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Abstract: Triazine-based covalent organic frameworks (TriCFs) were synthesized using melamine,
and cyanuric acid is a brand-new synthetic lubricant, which is thermo-stable and possesses a lamel-
lar structure. This article demonstrates how topological descriptors for the TriCF structure are
precisely evaluated using the degree sum of the end vertex neighbors and also some molecular
descriptors with multiplicative neighborhood degree sums are evaluated. Furthermore, the neighbor-
hood entropy measures for the outcomes are provided. The results are compared using the graph
theoretical method.
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1. Introduction

Chemical graph theory is the process of performing a thorough analysis to identify
the key characteristics or meanings of chemical compounds graphically. It is the area
of mathematics that combines graph theory and chemistry. In chemical graph theory, a
compound’s idiosyncrasies are mathematically described when an image of the mixture
from X-ray or electron microscope diffraction is drawn into a plane and illuminated on
its symmetry [1]. The chemical graph is a straightforward representation of a picture of a
compound in which we suppose that the edges are bonds between atoms and the vertices
are atoms. Understanding properties such as molecular structure, the kinetics of molecules,
atoms, or electrons, chains or patterns of polymers, crystals and clusters, aromaticity,
nuclear magnetic resonance (NMR) analysis, depicting orbitals, and electron behaviors are
made possible by chemical graph theory. A few researchers who have introduced graph
theory in chemistry are Ante Graovac, Alexandru Balaban, Haruo Hosoya, Iván Gutman,
Nenad Trinajstic, and Milan Randić [2–4].

Graph theory connects mathematics and chemistry using a valuable tool called the
topological index. A real number associated with a graph and determined by a certain rule
is known as the topological index. This number is invariant for isomorphic graphs [5]. It
describes the molecular structure’s topology. These indices are crucial to the research of
quantitative structure–property relationship/quantitative structure–activity relationship
(QSPR/QSAR) since they may be used to predict various physiochemical characteristics
and bioactivity, which aids in the development of new drugs. Its use in other sectors,
including nanoscience and biotechnology, is equally impressive [6]. Topological indices
have been used to numerically quantify various physical and chemical properties of various
chemical and biological molecules, including the boiling point, anti-leishmanial action,
acute toxicity, radical scavenging activity, and many more. Throughout the world, re-
searchers are interested in this. Over the years, several vertex-degree-based topological
indices have been developed [5,7].
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Three nitrogen atoms replace the carbons in the triazines’ six-membered planar ring,
which is similar to that of benzene. The three isomers of triazine are distinguished by
the positions of the nitrogen atoms [8]. The triazine structures of melamine and cyanuric
chloride are two well-known examples. Melamine is a white, odorless, crystalline, nontoxic,
hetero-aromatic compound utilized as a raw material in many daily products that must
adhere to rigid standards for toughness and wear resistance. The synthesis of insecticides,
brighteners, and reactive dyes have all benefited from the versatility and multifunctionality
of cyanuric chloride (2,4,6-trichloro-1,3,5-triazine), a versatile reagent. Covalent bonding
creates triazine-based covalent organic polymers (COPs), a developing subclass of porous
organic framework materials. Ping Wen et al. explained the synthesis of triazine-based co-
valent organic frameworks (see Figure 1) utilizing melamine and cyanuric chloride [8]. The
as-prepared covalent organic frameworks are referred to as TriCFs. They are exceptionally
thermo-stable and possess a lamellar structure. This comprises a brand-new synthetic lubri-
cant. The degree-based indices of this structure were studied by [9]. Currently, research on
the computation of the TriCF neighborhood topological indices is needed in the literature.
Future designed and produced triazine-based covalent organic frameworks could benefit
from the findings of this study [8].

Figure 1. TriCFs’ structure.

“The entropy of a probability distribution is regarded as a measure of the unpre-
dictability of information content or a measure of the uncertainty of a system”, Shannon
famously wrote in his article from 1948, which established the term “entropy” [10]. Entropy
later started to be applied to chemical networks and graphs. It was created for analyzing
the structural data of chemical networks and graphs. There are intrinsic and extrinsic met-
rics for graph entropy, which correlates probability distributions with a graph’s elements
(vertices, edges, etc.). To estimate a network’s structural information content, Shannon’s
entropy calculations have been applied [11]. This approach has been used to visualize
live systems using graphs. Entropy measurements for graphs have also been widely used
in structural chemistry, computer science, and biology [10]. Entropy network measures
have a variety of uses, including quantitative structure characterization in structural chem-
istry and the investigation of biological or chemical aspects of molecular graphs using
software [12–14].

2. Preliminaries and Mathematical Terminologies

In this study, we take γ as a connected graph. The letters P and Q stand for the vertex
set (atoms) and edge set (bonds between atoms). Furthermore, sγ(u) stands for the total
number of degrees of all vertices adjacent to u. Topological indices, which are graph-based
descriptors, are often used to forecast the characteristics of chemical networks and systems.
They are functions defined from a graph γ to a collection of real numbers R. There are
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primarily two kinds of topological indices. The first is a topological index based on degrees,
while the second is based on distance. The motivation for using degree-based indices, also
known as connectivity-based indices, comes from several research works showing that they
are reliable for linking the physicochemical properties of various molecules.

