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Abstract: For the first time, we attempted to define two new sub-classes of bi-univalent functions in
the open unit disc of the complex order involving Mathieu-type series, associated with generalized
telephone numbers. The initial coefficients of functions in these classes were obtained. Moreover, we
also determined the Fekete–Szegö inequalities for function in these and several related corollaries.
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1. Introduction and Definitions

Geometric Function Theory has been characterized by the use of a wide range of special
functions, like q calculus and special polynomials, such as the following: the Fibonacci
polynomials, the Faber polynomials, the Horadam polynomials, the Lucas polynomials,
the Pell polynomials, the Pell–Lucas polynomials and the Chebyshev polynomials of the
second kind. These functions are potentially applied to a variety of mathematical, physical,
statistical, and engineering disciplines. This article briefly describes telephone numbers and
the Emilie Leonard Mathieu series that were used to define new sub-classes of bi-univalent
functions.

1.1. Analytic Functions

LetH represent the class of holomorphic (analytic or regular ) functions in the open
unit disc D = {z : |z| < 1} of the form:

f (z) = z +
∞

∑
n=2

anzn (1)

and normalized by the conditions f (0) = 0 and f ′(0) = 1.. Further, let S denote all
functions in whichH might be univalent in D. Some of the great and properly-investigated
sub-classes of the univalent function class S functions are the class S∗(ν) of star-like
functions, of order ν in D, and the C(ν) class of convex features, of order ν (0 ≤ ν < 1)
in D.

Let f1, f2 ∈ H and f1 be subordinate to f2,, written as f1 ≺ f2,, provided that in D
there is a function v ∈ H with v(0) = 0 and |v(z)| < 1, sustaining f1(z) = f2(v(z)).
The convolution or Hadamard product of two functions f , h ∈ H is denoted by f ∗ h,
given by:

( f ∗ h)(z) = z +
∞

∑
n=2

anbnzn, (2)
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where f (z) is given by (1) and h(z) = z +
∞
∑

n=2
bnzn.

Based on the Koebe’s one-quarter theorem [1], every f ∈ S has the compositional
inverse f−1 satisfying:

f−1( f (z)) = z, (z ∈ D) and f ( f−1(w)) = w, (w ∈ Dρ),

where ρ ≥ 1
4 is the radius of the image f (D).It is well-known that f−1(w) has the normal-

ized Taylor–Maclaurin’s series:

f−1(w) = g(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (3)

A function f ∈ H given by (1) is said to be bi-univalent in D if both f and f−1 are
univalent in D, and such a class is signified by Σ. For example, we can observe that Σ is not
empty. For instance,

f1(z) =
z

1− z
, f2(z) =

1
2

log
1 + z
1− z

and f3(z) = − log(1− z)

and, in turn, they have inverses,

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

e2w − 1
e2w + 1

and f−1
3 (w) =

ew − 1
ew ,

are elements of Σ. However, z− z2

2 ; z
1−z2 and the Koebe function are not a member of Σ.

Formerly, Brannan and Taha [2] proposed certain sub-classes of Σ, explicitly bi-starlike
functions of order ν(0 < ν ≤ 1), symbolized by S∗Σ(ν), and bi-convex functions of order
ν, represented by CΣ(ν). For f ∈ S∗Σ(ν) and f ∈ CΣ(ν), non-sharp estimates on the first
two Taylor–Maclaurin coefficients, |a2| and |a3|, were established in [2,3]. However, the
coefficient problem for each of the succeeding Taylor–Maclaurin coefficients,

|an| (n ∈ N \ {1, 2}; N := {1, 2, 3, · · · })

is still an open problem (see [2–6]). Lately, Srivastava et al. [7] fundamentally revived the
study of Σ. Followed by such works as [7], several authors [7–21] have familiarized and
inspected several interesting sub-classes of Σ, and obtained non-sharp bounds of |a2| and
|a3| for the initial coefficients . The study of functions in Σ, and associated specific special
polynomials, is a current research interest.

1.2. Generalized Telephone Numbers (GTNs )

The usual involution numbers, also known as telephone numbers, are assumed by the
recurrence relation

V(n) = V(n− 1) + (n− 1)V(n− 2) f or n ≥ 2

with initial conditions
V(0) = V(1) = 1.

In 1800, Heinrich August Rothe noted that V(n) is the number of involutions (self-
inverse permutations) in a symmetric group (see, for example, [22,23]). The relation
between involution numbers and symmetric groups were observed for the first time in the
year 1800. Since involutions correspond to standard Young tableaux, it is clear that the nth
involution number is also the number of Young tableaux on the set 1, 2, ..., n (for details,
see [24]). According to John Riordan, the above recurrence relation, in fact, produces the
number of connection patterns in a telephone system with n subscribers (see [25]). In
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2017, Wlochand Wolowiec-Musial [26] introduced generalized telephone numbers V(τ, n)
defined for integers n ≥ 0 and τ ≥ 1 by the following recursion,

V(τ, n) = τV(τ, n− 1) + (n− 1)V(τ, n− 2)

with initial conditions
V(τ, 0) = 1,V(τ, 1) = τ,

and studied some properties. In 2019, Bednarz and Wolowiec-Musial [27] introduced a
new GTN by

Vτ(n) = Vτ(n− 1) + τ(n− 1)Vτ(n− 2)

with initial conditions
Vτ(0) = Vτ(1) = 1

for integers n ≥ 2 and τ ≥ 1. They gave the generating function, direct formula and
matrix generators for these numbers. Moreover,they obtained interpretations and proved
some properties of these numbers connected with congruences. Lately, they derived the
exponential-generating function and the summation formula for GTNs Vτ(n) as follows:

ex+τ x2
2 =

∞

∑
n=0
Vτ(n)

xn

n!
(τ ≥ 1)

As we can observe, if τ = 1, then we obtain classical telephone numbers V(n). Clearly,
Vτ(n) is for some values of n as:

1. Vτ(0) = Vτ = 1,
2. Vτ(2) = 1 + τ,
3. Vτ(3) = 1 + 3τ

4. Vτ(4) = 1 + 6τ + 3τ2

5. Vτ(5) = 1 + 10τ + 15τ2

6. Vτ(6) = 1 + 15τ + 45τ2 + 15τ3.

Lately Deniz [28], (also see [29]) consider the function

Ξ(z) := e(z+τ z2
2 )

= 1 + z +
1 + τ

2
z2 +

1 + 3τ

6
z3 +

3τ2 + 6τ + 1
24

z4 +
1 + 10τ + 15τ2

120
z5 + · · · , (4)

for z ∈ D and studied f ∈ H.

