
Citation: Alshammari, F.S.;

Rahman, Z.; Roshid, H.-O.;

Ullah, M.S.; Aldurayhim, A.; Ali,

M.Z. Dynamical Structures of

Multi-Solitons and Interaction of

Solitons to the Higher-Order KdV-5

Equation. Symmetry 2023, 15, 626.

https://doi.org/10.3390/

sym15030626

Academic Editors: Lorentz

Jäntschi, Juan Luis García Guirao

and Sergei D. Odintsov

Received: 19 October 2022

Revised: 6 December 2022

Accepted: 11 December 2022

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Dynamical Structures of Multi-Solitons and Interaction
of Solitons to the Higher-Order KdV-5 Equation
Fahad Sameer Alshammari 1,* , Zillur Rahman 2,3, Harun-Or Roshid 4 , Mohammad Safi Ullah 2,3,
Abdullah Aldurayhim 1 and M. Zulfikar Ali 3

1 Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattambin Abdulaziz
University, Alkharj 11942, Saudi Arabia

2 Department of Mathematics, Comilla University, Cumilla 3506, Bangladesh
3 Department of Mathematics, Rajshahi University, Rajshahi 6205, Bangladesh
4 Department of Mathematics, Pabna University of Science and Technology, Pabna 6600, Bangladesh
* Correspondence: f.alshammari@psau.edu.sa

Abstract: In this study, we build multi-wave solutions of the KdV-5 model through Hirota’s bilinear
method. Taking complex conjugate values of the free parameters, various colliding exact solutions in
the form of rogue wave, symmetric bell soliton and rogue waves form; breather waves, the interaction
of a bell and rogue wave, and two colliding rogue wave solutions are constructed. To explore the
characteristics of the breather waves, localized in any direction, the higher-order KdV-5 model, which
describes the promulgation of weakly nonlinear elongated waves in a narrow channel, and ion-
acoustic, and acoustic emission in harmonic crystals symmetrically is analyzed. With the appropriate
parameters that affect and manage phase shifts, transmission routes, as well as energies of waves, a
mixed solution relating to hyperbolic and sinusoidal expression are derived and illustrated by figures.
All the single and multi-soliton appeared symmetric about an axis of the wave propagation. The
analyzed outcomes are functional in achieving an understanding of the nonlinear situations in the
mentioned fields.

Keywords: fifth-order KdV equations; Hirota’s bilinear technique; lump; multiple solitons; breather
solution

1. Introduction

Nonlinearity in models has been an issue of focus in the study of the corporal charac-
teristics in fields such as fluid motion, plasma, condensed themes in physics, aerographic,
optics, atmospheric discipline, etc. Nonlinear disciplines have three types, namely soliton,
fractal, and chaos. Currently, the major significant and efficient research arena in nonlinear
discipline is the theory of solitons [1–8]. Lump, rogue, and breather waves are the main
issues in such soliton theory. The term “lump wave” describes localized waves with one
peak and one trough. It is localized in all directions of space and was first introduced by
Manakov and others in 1977 [9]. Waves that appear suddenly out of nowhere in the sea and
vanish without leaving any trace are called rogue waves. In 1965, Draper first introduced
the concept [10]. Breathers are localized breathing waves with a periodic structure in a
certain direction. It can also be used to explain rogue wave phenomena. We are going
to discuss some aspects of the KdV-5 higher-order KdV-type equation in soliton physics,
especially in the case of the interaction of soliton in nonlinear science.

To investigate the properties of solitons, a lot of powerful techniques (the extended hy-
perbolic function method [11], ϕ6 model expansion scheme [12], the unified technique [13,14],
the tanh technique [15], the exp (−Φ(η))-expansion technique [16], the first integral
technique [17], the inverse variational scheme [18], Darboux transformation [19], Hirota
bilinear technique [20], etc.) have been applied by renowned researchers. The Hirota
bilinear technique is more popular for its simplicity and directness. This method was first
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derived by Hirota [20]. Its simplified formula was extensively applied in the literature in
different nonlinear studies [21–23]. This technique become operative and useable within
a short time by dynamical researchers and was applied to obtain soliton, multi-soliton,
lump wave, rogue wave, breather wave, and localized forms of wave solutions [24–30].
Besides this, dynamical researchers have derived the non-existence of global solutions of
the time-fractional differential model [31], double Wronskian solutions [32], bright-dark
and rogue soliton solutions [33], and Pfaffian solutions [34] with variable coefficients in the
recent literature.

The KdV model was first derived to develop shallow water waves in narrow chan-
nels. The extended higher-order KdV model carries four non-linear terms and two linear
dispersive terms compared with the standard KdV-5 models, and analyzes various types
of dynamical solutions with properties arising in shallow-water or surface waves [35–40].
Besides this, a few KdV classes are investigated in [41,42].

In this paper, we aim to explain the physical shape of the following extended higher-
order KdV-5 models [40] to analyze the rogue, lump, and breather pattern in symmetry,
and the interaction of solitons in which few solutions come in symmetrical form. The
mentioned model is

Ψt + cΨx + 3ΨΨx + 5α2(ΨΨxxx + 2ΨxΨxx) +
15α2

2β Ψ2Ψx

+β(α2Ψxxxxx + Ψxxx) = 0, β 6= 0.
(1)

We think this study will establish and clarify the physical structural solutions of
the extended higher-order KdV-type KdV-5 equation, which will be helpful for further
nonlinear study. To the best of the authors’ knowledge, multi-solitons of the higher-order
KdV-5 equation by Hirota’s bilinear method have not been studied before.