Randić created the first legitimate degree-based index, which has now gained widespread
acceptance as the Randić index [15]. Later, several degree-based metrics such as the Zagreb
index, the atom bond connectivity index, the enhanced Zagreb index, and the geometric
arithmetic index were created. Due to their excellent correlation capacity, these indices have
drawn much attention [3]. Randić indices are often used to simulate molecules’ physical
and chemical characteristics, while Zagreb indices were developed to explore molecular
complexity. A modified version of the Randić index called the “atom bond connectivity
index” has shown a good correlation with the thermodynamic properties of alkanes [5].
Refer to [5] and the references there in for a thorough overview of the different degree-based
topological indices.

Later, a significant number of researchers developed unique modifications to these
indices that consider the neighboring degree sum for each vertex rather than the de-
gree [16–18]. Let su represent the degree sum of the nearby vertices of the vertex u to
define them broadly. The generic equation for bond additive and multiplicative variants of
degree-sum-based indices may be written as

TIs(γ) = ∑
uv∈E(γ)

φ(su, sv) (1)

and
TI∗s (γ) = ∏

uv∈E(γ)
φ(su, sv) (2)

We used the edge partition approach, where the total number of edges for each struc-
ture is split into different groups according to the degrees of the end vertices of edges,
to generate the degree-based indices. Similar to this, edges are divided into sections to
determine degree-sum-based indices using the neighborhood degree sums of the end
vertices of edges. This research employed edge partition approaches to derive multiplica-
tive neighborhood degree sum topological indices and neighborhood degree-sum-based
entropy measurements for the TriCF structure. We used Shannon’s model to calculate
the probabilistic entropy because it is the most widely used method [10–12]. The entropy
measured using that topological index X is given by

EX(γ) = log(X(γ))− 1
X(γ)

( ∑
uv∈E(γ)

f (e)log( f (e))). (3)

where f (e) is the edge partition.
For vertices u and v, su and sv denote the neighborhood degree sum of u and v. We

now show various neighborhood degree-sum-based topological descriptors and neigh-
borhood multiplicative degree-sum-based topological descriptors in Table 1 [19,20] and
Table 2 [6,16–18,21–33], respectively.

Table 1. Neighborhood degree-sum-based topological indices.

Neighborhood First Zagreb Index NM1(G)= ∑
uv∈E(G)

[su + sv]

Neighborhood Second Zagreb Index NM2(G) = ∑
uv∈E(G)

[su × sv]

Neighborhood Reduced Second Zagreb Index NRM2(G) = ∑
uv∈E(G)

[(su − 1)(sv − 1)]

Neighborhood Hyper Zagreb Index NHM(G) = ∑
uv∈E(G)

[su + sv]
2

Neighborhood Augmented Zagreb Index NAZ(G) = ∑
uv∈E(G)

[
su × sv

su + sv − 2
]3
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Table 1. Cont.

Neighborhood Randić Index NR(G) = ∑
uv∈E(G)

[
1√
susv

]

Neighborhood Reciprocal Randić Index NRR(G) = ∑
uv∈E(G)

[
√

susv]

Neighborhood Reduced Reciprocal Randić Index NRRR(G) = ∑
uv∈E(G)

[
√
(su − 1)(sv − 1)]

Neighborhood Harmonic Index NH(G) = ∑
uv∈E(G)

[
2

su + sv
]

Neighborhood Sum Connectivity Index NSC(G) = ∑
uv∈E(G)

1√
su + sv

Neighborhood Geometric Arithmetic Index NGA(G) = ∑
uv∈E(G)

2
√

susv

su + sv

Neighborhood Inverse Sum Index NIS(G) = ∑
uv∈E(G)

susv

su + sv

Neighborhood Forgotten index NF(G)= ∑
uv∈E(G)

su
2 + sv

2

Neighborhood Symmetric Division Index NSDI(G) = ∑
uv∈E(G)

su
2 + sv

2

susv

Neighborhood Atom Bond Connectivity Index NABC(G) = ∑
uv∈E(G)

√
su + sv − 2

susv

Table 2. Multiplicative neighborhood degree-sum-based topological indices.

Multiplicative Neighborhood First Zagreb Index MNM1(G)= ∏
uv∈E(G)

[su + sv]

Multiplicative Neighborhood Second Zagreb Index MNM2(G) = ∏
uv∈E(G)

[su × sv]

Multiplicative Neighborhood Reduced Second Zagreb Index MNRM2(G) = ∏
uv∈E(G)

[(su − 1)(sv − 1)]

Multiplicative Neighborhood Hyper Zagreb Index MNHM(G) = ∏
uv∈E(G)

[su + sv]
2

Multiplicative Neighborhood Augmented Zagreb Index MNAZ(G) = ∏
uv∈E(G)

[
su × sv

su + sv − 2
]3

Multiplicative Neighborhood Randić Index MNR(G) = ∏
uv∈E(G)

[
1√
susv

]

Multiplicative Neighborhood Reciprocal Randić Index MNRR(G) = ∏
uv∈E(G)

[
√

susv]

Multiplicative Neighborhood Reduced Reciprocal Randić Index MNRRR(G) = ∏
uv∈E(G)

[
√
(su − 1)(sv − 1)]

Multiplicative Neighborhood Harmonic Index MNH(G) = ∏
uv∈E(G)