1.3. Mathieu-Series

The subsequent collection is named after Leonard Mathieu (1835–1890) who investi-
gated it in his monograph [30] on the elasticity of solid bodies

X (`) =
∞

∑
n=1

2n

(n2 + `2)
2 (` > 0). (5)

A Closed integral illustration of the series X (`) is given by (see [31])

X (`) =
1
`

∫ ∞

0

t sin(`t)
et − 1

dt.

The Mathieu-type series is defined by (see [31])

X (`; z) =
∞

∑
n=1

2n

(n2 + `2)
2 zn (` > 0, |z| < 1).
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Initially it was further defined for the function of real variables. However, for complex
variables it was defined by Bansal et al. [32]. Since X (`; z) /∈ H, using the following
normalization, we have:

X (`; z) =

(
`2 + 1

)2

2

∞

∑
n=1

2n

(n2 + `2)
2 zn

= z +
∞

∑
n=2

n
(
`2 + 1

)2

(n2 + `2)
2 zn, (6)

= z +
∞

∑
n=2
Yn(`)zn, (7)

where

Yn(`) =
n
(
`2 + 1

)2

(n2 + `2)
2 . (8)

for some related work we refer the reader to see [32,33].
We now define a new linear operatorW` : H → H given by:

W` f (z) := X (`; z) ∗ f (z), z ∈ ∆,

where the symbol “∗” stands for the Hadamard product. Thus, if f ∈ H has the form (1),
then:

W` f (z) = z +
∞

∑
n=2
Yn(`)anzn, z ∈ ∆. (9)

Stimulated by the work of Silverman and Silvia [34] (also [35]), Srivastava et al. [36],
the earlier work in [37,38], and the latest work of Murugusundaramoorthy and Vijaya [29],
we introduce, in the present paper, new sub-classes of Σ, of complex order ϑ ∈ C\{0},
regarding the linear operatorW`. We further discover estimates on the coefficients |a2|
and |a3| for functions in the new sub-classes of the function class Σ. In addition, numer-
ous associated classes are considered and their relationship to earlier recognized results
are explained.

Definition 1. A function f ∈ Σ given by (1) is said to be in the class S`,τ
Σ,Ξ(ϑ, ϕ) if it satisfies

the following:

1 +
1
ϑ

(
z(W` f (z))′

W` f (z)
+

(
1 + eiϕ

2

)
z2(W` f (z))′′

W` f (z)
− 1
)
≺ Ξ(z) (10)

and

1 +
1
ϑ

(
w(W`g(w))′

W`g(w)
+

(
1 + eiϕ

2

)
w2(W`g(w))′′

W`g(w)
− 1
)
≺ Ξ(w) (11)

where ϑ ∈ C\{0} ϕ ∈ (−π, π], z, w ∈ D and g as assumed in (3).

Definition 2. A function f ∈ Σ, given by (1), is said to be in the class C`,τ
Σ,Ξ(ϑ, ϕ) if:

1 +
1
ϑ

 [z(W` f (z))′ +
(

1+eiϕ

2

)
z2(W` f (z))′′]′

(W` f (z))′
− 1

 ≺ Ξ(z) (12)

and

1 +
1
ϑ

 [w(W`g(w))′ +
(

1+eiϕ

2

)
w2(W`g(w))′′]′

(W`g(w))′
− 1

 ≺ Ξ(w), (13)
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where ϑ ∈ C\{0}, ϕ ∈ (−π, π], z, w ∈ D and g, as assumed in (3).

Remark 1. Let f ∈ Σ be given by (1) and for ϕ = π, we note that S`,τ
Σ,Ξ(ϑ, π) ≡ S`,τ

Σ,Ξ(ϑ) and

C`,τ
Σ,Ξ(ϑ, π) ≡ C`,τ

Σ,Ξ(ϑ) if[
1 +

1
ϑ

(
z(W` f (z))′

W` f (z)
− 1
)]
≺ Ξ(z) and

[
1 +

1
ϑ

(
w(W`g(w))′

W`g(w)
− 1
)]
≺ Ξ(w)

and [
1 +

1
ϑ

(
z(W` f (z))′′

(W` f (z))′

)]
≺ Ξ(z) and

[
1 +

1
ϑ

(
w(W`g(w))′′

(W`g(w))′

)]
≺ Ξ(w),

respectively, for ϑ ∈ C\{0} z, w ∈ D and g as assumed in (3).

Remark 2. A function f ∈ Σ given by (1) and for ϑ = 1, we let S`,τ
Σ,Ξ(ϑ, ϕ) ≡ S`,τ

Σ,Ξ(ϕ) if it
satisfies: (

z(W` f (z))′

W` f (z)
+

(
1 + eiϕ

2

)
z2(W` f (z))′′

W` f (z)

)
≺ Ξ(z)

and (
w(W`g(w))′

W`g(w)
+

(
1 + eiϕ

2

)
w2(W`g(w))′′

W`g(w)

)
≺ Ξ(w).

