 1 (5)

∂S2

∂t
+ (
→
V f .∇)S2 = κ f 2∇2S f 2 (6)
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∂
→
B

∂t
= ∇×

→
V f ×

→
B + ν f∇2

→
B (7)
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The relevant equations for the porous layer: region II

∇p.
→
Vp = 0 (8)

∇p.
→
B = 0 (9)

ρ0

φ−1 ∂
→
Vp

∂t
+ φ−2(

→
Vp.∇p)

→
Vp

 = −∇pPp −
µp

K

→
Vp + µp∇2

p
→
Vp + γp(

→
B .∇p)

→
B (10)

M
∂Tp

∂t
+ (

→
Vp.∇p)Tp = κp∇2

pTp + Φp (11)

φ
∂Sp1

∂t
+ (

→
Vp.∇p)Sp1 = κp1∇2

pSp1 (12)

φ
∂Sp2

∂t
+ (

→
Vp.∇p)Sp2 = κp2∇2

pSp2 (13)

φ
∂
→
B

∂t
= ∇p ×

→
Vp ×

→
B + νp∇2

p
→
B (14)

where ‘ f ′ denotes the fluid layer (region I),
→
V f is the velocity vector, ρ0 is the fluid density,

µ f is the fluid viscosity, Pf is the total hydromagnetic pressure,
→
B is the magnetic field, Tf

is the temperature, κ f is the thermal diffusivity of the fluid, ν f is the magnetic viscosity,
γ f is the magnetic permeability, κ f 1, κ f 2 are the solute diffusivities of the fluid, S f 1, S f 2 are
salinity field1 and salinity field2, respectively, the subscript ‘p’ denotes the quantities in
region II, φ is the porosity, µp is the effective viscosity of the fluid in region II, K is the
permeability, and M is the heat capacity ratio.

The initial state is described as follows:
Region I:
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→
V f = (0, 0, 0), Pf = Pf b(z), Tf = Tf b(z), S f 1 = S f 1b(z), S f 2 = S f 2b(z),

→
B = B0(z),

−d f
∆Tf

dTf b
dz f

= χ f (z)

 (15)

Region II:

→
V p = (0, 0, 0), Pp = Ppb(zp), Tp = Tpb(zp), Sp1 = S1pb(zp), Sp2 = Sp2b(zp),

→
B = B0(zp),

−dp
∆Tp

dTpb
dzp

= χp(zp)

 (16)

The temperature and species concentration distributions Tf b(z), Tpb(zp) and S f ib(z),
Spib(zp), respectively, take the forms:

Tf b =
Φ f z(d f − z)

2κ f
+

(Tu − T0)χ f (z)
d f

+ T0 0 ≤ z ≤ d f (17)

Tpb =
−Φpzp(zp + dp)

2κp
+

(T0 − Tl)χp(zp)

dp
+ T0 dp ≤ zp ≤ 0 (18)

S f ib(z) = Si0 +
(Siu − Si0)z

d f
, i = 1, 2 0 ≤ z ≤ d f (19)

Spib(zm) = Si0 +
(Si0 − Sil)zp

dp
, i = 1, 2 dp ≤ zp ≤ 0 (20)

where the basic state is represented by the subscript ‘b′,
d f∫
0

χ f (z) dz = 1 is the temperature

profile in the fluid layer, and
dp∫
0

χp(zp) dzp = 1 is the same quantity in the porous layer;

T0 =
κ f dpTu+κpd f Tl

κdp+κpd f
+

d f dp(Φpdp+Φ f d f )

2(κ f dp+κpd f )
and Si0 =

κ f idpSiu+κpid f Sil
κ f idp+κpid f

, i = 1, 2.

In regions I and II infinite perturbations are introduced to probe the stability of the
fundamental state.

→
V f = 0 +

→
V f

′
, Pf = Pb(z) + P′f , Tf = Tf b(z) + T′f ,

S f 1 = S f 1b(z) + S′f 1, S f 2 = S f 2b(z) + S′f 2,
→
B =

→
B0(z) +

→
B
′

 (21)

→
V p = 0 +

→
V p
′
, Pp = Pb(z) + P′p, Tp = Tpb(zp) + T′p,

Sp1 = Sp1b(zp) + S′p1, Sp2 = Sp2b(zp) + S′p2,
→
B =

→
B0(zp) +

→
B
′

 (22)

where
→
V f

′
, P′f , T′f , S′f 1, S′f 2, and

→
B
′
, and

→
V p
′
, P′p, T′p, S′p1, S′p2, and

→
B
′

are the perturbed
velocity, pressure, temperature, salinity1, salinity2, and magnetic field in regions I and II, re-
spectively. The variables are nondimensionalized for regions I and II, respectively using d f ,
d2

f /κ f ,κ f /d f ,T0 − Tu,S10 − S1u,S20 − S2u, B0 and dp, d2
p/κp, κp/dp,Tl − T0,

S1l − S10, S2l − S20, B0.