[
2

su + sv
]

Multiplicative Neighborhood Sum Connectivity Index MNSC(G) = ∏
uv∈E(G)

1√
su + sv

Multiplicative Neighborhood Geometric Arithmetic Index MNGA(G) = ∏
uv∈E(G)

2
√

susv

su + sv

Multiplicative Neighborhood Inverse Sum Index MNIS(G) = ∏
uv∈E(G)

susv

su + sv

Multiplicative Neighborhood Forgotten index MNF(G)= ∏
uv∈E(G)

su
2 + sv

2

Multiplicative Neighborhood Symmetric Division Index MNSDI(G) = ∏
uv∈E(G)

su
2 + sv

2

susv

Multiplicative Neighborhood Atom Bond Connectivity Index MNABC(G) = ∏
uv∈E(G)

√
su + sv − 2

susv
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3. Research Aim and Methodology

Chemical graph theory is a concept used in the mathematical chemistry field of topol-
ogy. It gained popularity as its proponents presented several graph theory applications for
the mathematical modeling of chemical characteristics [34,35]. Chemists have established
through actual experimental data that a compound’s physicochemical properties are closely
related to its molecular structure. Later, additional graph-theoretical techniques were de-
veloped to describe various chemical compound properties. The idea of topological indices,
specific network invariants, is an essential tool. In addition to the topological index, infor-
mation entropy is a necessary tool for assessing the properties of chemical compounds. Due
to its applicability, the notion, which was first applied to the communication system, has
recently received respect in various scientific and technological sectors [10,12]. In chemistry,
much research has been performed on the correspondence between the traditional concept
of thermodynamics and the statistical mechanic’s definition of entropy. The concept of
information entropy may be considered a replacement for thermodynamic entropy due
to its relationship to the Gibbs entropy formula employed in statistical mechanics [33,36].
They are thus primarily used in chemistry to characterize compounds’ complexity, disorder,
and other properties, such as phase transition energy. The relationship between informa-
tion entropy and chemical properties, such as the variation in molecule stability caused by
various arrangements of essential components, has been studied recently [13]. Shannon
first introduced the concept of information entropy in communication networks, and the
statement was purely based on terms used in that field. Later, it was changed to use it in
other scientific domains [11].

In this article, we explore the multiplicative neighborhood-degree sum-based indices
and neighborhood-degree sum-based indices of the TriCF structure. In addition, we
calculate the entropies of these structures and also determine the numerical values, which
aid in the investigation of the physiochemical characteristics of the TriCF structure.

This study’s computations use graph theoretical technologies, precisely the edge parti-
tion method and analytical techniques. Chem Draw Ultra describes the TriCFs’ molecular
structures, and Origin displays the numerical outcomes.

4. Main Results

In this section, we present the key findings of the study. In this work, based on the
growth of TriCFs, the authors categorized it into three kinds. In particular, γ1, γ2, and
γ3 are linear chain TriCF structures, parallelogram TriCF structures, and hexagonal TriCF
structures, respectively. The schematic of the triazine-based covalent organic framework
synthesis can be formed into any structure such as a linear chain, parallelogram, hexagonal,
etc. Figures 2–4 show the 2D structure of a linear chain, parallelogram and hexagonal TriCF
structures, respectively. Figure 5 shows the unit cell of the TriCF structure. In the linear
chain TriCF structure, the unit cell is repeated r-times linearly (r columns). Similarly, in the
parallelogram TriCF structure, the unit cells are arranged in the shape of a parallelogram
structure. In hexagonal TriCF structures, the unit cells are placed in a hexagonal structure.
It is easy to understand the growth from Figures 3 and 4. From this, we can find the edge
partition, which is given in Table 3.

Figure 2. Linear chain TriCF structure.
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Figure 3. Parallelogram TriCF structure.

Figure 4. Hexagonal TriCF structure.

Figure 5. Neighborhood degree sum edge partition of the unit cell of the TriCF structure.
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Table 3 below illustrates the total number of edges (Q) and vertices (P) and how the
edges are partitioned in each structure.

Table 3. Edge partition of γ.

γ (3, 5) (5, 6) (6, 6) Q P

γ1 2r + 4 4r + 8 30r + 6 36r + 18 36r + 15

γ2 2(r + s + 1) 4(r + s + 1) (18s + 12)r + 12s− 6 (18s + 18)r + 18s (13s + 20)r + 18s + 3

γ3 6r 12r 54r2 − 18r 54r2 45r2 + 3r

4.1. Neighborhood-Degree Sum-Based Topological Indices of TriCF Structure

Theorem 1. Let γ1 be the Linear chain TriCF structure with dimension r. Then:

1. NR(γ1) =
2(1 +

√
2)(r + 2)

√
15

15
+ 5r + 1.

2. NRR(γ1) = ((4r + 8)
√

2 + 2r + 4)
√

15 + 180r + 36.
3. NRRR(γ1) = (4r + 8)

√
2 + (8r + 16)

√
5 + 150r + 30.

4. NM1(γ1) = 420r + 192.
5. NM2(γ1) = 1230r + 516.
6. NRM2(γ1) = 846r + 342.
7. NHM(γ1) = 4932r + 2088.

8. NAZ(γ1) =
4263511r

2700
+

4311443
6750

.