Furthermore, C`,τ
Σ,Ξ(ϑ, ϕ) ≡ C`,τ

Σ,Ξ(ϕ) if it satisfy: [z(W` f (z))′ +
(

1+eiϕ

2

)
z2(W` f (z))′′]′

(W` f (z))′

 ≺ Ξ(z)

and  [w(W`g(w))′ +
(

1+eiϕ

2

)
w2(W`g(w))′′]′

(W`g(w))′

 ≺ Ξ(w),

where ϕ ∈ (−π, π], z, w ∈ D and the function g is given by (3):

By fixing ϕ = 0, we derive the following :

Remark 3. The function of f ∈ Σ given by (1) is in classM`,τ
Σ, Xi(ϑ) if:

1 +
1
ϑ

(
z(W` f (z))′

W` f (z)
+

z2(W` f (z))′′

W` f (z)
− 1
)
≺ Ξ(z) (14)

and

1 +
1
ϑ

(
w(W`g(w))′

W`g(w)
+

w2(W`g(w))′′

W`g(w)
− 1
)
≺ Ξ(w) (15)

where ϑ ∈ C\{0}z, w ∈ D and g as assumed in (3).

Remark 4. The function of f ∈ Σ given by (1) is in class F `,τ
Σ, Xi(ϑ) if

1 +
1
ϑ

(
[z(W` f (z))′ + z2(W` f (z))′′]′

(W` f (z))′
− 1
)
≺ Ξ(z) (16)

and

1 +
1
ϑ

(
[w(W`g(w))′ + w2(W`g(w))′′]′

(W`g(w))′
− 1
)
≺ Ξ(w), (17)

where ϑ ∈ C\{0}, z, w ∈ D and g, as assumed in (3).
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The unique cases remarked on above yield new sub-classes of Σ-based Mathieu series
and these classes have not, so far, been studied in association with telephone numbers. In
the following section we investigate coefficient estimates for the function class S`,τ

Σ,Ξ(ϑ, ϕ)

and C`,τ
Σ,Ξ(ϑ, ϕ).

2. Coefficient Estimates for f in S`,τ
Σ,Ξ(ϑ, ϕ) and C`,τ

Σ,Ξ(ϑ, ϕ)

For notational simplicity, in the sequel we let:

Y2(`) =
2
(
`2 + 1

)2

(4 + `2)
2 , (18)

Y3(`) =
3
(
`2 + 1

)2

(9 + `2)
2 (19)

Ξ(z) := e(z+τ z2
2 ) = 1 + z +

1 + τ

2
z2 +

1 + 3τ

6
z3 +

3τ2 + 6τ + 1
24

z4 + · · · . (20)

We also let ϑ ∈ C\{0} ϕ ∈ (−π, π], z, w ∈ D and g as in (3), unless otherwise stated.
To derive our main results, we need the following lemma.

Lemma 1 ([39]). If h ∈ P , then |ck| ≤ 2 for each k, where P is the family of all functions h
analytic in D, for which <(h(z)) > 0 and

h(z) = 1 + c1z + c2z2 + · · · for z ∈ D.

Define the functions p(z) and q(z) by:

p(z) :=
1 + u(z)
1− u(z)

= 1 + p1z + p2z2 + · · ·

and

q(z) :=
1 + v(z)
1− v(z)

= 1 + q1z + q2z2 + · · · .

It follows that:

u(z) :=
p(z)− 1
p(z) + 1

=
1
2

[
p1z +

(
p2 −

p2
1

2

)
z2 + · · ·

]

and

v(z) :=
q(z)− 1
q(z) + 1

=
1
2

[
q1z +

(
q2 −

q2
1

2

)
z2 + · · ·

]
.

Then, p, q are analytic in D with p(0) = 1 = q(0).
Since u, v : D→ D, the functions p, q ∈ P and |pi| ≤ 2 and |qi| ≤ 2 for each i.

Theorem 1. Let f ∈ S`,τ
Σ,Ξ(ϑ, ϕ), be given by (1) , ϑ ∈ C\{0} and ϕ ∈ (−π, π]. Then:

|a2| ≤
√

2 |ϑ|√
2
∣∣ϑ[(5 + 3eiϕ)Y3(`)− (2 + eiϕ)[Y2(`)]2]− (τ − 1)(2 + eiϕ)2[Y2(`)]2

∣∣ (21)

and

|a3| ≤
|ϑ|2

|2 + eiϕ|2[Y2(`)]2
+

|ϑ|
|5 + 3eiϕ|Y3(`)

. (22)
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Proof. From (10) and (11) it follows that:

1 +
1
ϑ

(
z(W` f (z))′

W` f (z)
+

(
1 + eiϕ

2

)
z2(W` f (z))′′

W` f (z)
− 1
)
= Ξ(u(z)) (23)

and

1 +
1
ϑ

(
w(W`g(w))′

W`g(w)
+

(
1 + eiϕ

2

)
w2(W`g(w))′′

W`g(w)
− 1
)
= Ξ(v(w)), (24)

where

Ξ(u(z)) = e

 p(z)−1
p(z)+1+`

(
p(z)−1
p(z)+1

)2

2



= 1 +
p1

2
z +

( p2

2
+

(τ − 1)p2
1

8

)
z2 +

( p3

2
+ (τ − 1)

p1 p2

4
+

(1− 3τ)

48
p3

1

)
z3 + · · · . (25)

Similarly we get:

Ξ(v(w)) = 1 +
q1

2
z +

( q2

2
+

(τ − 1)q2
1

8

)
z2 +

( q3

2
+ (τ − 1)

q1q2

4
+

(1− 3τ)

48
q3

1

)
z3 + · · · . (26)

Now, equating the coefficients in (23) and (24), we obtain:

1
ϑ
(2 + eiϕ)[Y2(`)]a2 =

1
2

p1, (27)

1
ϑ

[
(5 + 3eiϕ)Y3(`)a3 − (2 + eiϕ)[Y2(`)]

2a2
2

]
=

p2

2
+

(τ − 1)p2
1

8
, (28)