3. Normal Mode Technique and Stability Analysis

The solutions for dependent variables are established in regions I and II as follows:(
w, Tf , S f 1, S f 2,

→
B
)
=

(
W f (z), Θ f (z), Σ f 1(z), Σ f 2(z),

→
B(z)

)
exp
(

ilx + imy + n f t
)

(23)
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(
w, Tp, Sp1, Sp2,

→
B
)
=

(
Wp(zp), Θp(zp), Σp1(zp), Σp2(zp),

→
B(zp)

)
exp
(
ilpx + impy + nptp

)
(24)

where l, m and lp, mp are wave numbers in the x and y direction, respectively, and n f , np
are growth rates in the fluid and porous layer respectively.

By applying Equations (15), (16) and (21)–(24), as well as Equations (1)–(14), using
normal mode analysis and assuming that the notion of stability exchange is applicable for
the current situation (see Manjunatha and Sumithra [15]):

Fluid layer: Region I 0 ≤ z ≤ 1[
(D2

f − a2
f )

2 −Q f D2
f

]
W f (z) = 0 (25)

(D2
f − a2

f )Θ f (z) = −
[
χ f (z) + R∗a(2z− 1)

]
W f (z) (26)

τf 1(D2
f − a2

f )Σ f 1(z) = −W f (z) (27)

τf 2(D2
f − a2

f )Σ f 2(z) = −W f (z) (28)

Porous layer: Region II 1 ≤ zp ≤ 0

[(D2
p − a2

p)µ̂β2 − 1](D2
p − a2

p)Wp(zp) = Qpβ2D2
pWp(zp) (29)

(D2
p − a2

p)Θp(zp) = −
[
χp(zp) + R∗ap(2zp + 1)

]
Wp(zp) (30)

τp1(D2
p − a2

p)Σp1(zp) = −Wp(zp) (31)

τp2(D2
p − a2

p)Σp2(zp) = −Wp(zp) (32)

where D f = d
dz , a f =

√
l2 + m2 is the resultant wave number, Q f is the Chandrasekhar

number,R∗a =
RI f

2(T0−Tu)
is the modified internal Rayleigh number (MRN), RI f =

Φ f d2
f

κ f

is the internal Rayleigh number, W f (z) is the vertical velocity, Θ f (z) is the temperature

distribution, τf 1 =
κ f 1
κ f

and τf 2 =
κ f 2
κ f

are the diffusivity ratios, Σ f 1(z), Σ f 2(z) are the salinity

distributions in region I, and Dp = d
dzp

, ap =
√

l2
p + m2

p, Qp, R∗ap =
RIp

2(Tl−T0)
, RIp =

Φpd2
p

κp
,

Wp(zp), Θp(zp), τp1 =
κp1
κp

, τp2 =
κp2
κp

, and Σp1(zp), Σp2(zp) are similar quantities in the
porous layer. Because the composite layers’ horizontal wave numbers must match, so that
we have ap = a f d̂, here, d̂ =

dp
d f

is the depth ratio.
Before being expanded in normal mode, all of the boundary conditions are nondimen-

sionalized (see Manjunatha and Sumithra [15]).
The velocity, thermal, and salinities boundary conditions are respectively:

W f (1) = 0, Wp(1) = 0, DpWp(1) = 0, T̂W f (0) = Wp(0), T̂d̂2(D2
f + a2

f )W f (0) = µ̂(D2
p + a2

p)Wp(0),

T̂d̂D f W f (0) = DpWp(0), T̂d̂3β2[(D3
f − 3a2

f D f )]W f (0) = [−Dp + µ̂β2(D3
p − 3a2

pDp)]Wp(0)

}
(33)

D f Θ f (1) = 0, Θ f (0) = T̂Θp(0), D f Θ f (0) = DpΘp(0), DpΘp(1) = 0 (34)

D f Σ f 1(1) = 0, Σ f 1(0) = Ŝ1Σp1(0), D f Σ f 1(0) = DpΣp1(0), DpΣp1(1) = 0 (35)

D f Σ f 2(1) = 0, Σ f 2(0) = Ŝ2Σp2(0), D f Σ f 2(0) = DpΣp2(0), DpΣp2(1) = 0 (36)

where T̂ is the thermal ratio, µ̂ =
µp
µ f

is the viscosity ratio, Ŝi =
Sil−Si0
Si0−Siu

, i = 1, 2 is the solute

diffusivity ratio, and β2 = K
d2

p
= Da is the porous parameter.
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4. Profiles and Thermal Marangoni Numbers

The thermal Marangoni numbers are obtained analytically for linear, parabolic, and
inverted parabolic profiles using an exact technique.