9. NH(γ1) =
137r
22

+
38
11

.

10. NSC(γ1) =
(110r + 22)

√
3

22
+

(r + 2)(
√

2 + 8
√

11
11 )

2
.

11. NGA(γ1) =
8(
√

2 +
11
16

)(r + 2)
√

15

11
+ 30r + 6.

12. NIS(γ1) =
4605r

44
+

1041
22

.

13. NSDI(γ1) =
218r

3
+

112
3

.

14. NF(γ1) = 2472r + 1056.

15. NABC(γ1) =
(3
√

6 + 6)
√

5r + 10
15

+

√
75r + 15

3
.

Proof. Let γ1 be a linear chain TriCF structure with P and Q (see Table 3). We performed
edge partitions of γ1 based on the neighborhood vertex degree sum. The following results
were obtained by applying those edge partitions in the definitions of neighborhood degree
sum-based topological indices (Table 1).

To provide the proofs, the neighborhood-degree sum-based topological indices of each
TriCF linear chemical network would be too long to furnish in this paper. Hence, using the
procedure mentioned below and Table 1, it is simple to construct any neighborhood-degree
sum-based expression concerning each topological index.

The neighborhood-degree sum-based indices of the first Zagreb for a linear TriCF
molecular graph is

NM1(γ1) = (3 + 5)(2r + 4) + (5 + 6)(4r + 8) + (6 + 6)(30r + 6)
= (8)(2r + 4) + (11)(4r + 8) + (12)(30r + 6)
= 16r + 32 + 44r + 88 + 360r + 72
= 420r + 192.

Theorem 2. Let γ2 be the parallelogram TriCF structure with dimension r and s. Then, the
neighborhood-degree sum-based topological indices are:
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1. NR(γ2) =
2(1 +

√
2)(r + s + 1)

√
15

15
+

(45s + 30)r
15

+ 2s− 1.

2. NRR(γ2) = 4(r + s + 1)(
√

2 +
1
2
)
√

15 + (108s + 72)r + 72s− 36.

3. NRRR(γ2) = (4r + 4s + 4)
√

2 + (8r + 8s + 8)
√

5 + (90s + 60)r + 60s− 30.
4. NM1(γ2) = (216s + 204)r + 204s− 12.
5. NM2(γ2) = (648s + 582)r + 582s− 66.
6. NRM2(γ2) = (450s + 396)r + 396s− 54.
7. NHM(γ2) = (2592s + 2340)r + 2340s− 252.

8. NAZ(γ2) =
(11337408s + 9980147)r

13500
+

9980147s
13500

− 1357261
13500

.

9. NH(γ2) =
(66r + 71)s

22
+

71r
22

+
5
22

.

10. NSC(γ2) =
((66s + 44)r + 44s− 22)

√
3

22
+

(r + s + 1)(
√

2 +
8
√

11
11

)

2
.

11. NGA(γ2) =
8(r + s + 1)(

√
2 + 11

16 )
√

15
11

+
(396s + 264)r

22
+ 12s− 6.

12. NIS(γ2) =
(2376r + 2229)s

44
+

2229r
44
− 147

44
.

13. NSDI(γ2) =
(216r + 182)s

3
+

182r
3
− 34

3
.

14. NF(γ2) = (1296s + 1176)r + 1176s− 120.

15. NABC(γ2) =

√
(45s + 30)r + 30s− 15

3
+

(3
√

6 + 6)
√

5r + 5s + 5
15

.

Proof. Let γ2 be a parallelogram TriCF structure with P and Q be taken from Table 3. We
performed edge partitions of γ2 based on the neighborhood vertex degree sum, and the
following results were obtained by applying those edge partitions in the definitions of
neighborhood-degree sum-based topological indices (Table 1). To put forward the given
proofs, the neighborhood-degree sum-based topological indices of each TriCF parallelogram
chemical network would run into many pages. Hence, using the procedure mentioned
below and Table 1, it is easy to construct any neighborhood-degree sum-based expression
with regard to each topological index.

The neighborhood-degree sum-based indices of the second Zagreb for a parallelogram
TriCF molecular graph is

NM2(γ2) = (3× 5)2(r + s + 1) + (5× 6)4(r + s + 1) + (6× 6)((18s + 12)r + 12s− 6)
= 150r + 582s− 66 + 36(18s + 12)r
= (648s + 582)r + 582s− 66.

Theorem 3. Let γ3 be the hexagonal TriCF structure with dimension r. Then:

1. NR(γ3) =
r(2
√

15
√

2 + 2
√

15 + 45r− 15)
5

.

2. NRR(γ3) = 6r(2
√

15
√

2 +
√

15 + 54r− 18).
3. NRRR(γ3) = (4r + 8)

√
2 + (8r + 16)

√
5 + 150r + 30.

4. NM1(γ3) = 648r2 − 36r.
5. NM2(γ3) = 1944r2 − 198r.
6. NRM2(γ3) = 1350r2 − 162r.
7. NHM(γ3) = 7776r2 − 756r.

8. NAZ(γ3) =
314928

125
r2 − 1357261

4500
r.

9. NH(γ3) =
15
22

r + 9r2.