− 1
ϑ
(2 + eiϕ)[Y2(`)]a2 =

1
2

q1, (29)

and

1
ϑ

(
[2(5 + 3eiϕ)Y3(`)− (2 + eiϕ)[Y2(`)]

2]a2
2 − (5 + 3eiϕ)Y3(`)a3

)
=

q2

2
+

(τ − 1)q2
1

8
. (30)

From (27) and (29), we obtain:

p1 = −q1 (31)

and
8(2 + eiϕ)2[Y2(`)]

2a2
2 = ϑ2(p2

1 + q2
1). (32)

Thus, we have:
8(2 + eiϕ)2[Y2(`)]

2a2
2

ϑ2 = p2
1 + q2

1. (33)

|a2| ≤
|ϑ|

|2 + eiϕ|Y2(`)
. (34)

Now, from (28), (30) and (32), we obtain:(
2{2ϑ[(5 + 3eiϕ)Y3(`)− (2 + eiϕ)[Y2(`)]

2]− (τ − 1)(2 + eiϕ)2[Y2(`)]
2}
)

a2
2 = ϑ2(p2 + q2). (35)

Lemma 1 applied to the coefficients p2 and q2, yields

|a2| ≤
√

2 |ϑ|√
2
∣∣ϑ[(5 + 3eiϕ)Y3(`)− (2 + eiϕ)[Y2(`)]2]− (τ − 1)(2 + eiϕ)2[Y2(`)]2

∣∣ .
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By subtracting (28) from (30) and using (31), we obtain |a3|:

2
ϑ
(5 + 3eiϕ)Y3(`)(a3 − a2

2) =
1
2
(p2 − q2).

When substituting a2
2 from (32), we get:

a3 =
ϑ2(p2

1 + q2
1)

8(2 + eiϕ)2[Y2(`)]2
+

ϑ(p2 − q2)

4(5 + 3eiϕ)Y3(`)
.

Applying Lemma 1 once again to the coefficients p1, p2, q1 and q2, we get

|a3| ≤
|ϑ|2

|2 + eiϕ|2[Y2(`)]2
+

|ϑ|
|5 + 3eiϕ|Y3(`)

.

Theorem 2. Let f ∈ C`,τ
Σ,Ξ(ϑ, ϕ) be given by (1),ϑ ∈ C\{0} and ϕ ∈ (−π, π],then

|a2| ≤
|ϑ|√

|ϑ{3(5 + 3eiϕ)Y3(`)− 4(2 + eiϕ)[Y2(`)]2} − 2(τ − 1)(2 + eiϕ)2[Y2(`)]2|
(36)

and

|a3| ≤
|ϑ|2

4|2 + eiϕ|2[Y2(`)]2
+

|ϑ|
3|5 + 3eiϕ|Y3(`)

. (37)

Proof. We write the argument inequalities in (refeq5) and (13) equivalently as follows:

1 +
1
ϑ

 [z(W` f (z))′ +
(

1+eiϕ

2

)
z2(W` f (z))′′]′

(W` f (z))′
− 1

 = Ξ(u(z)) (38)

and

1 +
1
ϑ

 [w(W`g(w))′ +
(

1+eiϕ

2

)
w2(W`g(w))′′]′

(W`g(w))′
− 1

 = Ξ(v(w)). (39)

Now intending to find the evidence of Theorem 1, from (38) and (39), we reap the
subsequent relations:

2
ϑ
(2 + eiϕ)[Y2(`)]a2 =

1
2

p1, (40)

1
ϑ
[3(5 + 3eiϕ)Y3(`)a3 − 4(2 + eiϕ)[Y2(`)]

2a2
2] =

p2

2
+

(τ − 1)p2
1

8
, (41)

and
− 2

ϑ
(2 + eiϕ)[Y2(`)]a2 =

1
2

q1, (42)

1
ϑ
[3(5 + 3eiϕ)(2a2

2 − a3)Y3(`)− 4(2 + eiϕ)[Y2(`)]
2a2

2] =
q2

2
+

(τ − 1)q2
1

8
(43)

From (40) and (42), we get:
p1 = −q1 (44)
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and

32(2 + eiϕ)2[Y2(`)]
2a2

2 = ϑ2(p2
1 + q2

1), (45)

a2
2 =

ϑ2 p2
1

16(2 + eiϕ)2[Y2(`)]2
, (46)

|a2| ≤
|ϑ|

4|2 + eiϕ|Y2(`)

Now, from (41), (43) and (45), we obtain:

a2
2 =

ϑ2(p2 + q2)

4[ϑ{3(5 + 3eiϕ)Y3(`)− 4(2 + eiϕ)[Y2(`)]2} − 2(τ − 1)(2 + eiϕ)2[Y2(`)]2]
. (47)

Making use of Lemma (1) to the coefficients p2 and q2, we have the preferred inequality,
given in (36). Subsequently, this allows us to find the bound on |a3|, by subtracting (41)
from (43), and using (44), we get:

6
ϑ
(5 + 3eiϕ)(a3 − a2

2)Y3(`) =
1
2
(p2 − q2). (48)

Upon substituting the value of a2
2 given by (45), the above equation leads to:

a3 =
ϑ(p2 − q2)

12(5 + 3eiϕ)Y3(`)
+

ϑ2(p2
1 + q2

1)

32(2 + eiϕ)2[Y2(`)]2
. (49)

Applying the Lemma1 once again to the coefficients p1, p2, q1 and q2, we get the
desired coefficient given in (37).

Fixing ϕ = π in Theorems 1 and 2 , we can state the coefficient estimates for the
functions in the sub-classes S`,τ

Σ,Ξ(ϑ) and C`,τ
Σ,Ξ(ϑ) defined in Remark 1.

Corollary 1. Let f ∈ S`,τ
Σ,Ξ(ϑ) be given by (1). Then

|a2| ≤
√

2 |ϑ|√
2|ϑ(2Y3(`)− [Y2(`)]2)− (τ − 1)[Y2(`)]2|

and |a3| ≤
|ϑ|2

[Y2(`)]2
+
|ϑ|

2Y3(`)
.