4.1. Velocity Profiles

By utilizing the conditions of Equation (33), the velocity profiles are derived by solving
Equations (25) and (29) as follows

W f (z) = A1[cosh(δ f z) + a1sinh(δ f z) + a2 cosh(ζ f z) + a3sinh(ζ f z)] (37)

Wp(zp) = A1[a4 cosh(ηpzp) + a5sinh(ηpzp) + a6 cosh(ψpzp) + a7(sinhψpzp)] (38)

where

δ f =

√
Q f +

√
Q f +4a2

f
2 , ζ f =

√
Q f−

√
Q f +4a2

f
2 ,

η2
p =

r1+
√

r2
1−4r2

2 , ψ2
p =

r1−
√

r2
1−4r2

2 ,r1 =
(2µ̂β2a2

p+1+Qp β2)

µ̂β2 , r2 =
(a2

p+a4
p µ̂β2)

µ̂β2 ,

a1 = 1
δ14

(a6δ15 + a7δ16 + δ17), a2 = a6δ5 + δ6,a3 = 1
δ9
(a1δ10 + a7δ11),

a4 = δ7 + a6δ8, a5 = a1δ12 + a7δ13,a6 = δ23δ25−δ26δ22
δ25δ21−δ24δ22

,
a7 = δ23δ24−δ26δ21

δ24δ22−δ25δ21
, δ1 = T̂β2d̂3(δ3

f − 3a2
f δ f ),δ2 = T̂β2d̂3(ζ3

f − 3a2
f ζ f ),

δ3 = µ̂β2(η3
p − 3a2

pηp)− ηp, δ4 = µ̂β2(ψ3
p − 3a2

pψp)− ψp,δ5 =
µ̂[(ψ2

p+a2
p)−T̂(η2

p+a2
p)]

T̂d̂2(ζ2
f +a2

f )−µ̂T̂(η2
p+a2

p)
,

δ6 =
µ̂(η2

p+a2
p)−d̂2(δ2

f +a2
f )

d̂2(ζ2
f +a2

f )−µ̂(η2
p+a2

p)
,δ7 = T̂(1 + δ6), δ8 = T̂δ5 − 1,δ9 =

T̂d̂ζ f δ3−δ2ηp
ηp

,δ10 =
T̂d̂δ f δ3−δ1ηp

ηp
,

δ11 =
δ4ηp−ψpδ3

ηp
, δ12 = 1

ηpδ9

(
δ9T̂d̂δ f + ζ f δ10

)
,

δ13 = 1
ηpδ9

(
T̂d̂ζ f δ11 − ψpδ9

)
,δ14 = sinhδ f +

δ10sinhζ f
δ9

, δ15 = δ5 cosh ζ f ,

δ16 =
δ11sinhζ f

δ9
,δ17 = δ6 cosh ζ f + cosh δ f , δ18 = δ12δ15

δ14
, δ19 = δ12δ16

δ14
+ δ13, δ20 = δ12δ17

δ14
,

δ21 = δ8 cosh ηp − δ18sinhηp + cosh ψp,δ22 = −(δ19sinhηp + sinhψp),
δ23 = sinhηp(δ20 − δ7cothηp),δ24 = −ηpsinhηp(δ8 + δ18cothηp)− ψpsinhψp,

δ25 = −ηpδ19 cosh ηp + ψp cosh ψp,δ26 = δ20ηp cosh ηp + δ7ηpsinhηp

4.2. Salinity Profiles

We solve Equations (27) and (28) for fluid layer, (31) and (32) for porous layer salinity
distributions using the salinity/concentration boundary conditions (35) and (36), as follows:

Σ f 1(z) = A1[c13 cosh a f z + c14sinha f z + f1(z)] (39)

Σp1(zp) = A1[c15 cosh apzp + c16sinhapzp + fp1(zp)] (40)

Σ f 2(z) = A1[c17 cosh a f z + c18sinha f z + f2(z)] (41)

Σp2(zp) = A1[c19 cosh apzp + c20sinhapzp + fp2(zp)] (42)
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where

f1(z) = −1
τf 1

[
cosh δ f z(1+a1tanhδ f z)

δ2
f−a2

f
+

cosh ζ f z(a2+a3tanhζ f z)
ζ2

f−a2
f

]
fp1(zp) =

−1
τp1

[
cosh ηpzp(a4+a5tanhηpzp)

η2
p−a2

p
+

cosh ψpzp(a6+a7tanhψpzp)

ψ2
p−a2

p

]
f2(z) = −1

τf 2

[
sinhδ f z(cothδ f z+a1)

δ2
f−a2

f
+

sinhζ f z(a2cothζ f z+a3)

ζ2
f−a2

f

]
fp2(zp) =

−1
τp2

[
sinhηpzp(a4cothηpzp+a5)

η2
p−a2

p
+

sinhψpzp(a6cothψpzp+a7)

ψ2
p−a2

p

]
c13 = Ŝ1c15 + R100 + R101, c14 = 1

a f
(c16ap + R102 + R103),

c15 =
R108ap cosh ap−R107R105

apsinhap(R107+R106cothap)
,c16 =

R105R106+apsinhapR108
apsinhap(R107+R106apcothap)

c17 = Ŝ2c19 + R109 + R110, c18 = 1
a f
(c20ap + R111 + R112),

c19 =
R117ap cosh ap−R116R114

apsinhapR116+R115ap cosh ap
, c20 =

R105R115+apsinhapR117
apsinhap(R116+R115cothap)