10. NSC(γ3) =
3r(66

√
3 r + 11

√
2 + 8

√
11− 22

√
3)

22
.
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11. NGA(γ3) =
3r(16

√
15
√

2 + 11
√

15 + 396r− 132)
22

.

12. NIS(γ3) = 162r2 − 441
44 r.

13. NSDI(γ3) = 108r2 + 2r.
14. NF(γ3) = 3888r2 − 360r.

15. NABC(γ3) =

((
3
√

2
5

+
2
√

3
5

)
√

r +
√

3r2 − r

)
√

5.

Proof. Let γ3 be a hexagonal TriCF structure P and Q given in Table 3. We performed edge
partitions of γ3 based on the neighborhood vertex degree sum, and the following results
were obtained by applying those edge partitions in the definitions of neighborhood-degree
sum-based topological indices (Table 1). To provide the proof, the neighborhood-degree
sum-based topological indices of each TriCF hexagonal chemical network would be too
long. Using the procedure mentioned below and Table 1, it is simple to construct any
neighborhood-degree sum-based expression with regard to each topological index.

The neighborhood-degree sum-based indices of the forgotten indices for a hexagonal
TriCF molecular graph is NF(γ3) = (9 + 25)(6r) + (25 + 36)(12r) + (36 + 36)(54r2 − 18r)
= (34)(6r) + (61)(12r) + (72)(54r2 − 18r)
= 3888r2 − 360r.

4.2. Multiplicative Neighborhood-Degree Sum-Based Topological Indices of TriCF Structure

Theorem 4. Let γ1 be the linear chain TriCF structure with dimension r. Then, the neighborhood-
degree sum-based multiplicative indices are:

1. MNR(γ1) =
1

630r+615r+2302r+4 .

2. MNRR(γ1) = 232r+10333r+1253r+6.
3. MNRRR(γ1) = 27r+14532r+10.
4. MNM1(γ1) = 82r+4114r+81230r+6.
5. MNM2(γ1) = 152r+4304r+83630r+6.
6. MNRM2(γ1) = 82r+4204r+82530r+6.
7. MNHM(γ1) = 642r+41214r+814430r+6.
8. MNAZ(γ1) = 296r+303168r+12518−72r.

9. MNH(γ1) =
1

630r+6114r+8 .

10. MNSC(γ1) =
1

1619177472 233r315r112r .

11. MNGA(γ1) =
153r+6

234r+11114r+8 .

12. MNIS(γ1) =

(
15
8

)2r+4(30
11

)4r+8
330r+6.

13. MNSDI(γ1) =

(
34
15

)2r+4(61
30

)4r+8
230r+6.

14. MNF(γ1) = 342r+4614r+87230r+6.

15. MNABC(γ1) =
512r

36000 216r328r .

Proof. Let γ1 be a linear chain TriCF structure with vertices P and Q (see Table 3). We
performed edge partitions of γ1 based on the neighborhood vertex degree sum, and the
following results were obtained by applying those edge partitions in the definitions of
multiplicative neighborhood-degree sum-based topological indices (Table 2). To provide
the proofs, the multiplicative neighborhood-degree sum-based topological indices of each
TriCF linear chemical network would be too long. By using the below-mentioned procedure
and Table 2, it is simple to construct any multiplicative neighborhood-degree sum-based
expression with regard to each topological index.
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The multiplicative neighborhood-degree sum-based indices of the Randić indices for a
linear TriCF molecular graph is NMR(γ1) = (9 + 25)(2∗r+4)(25 + 36)(4∗r+8)(36 + 36)(30∗r+6)

= 342r+4614r+87230r+6.

Theorem 5. Let γ2 be the parallelogram TriCF structure with dimension r and s. Then, the
multiplicative neighborhood-degree sum-based topological indices are:

1. MNM1(γ2) = 82r+2s+2114r+4s+412(18s+12)r+12s−6.
2. MNM2(γ2) = 152r+2s+2304r+4s+436(18s+12)r+12s−6.
3. MNRM2(γ2) = 214r+14s+14536rs+28r+28s−8.
4. MNHM(γ2) = 642r+2s+21214r+4s+4144(18s+12)r+12s−6.

5. MNAZ(γ2) =

(
125

8

)2r+2s+2(1000
27

)4r+4s+4(5832
125

)(18s+12)r+12s−6
.

6. MNR(γ2) =

(√
15

15

)2r+2s+2(√
30

30

)4r+4s+4(
1
6

)(18s+12)r+12s−6
.

7. MNRR(γ2) =
(√

15
)2r+2s+2(√

30
)4r+4s+4

6(18s+12)r+12s−6.

8. MNRRR(γ2) = 27r+7s+7518rs+14r+14s−4.

9. MNH(γ2) =

(
1
4

)2r+2s+2( 2
11

)4r+4s+4(1
6

)(18s+12)r+12s−6
.

10. MNSC(γ2) =

(√
2

4

)2r+2s+2(√
11

11

)4r+4s+4(√
3

6

)(18s+12)r+12s−6

.

11. MNGA(γ2) = 8

(√
15
8

)2r+2s+2(√
30

11

)4r+4s+4(
1
2

)(18s+12)r+12s−6
.

12. MNIS(γ2) =

(
15
8

)2r+2s+2(30
11

)4r+4s+4
3(18s+12)r+12s−6.