Corollary 2. Let f ∈ C`,τ
Σ,Ξ(ϑ) be given by (1) . Then,

|a2| ≤
|ϑ|√

2|ϑ(3Y3(`)− 2[Y2(`)]2)− 2(τ − 1)[Y2(`)]2|
and |a3| ≤

|ϑ|2
4[Y2(`)]2

+
|ϑ|

6Y3(`)
.

Taking ϑ = 1 in Theorems 1 and 2 , we can state the coefficient estimates for the
functions in the sub-classes S`,τ

Σ,Ξ(ϕ) and C`,τ
Σ,Ξ(ϕ) defined in Remark 2.

Corollary 3. Let f ∈ S`,τ
Σ,Ξ(ϕ) be given by (1).Then,

|a2| ≤
√

2√
2|(5 + 3eiϕ)Y3(`)− (2 + eiϕ)[Y2(`)]2| − (τ − 1)|2 + eiϕ|2[Y2(`)]2

and
|a3| ≤

1
|2 + eiϕ|2[Y2(`)]2

+
1

|5 + 3eiϕ|Y3(`)
.
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Corollary 4. Let f (z) given by (1) in the class C`,τ
Σ,Ξ(ϕ).. Then,

|a2| ≤
1√

{|3(5 + 3eiϕ)Y3(`)− 4(2 + eiϕ)[Y2(`)]2 − 2(τ − 1)(2 + eiϕ)2[Y2(`)]2|}

and
|a3| ≤

1

4
∣∣2 + eiϕ

∣∣2[Y2(`)]2
+

1
3
∣∣5 + 3eiϕ

∣∣Y3(`)
.

3. Fekete–Szegö Inequality for f ∈ S`,τ
Σ,Ξ(ϑ,ϕ)

Fekete–Szegö inequality is one of the famous problems related to coefficients of univa-
lent analytic functions. It was first given by [40], who stated:

|a3 − va2
2| ≤


3− 4v, i f v ≤ 0,
1 + 2e

−2v
1−v , i f 0 ≤ v ≤ 1,

4v− 3, i f v ≥ 1.

In this section, we prove Fekete–Szegö inequalities for functions in the class S`,τ
Σ,Ξ(ϑ, ϕ).

We used the following lemmas, which were introduced by Zaprawa in [13,14], and by the
technique given in [37,38].

Lemma 2 ([13]). Let k ∈ R and z1, z2 ∈ C. If |z1| < R and |z2| < R, then

|(k + 1)z1 + (k− 1)z2| ≤
{

2|k|R, |k| ≥ 1,
2R, |k| ≤ 1.

Lemma 3 ([13]). Let k, l ∈ R and z1, z2 ∈ C. If |z1| < R and |z2| < R, then

|(k + l)z1 + (k− l)z2| ≤
{

2|k|R, |k| ≥ |l|,
2|l|R, |k| ≤ |l|.

Lemma 4 ([41]). If p ∈ P , then there exist some x, ζ with |x| ≤ 1, |ζ| ≤ 1, such that

2p2 = p2
1 + x(4− p2

1),

4p3 = p3
1 + 2p1x(4− p2

1)− (4− p2
1)p1x2 + 2(4− p2

1)(1− |x|2)ζ.

Theorem 3. Let f . given by (1), be in the class S`,τ
Σ,Ξ(ϑ, ϕ) and ℵ ∈ R. Then:

| a3 − ℵa2
2 |≤


2|ϑ|

3|5+3eiϕ |Y3(`)
, | 1− ℵ |∈ [0, 16|2+eiϕ |2[Y2(`)]

2

3|ϑ||5+3eiϕ |Y3(`)
)

|1− ℵ| |ϑ|2
4|2+eiϕ |2[Y2(`)]2

, |1− ℵ| ∈ [ 16|2+eiϕ |2[Y2(`)]
2

3|ϑ||5+3eiϕ |Y3(`)
, ∞).

Proof. From (47) and (49) it follows that:

a3 − ℵa2
2 = (1− ℵ)

ϑ2 p2
1

16(2 + eiϕ)2[Y2(`)]2
+

ϑ(p2 − q2)

12(5 + 3eiϕ)Y3(`)

From Lemma 4, we have 2p2 = p2
1 + x(4− p2

1) and 2q2 = q2
1 + y(4− q2

1), and, hence,
we get

p2 − q2 = (
4− p2

1
2

)(x− y).

Using triangle inequality, and taking |x| = θ, |y| = κ, we obtain, without difficulty, that:
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|a3 − ℵa2
2| ≤ |1− ℵ| |ϑ|2t2

16|2 + eiϕ|2[Y2(`)]2
+

|ϑ|
24|5 + 3eiϕ|Y3(`)

(4− t2
1)(θ + κ).

LetM(t) = |1− ℵ| |ϑ|2t2

16|2+eiϕ |2[Y2(`)]2
≥ 0 and N (t) = |ϑ|

24|5+3eiϕ |Y3(`)
(4− t2

1) ≥ 0. Thus,

|a3 − ℵa2
2| ≤ M(t) +N (t)(θ + κ) =W(θ, κ)

It is evident that the maximum of the functionW(θ, κ) occurs at (θ, κ) = (1, 1). Thus,

maxW(θ, κ) : θ, κ ∈ [0, 1] =W(1, 1) =M(t) + 2N (t).