,

R100 = −Ŝ1
τp1

[
a4

η2
p−a2

p
+ a6

ψ2
p−a2

p

]
, R101 = 1

τf 1

[
1

δ2
f−a2

f
+ a2

ζ2
f−a2

f

]
,

R102 = −1
τp1

[
ηpa5

η2
p−a2

p
+

ψpa7

ψ2
p−a2

p

]
, R103 = 1

τf 1

[
a1δ f

δ2
f−a2

f
+

a3ζ f

ζ2
f−a2

f

]
,

R104 = 1
τf 1

[
sinhδ f (1+a1cothδ f )δ f

δ2
f−a2

f
+

sinhζ f (a2+a3cothζ f )ζ f

ζ2
f−a2

f

]
,

R105 = 1
τp1

[
ηpsinhηp(a5cothηp−a4)

η2
p−a2

p
+

ψpsinhψp(a7cothψp−a6)

ψ2
p−a2

p

]
,

R106 = Ŝ1a f sinha f , R107 = ap cosh a f ,
R108 = R104 − (R100 + R101)a f sinha f − (R102 + R103) cosh a f .

R109 = −Ŝ2
τp2

[
a4

η2
p−a2

p
+ a6

ψ2
p−a2

p

]
, R110 = 1

τf 2

[
1

δ2
f−a2

f
+ a2

ζ2
f−a2

f

]
,

R111 = −1
τp2

[
ηpa5

η2
p−a2

p
+

ψpa7

ψ2
p−a2

p

]
, R112 = 1

τf 2

[
a1δ f

δ2
f−a2

f
+

a3ζ f

ζ2
f−a2

f

]
,

R113 = 1
τf 2

[
(sinhδ f +a1 cosh δ f )δ f

δ2
f−a2

f
+

(a2sinhζ f +a3 cosh ζ f )ζ f

ζ2
f−a2

f

]
,

R114 = 1
τp2

[
ηp(−a4sinhηp+a5 cosh ηp)

η2
p−a2

p
+

ψp(−a6sinhψp+a7 cosh ψp)

ψ2
p−a2

p

]
,

R115 = Ŝ2a f sinha f , R116 = ap cosh a f ,
R117 = R113 − (R109 + R110)a f sinha f − (R111 + R112) cosh a f .

4.3. Temperature Profiles

Introducing the Table 1 profiles (see Shivakumara et al. [38–40] and Sparrow et al. [41])
into Equations (26) and (30), the TMNs for the linear, parabolic, and inverted parabolic
profiles are obtained using following boundary condition:

a2
f Θ f (1)MT + D2

f W f (1) + a2
f

(
MS1Σ f 1(1) + MS2Σ f 2(1)

)
= 0 (43)

where MT = − ∂σt
∂Tf

∆Td f
µ f κ f

and MSi = − ∂σt
∂S f i

(Si0−Siu)d f
µ f κ f

, i = 1, 2 are the thermal and solute
Marangoni numbers, respectively.

Table 1. The profiles considered for the present study.

Profiles Region I Region II

Linear profile χ f (z) = 1 χp(zp) = 1
Parabolic profile χ f (z) = 2z χp(zp) = 2zp

Inverted parabolic profile χ f (z) = 2(1− z) χp(zp) = 2(1− zp)

Using an exact technique, the analytical forms of the TMNs are obtained for the linear,
parabolic, and inverted parabolic models in regions I and II.
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4.3.1. Linear Model

Introducing the linear profile into Equations (26) and (30), the heat equation takes the
following form:

Θ f (z) = A1[c1 cosh a f z + c2sinha f z + g1(z)] (44)

Θp(zp) = A1[c3 cosh apzp + c4sinhapzp + gp1(zp)] (45)

where

g1(z) = A1[δ27 − δ28 + δ29 − δ30], gp1(zp) = A1[δ31 − δ32 + δ33 − δ34]

δ27 =
(E2z+E1)sinhδ f z

(δ2
f−a2

f )
(cothδ f z + a1), δ28 =

2δ f E2sinhδ f z

(δ2
f−a2

f )
2 (a1cothδ f z + 1),

δ29 =
(E2z+E1)sinhζ f z

(ζ2
f−a2

f )
(a2cothζ f z + a3), δ30 =

2ζ f E2sinhζ f z

(ζ2
f−a2

f )
2 (a3cothζ f z + a2),

δ31 =
(E2pzp+E1p)sinhηpzp

(η2
p−a2

p)
(a4cothηpzp + a5), δ32 =

2ηpE2psinhηpzp

(η2
p−a2

p)
2 (a5cothηpzp + a4),

δ33 =
(E2pzp+E1p)sinhψpzp

(ψ2
p−a2

p)
(a6cothψpzp + a7), δ34 =

2ψpE2psinhψpzp

(ψ2
p−a2

p)
2 (a7cothψpzp + a6),

c1 = c3T̂ + R2 − R3, c2 = 1
a f
(c4ap + R4 − R5),c3 = R8R10−R11R6

−R7R10−R9R6
, c4 = R8R9+R11R7

R6R9+R10R7
,

E1 = R∗a − 1, E2 = −2R∗a , E1p = −(R∗ap + 1), E2p = −2R∗ap.