13. MNSDI(γ2) =

(
34
15

)2r+2s+2(61
30

)4r+4s+4
2(18s+12)r+12s−6.

14. MNF(γ2) = 342r+2s+2614r+4s+472(18s+12)r+12s−6.

15. MNABC(γ2) =

(√
10
5

)2r+2s+2(√
30

10

)4r+4s+4(√
10
6

)(18s+12)r+12s−6

.

Proof. Let γ2 be a parallelogram TriCF structure with vertex and edge set P and Q,
respectively (Table 3). We performed edge partitions of γ2 based on the neighborhood
vertex degree sum (Table 3), and the following results were obtained by applying those edge
partitions in the definitions of multiplicative neighborhood-degree sum-based topological
indices (Table 2).

To provide the proofs, the multiplicative neighborhood-degree sum-based topolog-
ical indices of each TriCF parallelogram chemical network would be too long. By using
the below-mentioned procedure and Table 2, it is simple to construct any multiplicative
neighborhood-degree sum-based expression with regard to each topological index.

Multiplicative neighborhood-degree-based indices of the first Zagreb for a parallelogram TriCF
molecular graph is MNM1(γ2) = (3 + 5)(2r+2s+2)(5 + 6)(4r+4s+4)(6 + 6)((18∗s+12)r+12s−6)

= 8(2r+2s+2)11(4r+4s+4)12((18s+12)r+12s−6).

Theorem 6. Let γ3 be the hexagonal TriCF structure with dimension r. Then, the multiplicative
neighborhood-degree sum-based topological indices are:

1. MNM1(γ3) = 86r1112r1254r2−18r.
2. MNM2(γ3) = 156r3012r3654r2−18r.
3. MNRM2(γ3) = 86r2012r2554r2−18r.
4. MNHM(γ3) = 646r12112r14454r2−18r.
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5. MNAZ(γ3) =

(
125

8

)6r(1000
27

)12r(5832
125

)54r2−18r
.

6. MNR(γ3) =

(√
15

15

)6r(√
30

30

)12r(
1
6

)54r2−18r
.

7. MNRR(γ3) =
(√

15
)6r(√

30
)12r

654r2−18r.

8. MNRRR(γ3) =
(

2
√

2
)6r(

2
√

5
)12r

554r2−18r.

9. MNH(γ3) =

(
1
4

)6r( 2
11

)12r(1
6

)54r2−18r
.

10. MNSC(γ3) =

(√
2

4

)6r(√
11

11

)12r(√
3

6

)54r2−18r

.

11. MNGA(γ3) = 8

(√
15
8

)6r(√
30

11

)12r(
1
2

)54r2−18r
.

12. MNIS(γ3) =

(
15
8

)6r(30
11

)12r
354r2−18r.

13. MNSDI(γ3) =

(
34
15

)6r(61
30

)12r
254r2−18r.

14. MNF(γ3) = 346r6112r7230r+6.

15. MNABC(γ3) =

(√
10
5

)6r(√
30

10

)12r(√
10
6

)54r2−18r

.

Proof. Let γ3 be a hexagonal TriCF structure. The cardinality of vertices P and edges Q is
given in Table 3. We performed edge partitions of γ3 based on the neighborhood vertex
degree sum, and the following results were obtained by applying those edge partitions
in the definitions of multiplicative neighborhood-degree sum-based topological indices
(Table 2). To provide the proofs, the multiplicative neighborhood-degree sum-based topo-
logical indices of each TriCF hexagonal chemical network would be too long. By using
the below-mentioned procedure and Table 2, it is simple to construct any multiplicative
neighborhood-degree sum-based expression with regard to each topological index.

The multiplicative neighborhood-degree sum-based indices of the first Zagreb for a
hexagonal TriCF molecular graph is MNM1(γ3) = (3 + 5)(6r)(5 + 6)(12r)(6 + 6)(54r(2)−18r)

= 86r1112r1254r2−18r.

4.3. Neighborhood-Degree Sum-Based Entropy Measures

This section discusses constructing the probability function using neighborhood-
degree sum-based topological indices to compute the entropy values using Shannon’s
approach. The calculation procedure is illustrated below by using Equation (3) to calculate
the entropy value of the first Zagreb index for the TriCF structure. Furthermore, Figure 6 is
the 3D plot of the entropy of the first Zagreb index.

The first Zagreb entropy for the linear chain TriCF molecular graph is

ENM1(γ1) = log(420r + 192)− (2r + 4)(3 + 5)log(3 + 5) + (4r + 8)(5 + 6)log(5 + 6) + (30r + 6)(6 + 6)log(6 + 6)
420r + 192

= log(420r + 192)− 24(2r + 4) log(2) + 11(4r + 8) log(11) + 12(30r + 6) log(12)
420r + 192

.

After simplifying this, we obtain
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ENM1(γ1) =
(105r + 48) log(35r + 16) + 18(r + 2)(log(2) +

5 log(3)
6

− 11 log(11)
18

)

105r + 48
.