Let H : [0, 2]→ R, as follows:

H(t) =M(t) + 2N (t) (50)

for fixed ϑ ∈ C− {0}. Substituting the valueM(t),N (t) in (50), we obtain:

H(t) = |1− ℵ| |ϑ|2t2

16|2 + eiϕ|2[Y2(`)]2
+

|ϑ|
12|5 + 3eiϕ|Y3(`)

(4− t2
1)

=

[
|1− ℵ| |ϑ|2

16|2 + eiϕ|2[Y2(`)]2
− |ϑ|

3|5 + 3eiϕ|Y3(`)

]
t2 +

|ϑ|
12|5 + 3eiϕ|Y3(`)

=
|ϑ|2

16|2 + eiϕ|2[Y2(`)]2

[
|1− ℵ| − 16|2 + eiϕ|2[Y2(`)]

2

3|ϑ||5 + 3eiϕ|Y3(`)

]
t2 +

|ϑ|
12|5 + 3eiϕ|Y3(`)

.

Now, we should investigate the maximum of H(t) in [0, 2]. By simple computation,
we have

H′(t) =
|ϑ|2

8|2 + eiϕ|2[Y2(`)]2

[
|1− ℵ| − 16|2 + eiϕ|2[Y2(`)]

2

3|ϑ||5 + 3eiϕ|Y3(`)

]
t.

It is clear that H′(t) ≤ 0 if |ϑ|2
8|2+eiϕ |2[Y2(`)]2

[
|1− ℵ| − 16|2+eiϕ |2[Y2(`)]

2

3|ϑ||5+3eiϕ |Y3(`)

]
≤ 0; that is if

|1− ℵ| ∈
(

0, 16|2+eiϕ |2[Y2(`)]
2

3|ϑ||5+3eiϕ |Y3(`)

)
. So, the function H(t) is a strictly descending function if

|1− ℵ| ∈
(

0, 16|2+eiϕ |2[Y2(`)]
2

3|ϑ||5+3eiϕ |Y3(`)

)
.

Therefore,

max{H(t) : t ∈ [0, 2]} = H(0) =
|ϑ|

3|5 + 3eiϕ|Y3(`)
.

Also, H′(t) ≥ 0; that is H(t) is an increasing function for |1− ℵ| ≥ 16|2+eiϕ |2[Y2(`)]
2

3|ϑ||5+3eiϕ |Y3(`)
.

Therefore,

max{H(t) : t ∈ [0, 2]} = H(2) = |1− ℵ| |ϑ|2

4|2 + eiϕ|2[Y2(`)]2
.

Thus, we get:

| a3 − ℵa2
2 |≤


|ϑ|

3|5+3eiϕ |Y3(`)
, | 1− ℵ |∈ [0, 16|2+eiϕ |2[Y2(`)]

2

3|ϑ||5+3eiϕ |Y3(`)
)

|1− ℵ| |ϑ|2
4|2+eiϕ |2[Y2(`)]2

, |1− ℵ| ∈ [ 16|2+eiϕ |2[Y2(`)]
2

3|ϑ||5+3eiϕ |Y3(`)
, ∞).

In particular, by taking ℵ = 1, we get:

| a3 − a2
2 |≤

|ϑ|
3|5 + 3eiϕ|Y3(`)

.
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By taking ϑ ∈ R and ϕ = nπ, (n ∈ Z) in the following theorem we prove the following
Fekete–Szegö inequalities.

Theorem 4. Let f , given by (1), be in the class S`,τ
Σ,Ξ(ϑ, ϕ) and ℵ ∈ R.. Then:

| a3 − ℵa2
2 |≤


|ϑ|

3|5+3eiϕ |Y3(`)
, 0 ≤| Ψ(ℵ, ϕ) |≤ |ϑ|

3|5+3eiϕ |Y3(`)

2|ϑ||Ψ(ℵ, ϕ)|, |Ψ(ℵ, ϕ)| ≥ |ϑ|
3|5+3eiϕ |Y3(`)

,
(51)

where

Ψ(ℵ, ϕ) =
ϑ2(1− ℵ)

4[ϑ[3(5 + 3eiϕ)Y3(`)− 4(2 + eiϕ)[Y2(`)]2]− 2(τ − 1)(2 + eiϕ)2[Y2(`)]2]
.

Proof. From (46) and (48) it follows that:

a3 − ℵa2
2 =

(1− ℵ)ϑ2(p2 + q2)

4[ϑ[3(5 + 3eiϕ)Y3(`)− 4(2 + eiϕ)[Y2(`)]2]− 2(τ − 1)(2 + eiϕ)2[Y2(`)]2]

+
ϑ(p2 − q2)

12(5 + 3eiϕ)Y3(`)

=

[
Ψ(ℵ, ϕ) +

ϑ

12(5 + 3eiϕ)Y3(`)

]
p2 +

[
Ψ(ℵ, ϕ)− ϑ

12(5 + 3eiϕ)Y3(`)

]
q2,

where

Ψ(ℵ, ϕ) =
ϑ2(1− ℵ)

4[ϑ[3(5 + 3eiϕ)Y3(`)− 4(2 + eiϕ)[Y2(`)]2]− 2(τ − 1)(2 + eiϕ)2[Y2(`)]2]
.

Thus by applying Lemmas 1, 3, we get the desired result given in (51).
In particular, by taking ℵ = 1, we obtain:

| a3 − a2
2 |≤

|ϑ|
3|5 + 3eiϕ|Y3(`)

.

4. Bi-Univalent Function Class G`
Σ(ϑ, µ, Ξ)

In this section we define another new subclass of bi-univalent functions, based on
Mathieu–type power series, and associated with telephone numbers, and obtain the initial
Taylor estimates |a2|; |a3|. Making use of this, we derive the Fekete–Szegö inequality for
f ∈ G`Σ(ϑ, µ, Ξ):

Definition 3. A function f ∈ Σ given by (1) is said to be in the class G`Σ(ϑ, µ, Ξ) if the following
conditions are satisfied:

1 +
1
ϑ

(
z(W` f (z))′

(1− µ)W` f (z) + µz(W` f (z))′
− 1
)
≺ Ξ(z) (52)

and

1 +
1
ϑ

(
w(W`g(w))′

(1− µ)W`g(w) + µz(W`g(w))′
− 1
)
≺ Ξ(w) (53)

where ϑ ∈ C\{0}; 0 ≤ µ < 1; z, w ∈ D and g is as in (3).
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Example 1. For µ = 0 and ϑ ∈ C\{0}, the function given by (1) is in class f ∈ Σ, is said to be in
S`Σ(ϑ, Ξ), if the following conditions are met:

1 +
1
ϑ

(
z(W` f (z))′

W` f (z)
− 1
)
≺ Ξ(z), (54)

and

1 +
1
ϑ

(
w(W`g(w))′

W`g(w)
− 1
)
≺ Ξ(w), (55)

where z, w ∈ D and the function g is as in (3).