The TMN for the linear model from Equation (43) takes the form:

MT1 =
−
[
δ2

f (cosh δ f + a1sinhδ f ) + ζ2
f (a2 cosh ζ f + a3sinhζ f )

]
− a2

f

(
MS1Σ f 1(1) + MS2Σ f 2(1)

)
a2

f Θ f (1)
(46)

where

Θ f (1) = A1[c1 cosh a f + c2sinha f + g1(1)], R1 = −[δ35 + δ36 + δ37 + δ38],

δ35 =
δ f (E2+E1)

(δ2
f−a2

f )
(a1 cosh δ f + sinhδ f ), δ36 = [ E2

(δ2
f−a2

f )
−

2δ2
f E2

(δ2
f−a2

f )
2 ](cosh δ f + a1sinhδ f ),

δ37 =
ζ f (E2+E1)

(ζ2
f−a2

f )
(a3 cosh ζ f + a2sinhζ f ),

δ38 = [ E2
(ζ2

f−a2
f )
−

2ζ2
f E2

(ζ2
f−a2

f )
2 ](a2 cosh ζ f + a3sinhζ f ),

R2 = T̂
[

E1pa4

(η2
p−a2

p)
− 2E2pηpa5

(η2
p−a2

p)
2 +

E1pa6

(ψ2
p−a2

p)
− 2E2pψpa7

(ψ2
p−a2

p)
2

]
,

R3 = E1
(δ2−a2

f )
− 2δ f a1E2

(δ2−a2
f )

2 +
a2E1

(ζ2
f−a2

f )
− 2ζ f a3E2

(ζ2
f−a2

f )
2 ,

R4 =
ηpa5E1p(η

2
p−a2

p)−E2p(a2
p+η2

p)a4

(η2
p−a2

p)
2 +

ψpa7E1p(ψ
2
p−a2

p)−E2p(ψ
2
p+a2

p)a6

(ψ2
p−a2

p)
2 ,

R5 =
E1δ f a1−E2(δ

2
f +a2

f )

(δ2
f−a2

f )
2 +

E1ζ f a3−E2a2(ζ
2
f +a2

f )

(ζ2
f−a2

f )
2 ,

R6 = ap cosh ap, R7 = apsinhap,R8 = −[δ39 + δ40 + δ41 + δ42],

δ39 =
E2p(η

2
p+a2

p)sinhηp

(η2
p−a2

p)
2 (a5 − a4cothηp)

δ40 =
(E1p−E2p)ηpsinhηp

(η2
p−a2

p)
(a5cothηp − a4),

δ40 =
E2p(ψ

2
p+a2

p)a7sinhψp

(ψ2
p−a2

p)
2 (a7 − a6cothψp),

δ41 =
(E1p−E2p)ψpsinhψp

(ψ2
p−a2

p)
(a7cothψp − a6),

R9 = T̂a f sinha f , R10 = ap cosh a f ,

R11 = R1 − sinha f

(
(R2 − R3)a f − (R4 − R5)cotha f

)
,
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4.3.2. Parabolic Model

Introducing the parabolic profile into Equations (26) and (30), the heat equation takes
the form:

Θ f (z) = A1[c5 cosh a f z + c6sinha f z + g2(z)] (47)

Θp(zp) = A1[c7 cosh apzp + c8sinhapzp + gp2(zp)] (48)

where

g2(z) = A1[δ43 − δ44 + δ45 − δ46], gp2(zp) = A1[δ47 − δ48 + δ49 − δ50]
E3 = R∗a , E4 = −2(R∗a + 1), E3p = −R∗ap, E4p = −2(R∗ap + 1),

δ43 =
(E4z+E3)sinhδ f z

(δ2
f−a2

f )
(cothδ f z + a1), δ44 =

2δ f E4sinhδ f z

(δ2
f−a2

f )
2 (a1cothδ f z + 1),

δ45 =
(E4z+E3)sinhζ f z

(ζ2
f−a2

f )
(a2cothζ f z + a3), δ46 =

2ζ f E4sinhζ f z

(ζ2
f−a2

f )
2 (a3cothζ f z + a2),

δ47 =
(E4pzp+E3p)sinhηpzp

(η2
p−a2

p)
(a4cothηpzp + a5),

δ48 =
2ηpE4psinhηpzp

(η2
p−a2

p)
2 (a5cothηpzp + a4),

δ49 =
(E4pzp+E3p)

(ψ2
p−a2

p)
(a6 cosh ψpzp + a7sinhψpzp),

δ50 =
2ψpE4p

(ψ2
p−a2

p)
2 (a7 cosh ψpzp + a6sinhψpzp),

c5 = c7T̂ + R13 − R14, c6 = 1
a f
(c8ap + R15 − R16),

c7 = R19R20−R22R17
−R18R20−R21R17

, c8 = R19R21+R22R18
R17R21+R20R18

.