Figure 6 illustrates the entropy of the first Zagreb index of the TriCF linear chain
structure using Maple 2020. Using the parameters r and s, we established a horizontal
grid and, then, constructed a surface on top of that grid. This graph illustrates how the
entropy values exhibit unique patterns corresponding to various causes. These graphs
show various entropy features based on the parameters. We can regulate various variables
and actions by varying the topological indices and entropy via these elements. Each TriCF
chemical network’s general entropy formulation is too lengthy to be given as a theorem.
As mentioned above, the method makes it easy to generate any neighborhood-degree
sum-based entropy expression for each topological index.

Figure 6. Three-dimensional plot of ENM1(γ1).

5. Numerical Computation

This section displays the numerical outcomes of neighborhood-degree sum-based
topological descriptors created for three distinct TriCF structures using entropy measure-
ments. The values of the variables r and s range from 1 to 10. The generated topological
descriptors were plotted using the Origin 2020 b application for a graphical comparison.
The outcomes are summarized in Tables 4–6. Figure 5 depicts this tendency in three di-
mensions. These 3D charts illustrate the variation of each topological index for a particular
structure. The behavior of a specific index for each of the three alternative structures that
are the subject of this article can also be compared using 3D graphs. The following tables
and figures analyze various entropies for all the possible structures of the TriCF molecular
graph in numerical and graphical form.
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Table 4. Numerical values for neighborhood-degree sum-based entropies of a linear chain
TriCF structure.

r → 1 2 3 4 5 6 7 8 9 10

ER(γ1) 3.9779 4.4903 4.8276 5.0793 5.2803 5.4476 5.5908 5.7161 5.8274 5.9276
ERR(γ1) 3.9814 4.4935 4.8306 5.0823 5.2831 5.4503 5.5936 5.7188 5.8301 5.9302

ERRR(γ1) 3.977 4.4899 4.8274 5.0792 5.2802 5.4475 5.5908 5.7161 5.8274 5.9276
EM1(γ1) 3.9824 4.4943 4.8313 5.0829 5.2838 5.451 5.5942 5.7194 5.8307 5.9308
EM2(γ1) 3.9643 4.4795 4.818 5.0704 5.2718 5.4394 5.5828 5.7083 5.8197 5.92

ERM2(γ1) 3.9523 4.4698 4.8093 5.0623 5.2641 5.4319 5.5755 5.7011 5.8127 5.9131
EHM(γ1) 3.9671 4.4818 4.82 5.0723 5.2736 5.4411 5.5845 5.71 5.8214 5.9216
EAZ(γ1) 3.954 4.4712 4.8105 5.0634 5.2651 5.4329 5.5765 5.7021 5.8136 5.914
EH(γ1) 9.1795 11.7376 14.0571 16.2695 18.4211 20.5336 22.6189 24.684 26.7338 28.7714
ESC(γ1) 3.9868 4.498 4.8346 5.086 5.2867 5.4538 5.597 5.7222 5.8334 5.9335
EGA(γ1) 3.9889 4.4998 4.8362 5.0876 5.2882 5.4553 5.5984 5.7236 5.8348 5.9349
EIS(γ1) 3.9804 4.4927 4.8299 5.0816 5.2825 5.4497 5.5929 5.7182 5.8295 5.9296

EAZI(γ1) 3.9882 4.4991 4.8357 5.087 5.2877 5.4548 5.5979 5.7231 5.8343 5.9344
EF(γ1) 3.9696 4.4838 4.8218 5.074 5.2753 5.4427 5.5861 5.7115 5.8229 5.9231

EABC(γ1) 4.5889 5.7275 6.6214 7.376 8.0385 8.6346 9.1802 9.6858 10.1586 10.6041

Table 5. Numerical values for the neighborhood-degree sum-based entropies of a parallelogram
TriCF structure.

(r, s) → 1 2 3 4 5 6 7 8 9 10

ER(γ2) −150.6809 −158.9867 −162.4445−164.3874−165.6278 −166.4793−167.0923−167.5486 −167.8965 −168.1668
ERR(γ2) −14.3228 −13.8865 −13.4802 −13.1369 −12.8428 −12.5861 −12.3585 −12.1542 −11.9688 −11.7991

ERRR(γ2) −9.3014 −8.7902 −8.3518 −7.9898 −7.6833 −7.4176 −7.1833 −6.9737 −6.7841 −6.6109
EM1(γ2) 3.9824 4.9654 5.595 6.0657 6.4434 6.7595 7.0317 7.2708 7.484 7.676
EM2(γ2) 3.9643 4.9536 5.5861 6.0584 6.4373 6.7543 7.0271 7.2667 7.4803 7.6731

ERM2(γ2) 3.9523 4.946 5.5804 6.0539 6.4335 6.751 7.0242 7.2641 7.4779 7.671
EHM(γ2) 3.9671 4.9554 5.5875 6.0595 6.4382 6.7551 7.0278 7.2673 7.4808 7.6736
EAZ(γ2) 4.3707 5.1949 5.7625 6.1985 6.5538 6.8541 7.1144 7.3444 7.5503 7.7368
EH(γ2) 3.9796 4.9632 5.5932 6.0641 6.442 6.7584 7.0306 7.2698 7.4832 7.6757
ESC(γ2) 3.9868 4.9683 5.5973 6.0675 6.4449 6.7609 7.0329 7.2718 7.485 7.6774
EGA(γ2) 3.9889 4.9698 5.5984 6.0684 6.4457 6.7616 7.0335 7.2724 7.4855 7.6779
EIS(γ2) 3.9804 4.9641 5.5941 6.0649 6.4427 6.759 7.0312 7.2703 7.4836 7.6762