Note that S`Σ(ϑ, Ξ) = S`,τ
Σ,Ξ(ϑ, π) ≡ S`,τ

Σ,Ξ(ϑ), as given in Remark 1.

Theorem 5. Let the function f (z) given by (1) be in the class G`Σ(ϑ, µ, Ξ). Then,

|a2| ≤
|ϑ|
√

2√
|[ϑ(µ2 − 1)− (τ − 1)(1− µ)2][Y2(`)]2 + 4ϑ(1− µ)Y3(`)|

, (56)

and

|a3| ≤
|ϑ|2

(1− µ)2[Y2(`)]2
+

|ϑ|
2(1− µ)Y3(`)

. (57)

For h̄ ∈ R, we have:

| a3 − h̄a2
2 |≤


|ϑ|

2(1−µ)Y3(`)
, 0 ≤| φ(h̄) |≤ |ϑ|

8(1−µ)Y3(`)

2|ϑ||φ(h̄)|, |φ(h̄)| ≥ |ϑ|
8(1−µ)Y3(`)

,
(58)

where

φ(h̄) =
ϑ2(1− h̄)

2([ϑ(µ2 − 1) + (1− µ)2][Y2(`)]2 + 4ϑ(1− µ)Y3(`))
.

Proof. It follows from (52) and (53) that:

1 +
1
ϑ

(
z(W` f (z))′

(1− µ)W` f (z) + µz(W` f (z))′
− 1
)
= Ξ(u(z)) (59)

and

1 +
1
ϑ

(
w(W`g(w))′

(1− µ)W`g(w) + µz(W`g(w))′
− 1
)
= Ξ(v(w)). (60)

Now, equating the coefficients in (59) and (60), we get:

(1− µ)

ϑ
[Y2(`)]a2 =

1
2

p1, (61)

(µ2 − 1)
ϑ

[Y2(`)]
2a2

2 +
2(1− µ)

ϑ
Y3(`)a3 =

p2

2
+

(τ − 1)p2
1

8
, (62)

− (1− µ)

ϑ
[Y2(`)]a2 =

1
2

q1 (63)

and
(µ2 − 1)

ϑ
[Y2(`)]

2a2
2 +

2(1− µ)

ϑ
Y3(`)(2a2

2 − a3) =
q2

2
+

(τ − 1)q2
1

8
. (64)

From (61) and (63), we find that:

a2 =
ϑp1

2(1− µ)[Y2(`)]
=

−ϑq1

2(1− µ)[Y2(`)]
, (65)
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which implies:
p1 = −q1 (66)

and
8(1− µ)2[Y2(`)]

2a2
2 = ϑ2(p2

1 + q2
1). (67)

a2
2 =

ϑ2 p2
1

4(1− µ)2[Y2(`)]2
. (68)

Adding (62) and (64), by using (65) and (66), we obtain:

2{[2ϑ(µ2 − 1)− (τ − 1)(1− µ)2][Y2(`)]
2 + 4ϑ(1− µ)Y3(`)}a2

2 = ϑ2(p2 + q2). (69)

Thus:

a2
2 =

ϑ2(p2 + q2)

2{[2ϑ(µ2 − 1)− (τ − 1)(1− µ)2][Y2(`)]2 + 4ϑ(1− µ)Y3(`)}
. (70)

Applying Lemma 1 to the coefficients p2 and q2 immediately gives:

|a2|2 ≤
2|ϑ|2

|[2ϑ(µ2 − 1)− (τ − 1)(1− µ)2][Y2(`)]2 + 4ϑ(1− µ)Y3(`)|
. (71)

The final inequality gives the desired estimate of a2.
Then, to find the bounds of a3, subtract (64) from to get (62):

4(1− µ)

ϑ
Y3(`)a3 −

4(1− µ)

ϑ
Y3(`)a2

2 =
1
2
(p2 − q2) +

(τ − 1)
8

(p2
1 − q2

1)

a3 = a2
2 +

ϑ(p2 − q2)

8(1− µ)Y3(`)
. (72)

It follows from (65), (66) and (72) that:

a3 =
ϑ2(p2

1 + q2
1)

8(1− µ)2[Y2(`)]2
+

ϑ(p2 − q2)

8(1− µ)Y3(`)
. (73)

Applying Lemma 1 again to the coefficients p2 and q2, we easily get:

|a3| ≤
|ϑ|2

(1− µ)2[Y2(`)]2
+

|ϑ|
2(1− µ)Y3(`)

.

Now, by fixing ϑ, h̄ ∈ R from (70) and (72) it follows that:

a3 − h̄a2
2 =

(1− h̄)ϑ2(p2 + q2)

2{[2ϑ(µ2 − 1)− (τ − 1)(1− µ)2][Y2(`)]2 + 4ϑ(1− µ)Y3(`)}
+

ϑ(p2 − q2)

8(1− µ)Y3(`)

=

[
φ(h̄) +

ϑ

8(1− µ)Y3(`)

]
p2 +

[
φ(h̄)− ϑ

8(1− µ)Y3(`)

]
q2

where

φ(h̄) =
ϑ2(1− h̄)

2{[2ϑ(µ2 − 1)− (τ − 1)(1− µ)2][Y2(`)]2 + 4ϑ(1− µ)Y3(`)}
.