The TMN for the parabolic model from Equation (43) takes the form:

MT2 =
−[δ2

f (cosh δ f + a1sinhδ f ) + ζ2
f (a2 cosh ζ f + a3sinhζ f )]− a2

f

(
MS1Σ f 1(1) + MS2Σ f 2(1)

)
a2

f Θ f (1)
(49)

where

Θ f (1) = A1[c5 cosh a f + c6sinha f + g2(1)]

R12 = −[δ51 + δ52 + δ53 + δ54],δ51 =
δ f (E4+E3)

(δ2
f−a2

f )
(a1 cosh δ f + sinhδ f ),

δ52 = [ E4
(δ2

f−a2
f )
−

2δ2
f E4

(δ2
f−a2

f )
2 ](cosh δ f + a1sinhδ f ),δ53 =

ζ f (E4+E3)

(ζ2
f−a2

f )
(a3 cosh ζ f + a2sinhζ f ),

δ54 = [ E4
(ζ2

f−a2
f )
−

2ζ2
f E4

(ζ2
f−a2

f )
2 ](a2 cosh ζ f + a3sinhζ f ),

R13 = T̂
[

E3pa4(η
2
p−a2

p)−2E4pηpa5

(η2
p−a2

p)
2 +

E3pa6(ψ
2
p−a2

p)−2E4pψpa7

(ψ2
p−a2

p)
2

]
,

R14 = E3
(δ2

f−a2
f )
− 2δ f a1E4

(δ2
f−a2

f )
2 +

a2E3
(ζ2

f−a2
f )
− 2ζ f a3E4

(ζ2
f−a2

f )
2 ,

R15 =
ηpa5E3p(η

2
p−a2

p)−E4p(η
2
p+a2

p)a4

(η2
p−a2

p)
2 +

ψpa7E3p(ψ
2
p−a2

p)−E4pa6(ψ
2
p+a2

p)

(ψ2
p−a2

p)
2 ,

R16 =
E3δ f a1−E4(δ

2
f−a2

f )

(δ2
f−a2

f )
2 +

E3ζ f a3−E4a2(ζ
2
f +a2

f )

(ζ2
f−a2

f )
2 ,R17 = R6, R18 = R7.R19 = −[δ55 + δ56 + δ57 + δ58],

δ55 =
E4p(η

2
p+a2

p)sinhηp

(η2
p−a2

p)
2 (a5 − a4cothηp), δ56 =

ηp(E3p−E4p)sinhηp

(η2
p−a2

p)
(a5cothηp − a4)

, δ57 =
sinhψpE4p(ψ

2
p+a2

p)

(ψ2
p−a2

p)
2 (a7 − a6cothψp), δ58 =

sinhψp(E3p−E4p)ψp

(ψ2
p−a2

p)
(a7cothψp − a6),

R20 = T̂a f sinha f , R21 = ap cosh a f ,R22 = R12 − a f (R13 − R14)sinha f − (R15 − R16) cosh a f .
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4.3.3. Inverted Parabolic Model

Introducing the inverted parabolic profile into Equations (26) and (30), the heat equa-
tion takes the form:

Θ f (z) = A1[c9 cosh a f z + c10sinha f z + g3(z)] (50)

Θp(zp) = A1[c11 cosh apzp + c12sinhapzp + gp3(zp)] (51)

where

g3(z) = A1[δ59 − δ60 + δ61 − δ62], gp3(zp) = A1[δ63 − δ64 + δ65 − δ66]

δ59 = (E6z+E5)

(δ2
f−a2

f )
(cosh δ f z + a1sinhδ f z),

δ60 =
2δ f E6

(δ2
f−a2

f )
2 (a1 cosh δ f z + sinhδ f z),

δ61 = (E6z+E5)

(ζ2
f−a2

f )
(a2 cosh ζ f z + a3sinhζ f z),

δ62 =
2ζ f E6

(ζ2
f−a2

f )
2 (a3 cosh ζ f z + a2sinhζ f z),

δ63 =
(E6pzp+E5p)sinhηpzp

(η2
p−a2

p)
(a4cothηpzp + a5),

δ64 =
2ηpE6psinhηpzp

(η2
p−a2

p)
2 (a5cothηpzp + a4),

δ65 =
(E6pzp+E5p)sinhψpzp

(ψ2
p−a2

p)
(a6cothψpzp + a7),

δ66 =
2ψpE6psinhψpzp

(ψ2
p−a2

p)
2 (a7cothψpzp + a6),

c10 =
c12ap

a f
+ R26

a f
− R27

a f
, c11 = R33R28−R30R31

R29R31+R32R28
, c12 = R30R32+R33R29

R28R32+R31R29
,

E5 = −(2− R∗a), E6 = 2(R∗a − 1), E5p = −(2 + R∗ap), E6p = −2(R∗ap − 1).