EAZI(γ2) 3.9509 4.944 5.5786 6.0523 6.4321 6.7497 7.0231 7.263 7.477 7.6701
EF(γ2) 3.9696 4.957 5.5887 6.0605 6.439 6.7558 7.0284 7.2678 7.4814 7.6741

EABC(γ2) 4.5889 7.071 9.4073 11.7079 14.002 16.3001 18.6062 20.2467 23.2467 25.5816

Table 6. Numerical values for the neighborhood-degree sum-based entropies of a hexagonal
TriCF structure.

r → 1 2 3 4 5 6 7 8 9 10

ER(γ3) 3.9779 5.3687 6.1816 6.758 7.205 7.5701 7.8787 8.146 8.3818 8.5927
ERR(γ3) 3.9814 5.37127 6.1834 6.7594 7.2061 7.5711 7.8796 8.1468 8.3825 8.5933

ERRR(γ3) 3.977 5.3688 6.1818 6.7582 7.2052 7.5703 7.8789 8.1462 8.3819 8.5928
EM1(γ3) 3.9824 5.3717 6.1837 6.7597 7.2063 7.5712 7.8797 8.1469 8.3826 8.5934
EM2(γ3) 3.9643 5.3622 6.1773 6.7548 7.2024 7.568 7.8769 8.1445 8.3804 8.5914

ERM2(γ3) 3.9523 5.3561 6.1732 6.7518 7.2 7.5659 7.8752 8.1429 8.379 8.5902
EHM(γ3) 3.9671 5.3636 6.1783 6.7556 7.203 7.5685 7.8773 8.1448 8.3807 8.5917
EAZ(γ3) 3.954 5.3569 6.1738 6.7522 7.2003 7.5662 7.8754 8.1431 8.3792 8.5904
EH(γ3) 9.1795 16.6571 23.3695 29.7961 36.0729 42.2578 48.3802 54.4577 60.5011 66.5179
ESC(γ3) 3.9868 5.374 6.1853 6.7609 7.2073 7.5721 7.8804 8.1475 8.3831 8.5939
EGA(γ3) 3.9889 5.3753 6.1862 6.7616 7.2078 7.5725 7.8808 8.1479 8.3834 8.5941
EIS(γ3) 3.9804 5.3706 6.183 6.7592 7.2059 7.5709 7.8794 8.1466 8.3823 8.5932

EAZI(γ3) 3.9882 5.3748 6.1859 6.7613 7.2077 7.5723 7.8807 8.1477 8.3833 8.5941
EF(γ3) 3.9696 5.3649 6.1791 6.7562 7.2036 7.5689 7.8777 8.1452 8.381 8.592

EABC(γ3) 4.5889 8.5204 12.4547 16.4326 20.4534 24.5118 28.6026 32.7216 36.8652 41.0305
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Results and Discussion

If we examine the entropy measures in Figure 7a,c, we can see that the neighborhood
harmonic (NH) significantly impacts the initial structure more than the other indices. At
the same time, Figure 7b shows that the NABC outperforms the other entropy measures.
The stability study of the generalized TriCF structure using numerical information entropy
values and the derived entropy formulae are new findings that can connect Shannon’s
entropy with traditional thermodynamic entropy.

(a) Entropy of γ1

(b) Entropy of γ2

(c) Entropy of γ3

Figure 7. Comparison of entropy measures for TriCF structures.
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In this study, we determined the neighborhood degree sum indices, multiplicative
neighborhood degree sum indices, and entropy of TriCF structure using the neighborhood
degree sum edge partition. From the computation and analysis, we obtained that the
neighborhood harmonic indices and neighborhood ABC indices both have more impact
than other indices and are highly correlated to the thermodynamic properties of the TriCF
structures [16–18,22,23,37]. In the previous study [9], we determined degree-based indices,
multiplicative degree-based indices, and the entropy values of the TriCF structure by the
edge partition method based on the degrees of the end vertices and reciprocal Randić
indices showed a higher impact. This will simulate molecules’ physical and chemical
characteristics [3,5,15] regarding the structure. Therefore, by employing degree-based and
neighborhood degree-sum-based approaches, future researchers can easily compute the
topological indices of upcoming TriCF structures, and also, these studies will help them
produce different types of TriCF structures for different applications.

6. Conclusions

In this study, neighborhood-degree-based topological indices were computed using
multiplicative and entropy measures. Using these indices, scientists can predict a range of
molecular compound properties without requiring expensive or time-consuming studies.
The computed findings are, therefore, crucial in predicting TriCF system properties. This
is a newly synthesized lubricant whose physical, chemical, and experimental properties
have yet to be investigated. As a result, the researchers will be able to advance their work
with the support of this current study. For further use, we also generated the multiplicative
neighborhood topological indices for the TriCF structure. Both theoretical chemists and
industry experts will find this paper’s graphical representation and numerical comparison
of the computed findings beneficial. With the aid of the observations produced regarding
the effectiveness of various indices, other researchers will be able to choose the indices
more efficiently. The same classes, distance-based indices, QSAR, and QSPR, are being
developed because they are also crucial for research.
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