Thus, by applying Lemma 1, we get the desired result in (58)
In particular, by taking h̄ = 1, we get

| a3 − a2
2 |≤

|ϑ|
2(1− µ)Y3(`)

.
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This completes the proof of Theorem 5.

Theorem 6. Let the function f (z) given by (1) be in the class G`Σ(ϑ, µ, Ξ). Then:

| a3 − h̄a2
2 |≤


|ϑ|

2(1−µ)Y3(`)
, | 1− h̄ |∈ [0, (1−µ)2[Y2(`)]

2

2|ϑ|(1−µ)Y3(`)
)

|1− h̄| |ϑ|2
(1−µ)2[Y2(`)]2

, |1− h̄| ∈ [ (1−µ)2[Y2(`)]
2

2|ϑ|(1−µ)Y3(`)
, ∞).

where h̄ ∈ R

Proof. From (70) and (72) it follows that:

a3 − h̄a2
2 = (1− h̄)

ϑ2 p2
1

4(1− µ)2[Y2(`)]2
+

ϑ(p2 − q2)

8(1− µ)Y3(`)

From Lemma 4, we have 2p2 = p2
1 + x(4− p2

1) and 2q2 = q2
1 + y(4− q2

1), and, hence,
we get

p2 − q2 = (
4− p2

1
2

)(x− y).

Using the triangle inequality and taking x = θ, y = κ, we can easily get:

|a3 − h̄a2
2| ≤ |1− h̄| |ϑ|2t2

4(1− µ)2[Y2(`)]2
+

|ϑ|
8(1− µ)Y3(`)

(4− t2
1)(θ + κ).

Let M1(t) = |1− ℵ| |ϑ|2t2

4(1−µ)2[Y2(`)]2
≥ 0 and N1(t) = |ϑ|

8(1−µ)Y3(`)
(4− t2

1)(θ + κ) ≥ 0.
Thus:

|a3 − ℵa2
2| ≤ M1(t) +N1(t)(θ + κ) =W1(θ, κ)

It is clear that the maximum value of the functionW1(θ, κ) occurs at (θ, κ) = (1, 1). So

maxW1(θ, κ) : θ, κ ∈ [0, 1] =W1(1, 1) =M1(t) + 2N1(t).

Define H1 : [0, 2]→ R as

H1(t) =M1(t) + 2N1(t) (74)

for fixed ϑ ∈ C− {0}, substituting the valueM1(t),N1(t) in (74), we obtain:

H1(t) = |1− ℵ| |ϑ|2t2

4(1− µ)2[Y2(`)]2
+

|ϑ|
8(1− µ)Y3(`)

(4− t2
1)

=

[
|1− ℵ| |ϑ|2t2

4(1− µ)2[Y2(`)]2
− |ϑ|

8(1− µ)Y3(`)

]
t2 +

|ϑ|
2(1− µ)Y3(`)

=
|ϑ|2

4(1− µ)2[Y2(`)]2

[
|1− ℵ| − (1− µ)2[Y2(`)]

2

2|ϑ|(1− µ)Y3(`)

]
t2 +

|ϑ|
2(1− µ)Y3(`)

Now, we need to find the maximum value of H1(t) on the interval [0, 2]. with a simple
calculation,

H′1(t) =
|ϑ|2

2(1− µ)2[Y2(`)]2

[
|1− h̄| − (1− µ)2[Y2(`)]

2

2|ϑ|(1− µ)Y3(`)

]
t.

It is clear that H′1(t) ≤ 0 if |ϑ|2
2(1−µ)2[Y2(`)]2

[
|1− ℵ| − (1−µ)2[Y2(`)]

2

2|ϑ|(1−µ)Y3(`)

]
≤ 0; that is if

|1 − h̄| ∈
(

0, (1−µ)2[Y2(`)]
2

2|ϑ|(1−µ)Y3(`)

)
. Thus, H(t) is a strictly descending function if |1 − h̄| ∈(

0, (1−µ)2[Y2(`)]
2

2|ϑ|(1−µ)Y3(`)

)
.
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Therefore,

max{H1(t) : t ∈ [0, 2]} = H1(0) =
|ϑ|

2(1− µ)Y3(`)
.

So, H′(t) ≥ 0; that is, H(t) is an increasing function for |1− h̄| ≥ (1−µ)2[Y2(`)]
2

2|ϑ|(1−µ)Y3(`)
. Thus,

max{H1(t) : t ∈ [0, 2]} = H1(2) = |1− h̄| |ϑ|2
(1− ϕ)2[Y2(`)]2

.

Hence:

| a3 − h̄a2
2 |≤


|ϑ|

2(1−µ)Y3(`)
, | 1− ℵ |∈ [0, (1−µ)2[Y2(`)]

2

2|ϑ|(1−µ)Y3(`)
)

|1− h̄| |ϑ|2
(1−µ)2[Y2(`)]2

, |1− h̄| ∈ [ (1−µ)2[Y2(`)]
2

2|ϑ|(1−µ)Y3(`)
, ∞).

In particular, by taking h̄ = 1, we get

| a3 − a2
2 |≤

|ϑ|
2(1− µ)Y3(`)

.

5. Concluding Remarks

The work presented in this article followed the pioneering work of Srivastava et al. [7],
and related it to Generalized telephone phone numbers (GTNs). We, then, presented the
initial Taylor coefficient and Fekete–Szegö inequality results for this newly defined function
of classes S`,τ

Σ,Ξ(ϑ, ϕ) and C`,τ
Σ,Ξ(ϑ, ϕ). We specialized the parameters of the new sub-class,

with Remarks 1 and 4 not yet examined for GTNs. Furthermore, this work motivates
researchers to extend this idea to meromorphic bi-univalent functions, and gives rise to
a particular Erd ély–Kober operator [42], quantum computation operator [43,44] and q–
Bernstein–Kantorovich operators [45] for f ∈ Σ (see also references cited there). I believe
we can derive a new class relating to GTNs.
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