The TMN for the inverted parabolic model from Equation (43) takes the form:

MT3 =
−[δ2

f (cosh δ f + a1sinhδ f ) + ζ2
f (a2 cosh ζ f + a3sinhζ f )]− a2

f

(
MS1Σ f 1(1) + MS2Σ f 2(1)

)
a2

f Θ f (1)
(52)
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where
Θ f (1) = A1[c9 cosh a f + c10sinha f + g3(1)]

Σ f 1(1) = A1[c13 cosh a f + c14sinha f + f1(1)],
Σ f 2(1) = A1[c17 cosh a f + c18sinha f + f2(1)],

R23 = −[δ67 + δ68 + δ69 + δ70],δ67 =
δ f (E6+E5)

(δ2
f−a2

f )
(a1 cosh δ f + sinhδ f ),

δ68 = [ E6
(δ2

f−a2
f )
−

2δ2
f E6

(δ2
f−a2

f )
2 ](cosh δ f + a1sinhδ f ),

δ69 =
ζ f (E6+E5)

(ζ2
f−a2

f )
(a3 cosh ζ f + a2sinhζ f ),

δ70 = [ E6
(ζ2

f−a2
f )
−

2ζ2
f E6

(ζ2
f−a2

f )
2 ](a2 cosh ζ f + a3sinhζ f ),

R24 = T̂
[

E5pa4

(η2
p−a2

p)
− 2E6pηpa5

(η2
p−a2

p)
2 +

E5pa6

(ψ2
p−a2

p)
− 2E6pψpa7

(ψ2
p−a2

p)
2

]
,

R25 = E5
(δ2

f−a2
f )
− 2δ f a1E6

(δ2
f−a2

f )
2 +

a2E5
(ζ2

f−a2
f )
− 2ζ f a3E6

(ζ2
f−a2

f )
2 ,

R26 = [
E6p

(η2
p−a2

p)
− 2η2

pE6p

(η2
p−a2

p)
2 ]a4 +

ηpa5E5p

(η2
p−a2

p)
+ R260

R260 = [
E6p

(ψ2
p−a2

p)
− 2ψ2

pE6p

(ψ2
p−a2

p)
2 ]a6 +

ψpa7E5p

(ψ2
p−a2

p)

R27 =
E5δ f a1+E6

(δ2
f−a2

f )
−

2E6δ2
f

(δ2
f−a2

f )
2 +

E5ζ f a3+E6a2

(ζ2
f−a2

f )
−

2a2E6ζ2
f

(ζ2
f−a2

f )
2 ,

R28 = R6, R29 = R7,R30 = −[δ71 + δ72 + δ73 + δ74],

δ71 =
E6p(η

2
p+a2

p)sinhηp

(η2
p−a2

p)
2 (a5 − a4cothηp),

δ72 =
ηp(E5p−E6p)sinhηp

(η2
p−a2

p)
(a5cothηp − a4),

δ73 =
E6p(ψ

2
p+a2

p)sinhψp

(ψ2
p−a2

p)
2 (a7 − a6cothψp),

δ74 =
ψp(E5p−E6p)sinhψp

(ψ2
p−a2

p)
(a7cothψp − a6),

∆31 = T̂a f sinha f , ∆32 = ap cosh a f ,
R33 = R23 − a f (R24 − R25)sinha f − (R26 − R27) cosh a f .

(53)

5. Results and Discussion

The three thermal Marangoni numbers (TMNs)—for the linear TP MT1, for the
parabolic TP MT2, and for the inverted parabolic TP MT3—are solved for BBTDMM con-
vection in the occurrence of constant heat sources/sinks in a closed-form and uniform
vertical magnetic field. These three TMNs MT are drawn against the thermal ratio T̂ with
the logarithm of TMNs along the y-axis. The effects of permeability (in terms of Darcy
number), effective viscosity ratio (in terms of viscosity ratio), heat source/sink (in terms
of modified internal Rayleigh numbers), and second and third diffusing components (in
terms of solute Marangoni numbers) on the three TMNs are shown in the following figures,
which correspond to all three TPs.

Figure 2a for linear profile, Figure 2b for parabolic profile, and Figure 2c for inverted
parabolic profile shows the effect of permeability on TMNs for all three TPs, expressed
as a Darcy number for Da = 0.01, 0.1, 1. With the increase in thermal ratio, the TMNs
increase by a certain value, demonstrating that the system is stable, even though the fluid
has a larger window. This could be due to a combination of salinity and magnetic field
effects. As a result, increasing permeability delays BBTDMM convection for all TPs; this
was not predicted. The Darcy number is also effective for bigger values of thermal ratios, as
evidenced by the diverging curves. The effect of the magnetic field on the TMNs is shown
in Figure 3a for linear, Figure 3b for parabolic, and Figure 3c for inverted parabolic profiles,
for all three TPs in terms of the Chandrasekhar number Q f . The TMNs rise as the value
of this parameter grows; therefore, by increasing the values of this parameter, BBTDMM
convection can be postponed, which is materially sensible, and bigger effective viscosity
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values generate flow resistance, making the system stable. The effect of the viscosity ratio
µ̂ on the TMNs can be seen in Figure 4a for linear profile, Figure 4b for parabolic profile,
and Figure 4c for inverted parabolic profile. The TMNs rise as the value of this parameter
grows; by increasing the values of this parameter, BBTDMM convection can be postponed,
which is materially sensible, and larger effective viscosity values produce flow resistance,
resulting in a stable system. As demonstrated in Figure 3a for linear, Figure 3b for parabolic,
and Figure 3c for inverted parabolic profiles, and Figure 4a for linear profile, Figure 4b for
parabolic profile, and Figure 4c for inverted parabolic profile, these parameters are also
effective for greater values of the thermal ratios for parabolic and inverted parabolic TPs.
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Figure 2. (a) for linear profile, (b) for parabolic profile, and (c) for inverted parabolic profile. Effects
of Darcy number Da on TMN when a f = 1, d̂ = 1, µ̂ = 1.5, Ŝ1 = Ŝ2 = 1,τf 1 = τf 2 = 0.25
τp1 = τp2 = 0.25,Q f = 10, MS1 = 10, MS2 = 15, R∗a = R∗ap = 1.

For all the three TPs, the influence of the modified internal Rayleigh number R∗a on
the TMNs is shown in Figure 5a for linear profile, Figure 5b for parabolic profile, and
Figure 5c for inverted parabolic profile. The TMNs increase as the value of this parameter
grows, demonstrating that raising the value of heat from sink to source can delay BBTDMM
convection. As a result of the heat absorption, the system becomes stable, which is extremely
impractical. This could be due to the presence of second and third diffusing components.
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For the parabolic and inverted parabolic TPs, these parameters have a bigger influence at
higher thermal ratios, but the linear TP shows the opposite effect. The effect of the modified
internal Rayleigh number R∗ap for region II of the TMN is seen in Figure 6a for linear profile,
Figure 6b for parabolic profile, and Figure 6c for inverted parabolic profile for all three TPs.
As the value of this parameter increases from sink to source, the TMN decreases, allowing
BBTDMM convection to be pre-scheduled by lowering the values of this parameter, which
is materially perceptible, and the heat absorption in the porous layer stabilizes the system.
As demonstrated in the figure, this parameter is likewise effective for a moderate value of
the thermal ratios for all three TPs.
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of Chandrasekhar number Q f effects in region I on TMN when a f = 1, d̂ = 1, Da = 1.0,µ̂ = 1.5,
Ŝ1 = Ŝ2 = 1,τf 1 = τf 2 = τp1 = τp2 = 0.25, MS1 = 10, MS2 = 15,R∗a = R∗ap = 1.

The impact of solute1 and solute2 Marangoni numbers MS1 and MS2 on the TMNs is
compared for all the three TPs in Figure 7a for linear profile, Figure 7b for parabolic
profile, and Figure 7c for inverted parabolic profile and Figure 8a for linear profile,
Figure 8b for parabolic profile, and Figure 8c for inverted parabolic profile, respectively, for
MS1 = 10, 25, 50 and MS2 = 10, 25, 50. The TMNs increase as the values of these parameters
increase, and hence elevating the values of these solute Marangoni numbers for all TPs can
delay BBTDMM convection in the double layer. In other words, in the presence of all TPs,
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the existence of second and third diffusing components delays BBTDMM convection in
two layers. These factors have a significant impact when the thermal ratio is higher, as seen
by the diverging curves for all parabolic and inverted parabolic TPs.
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6. Conclusions

By taking into account the heat source using the Darcy–Brinkman model, the triple-
diffusive magneto-convection problem with diffusing component heat and solute has been
examined for three temperature profiles using an exact technique. Version 12.0 of the
MATHEMATICA software was used to perform numerical calculations. The investigation’s
findings are as follows, based on the results:

â The inverted parabolic TP on BBTDMM convection in a double layer is the most stable
of all the three TPs, the linear TP is the most unstable one, and the parabolic TP is the
moderate one.

â The study’s pertinent physical parameters hold true for higher values of thermal ratios.
â One can delay BBTDMM convection in two layers by raising the values of the modified

internal Rayleigh number for the fluid layer and the solute Marangoni numbers, Darcy
number, and viscosity ratio for the group of physical factors used in the study.

â An applied magnetic field stabilizes the system by postponing BBTDMM convection.
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â The modified internal Rayleigh number for the porous region destabilizes the sys-
tem. Higher values of the modified internal Rayleigh number for region II augment
BBTDMM convection.

1. The destabilizing effects under conditions of normal gravity are more effective in the
production of permanent magnetic materials. It is possible to create a high-quality
permanent magnetic material by increasing the modified internal Rayleigh number
for the porous medium.

â The findings are in good agreement with earlier research articles.
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