The structure of this paper is as follows: first, we constructed the multi soliton solutions
of the higher-order KdV-5 model. Then, we used the complex conjugate values of free
parameters into the established the multi-soliton solutions of this model and derived
the rogue and breather interactions of them. Lastly, conclusions and some comments
are provided.

2. The Extended Higher-Order KdV-5 Equations

It is important to find the collision shapes for the nonlinear waves. We are eager to
find breather-type collision solutions to the extended KdV-5 equation in this segment. Here,
we begin our analysis by studying the extended KdV-5 model in Equation (1).

In the beginning, suppose an auxiliary solution is

Ψ(x, t) = eνi = eκix−ωit, where νi = κix−ωit. (2)

From The linear term of Equation (1), to solve the dispersion relation

ωi = cκi + β
(

κ3
i + α2κ5

i

)
, i = 1, 2, 3, 4. (3)

Additionally, the corresponding phase variables are

νi = κix−
{

cκi + β(κ3
i + α2κ5

i )
}

t. (4)

The phase shift relation of Equation (1) is

Aij =
(κi − κj)

2

(κi + κj)
2 , when i, j = 1, 2, 3, . . . N. (i < j). (5)

The multi-soliton solutions can take the transformation

Ψ(x, t) = h(ln f (x, t))xx. (6)
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For a different one, or more than one soliton, the solution is given by

f (x, t) = 1 +
N
∑

i=1
exp(vi) +

N
∑
i<j

Aij exp(vi + vj)

+
N
∑

i<j<k
Aij Ajk Aik exp(vi + vj + vk) + . . . . . . . . . +

N
∏
i<j

Aij(
N
∑
i

exp(vi)
(7)

For single soliton, i.e., N = 1, then substituting Equation (6) into Equation (1) and solving
for h, we find

h = 4β. (8)

Case1: To find the lump wave, we consider 2-soliton solutions for N = 2. Then, the
test function from Equation (7) is given by,

f (x, t) = 1 + eν1 + eν2 + A12eν1+ν2 (9)

with
ν1 = κ1x−ω1t and ν2 = κ2x−ω2t,

κ1 = p1 + iq1 and κ2 = p1 − iq1 then

ω1 = m + in and ω2 = m− in.

From

ω1 = m + in andω2 = m− in, we have m = ω1+ω2
2 =

cκ1+β(κ3
1+α

2κ5
1)+cκ2+β(κ3

2+α
2κ5

2)
2

=
c(p1+iq1)+β((p1+iq1)

3+α2(p1+iq1)
5)+c(p1−iq1)+β((p1−iq1)

3+α2(p1−iq1)
5)

2
= α2βp1

5 − 10α2βp1
3q1

2 + 5α2βp1q1
4 + βp1

2 − βq1
2 + cp1

2 − cq1
2

and
n = ω1−ω2

2i =
cκ1+β(κ3

1+α
2κ5

1)−cκ2−β(κ3
2+α

2κ5
2)

2i

=
c(p1+iq1)+β((p1+iq1)

3+α2(p1+iq1)
5)−c(p1−iq1)−β((p1−iq1)

3+α2(p1−iq1)
5)

2i
= q1(5α

2βp1
4 − 10α2βp1

2q1
2 + α2βq1

4 + 2βp1 + 2cp1).

with phase shift from Equation (5) given by

A12 = −
q2

1
p2

1

Simplifying Equation (9) and applying the above relation gives

f (x, t) = 1 + 2eσ1 cos(ξ1) + A12e2σ1, (10)

where σ1 = p1x−mt and ξ1 = q1x− nt.
Substituting Equation (10) into Equation (6),

Ψ(x, t) = 4β
{

ln(1 + 2eσ1 cos(ξ1) + A12e2σ1)
}

xx
(11)

The solution to Equation (11) comes via selecting the complex structure of the existing
parametric values from 2 solitons and obtaining rogue shape breather waves.

The nature of the solution to Equation (11) is plotted in a 3D shape in Figure 1a and
in a contour plot in Figure 1b with the parameters, p1 = −1.3, q1 = 2, c = 0.02, α = 0.2,
β = 0.5. Figure 1c represents 2D plots for time variations t = −2, t = 0 and t = 2. We
see that the solution displays multirogue-shape breather waves along the paradox. Its
speed, width, and channel remain the same for the whole dynamic procedure and periodic
rogues occur at equal distances from one another. From its contour plots, the real shape and
direction are observed. Again, if we assume purely imaginary parameters, then the solution
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to Equation (11) displays a breather line wave. Figure 1d–f portray 3D, contour, and 2D
plots correspondingly for the parametric values p1 = 0, q1 = 2, c = 0.02, α = 0.2, β = 0.5
and t = −2, t = 0, t = 2. All the figures are drawn using Maple software.
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Figure 1. (a,b) are outlooks of Equation (11) in 3D and contour plots, respectively, with the parametric
values p1 = −1.3, q1 = 2, c = 0.02, α = 0.2, β = 0.5. (c) signifies the corresponding 2D plot for
Equation (11) for t = −2, t = 0, t = 2; (d,e) represent the outlook of the breather waves for the
parameters p1 = 0, q1 = 2, c = 0.02, α = 0.2, β = 0.5. (f) is a corresponding 2D plot of breather
waves for t = −2, t = 0, t = 2.

Case2: Consider N = 3 in Equation (6) to find three soliton solutions. Then, the
function f (x, t) can be written as

f (x, t) = 1 + eν1 + eν2 + eν3 + A12eν1+ν2 + A23eν2+ν3 + A13eν1+ν3 + A123eν1+ν2+ν3 (12)

where
ν1 = κ1x−ω1t, ν2 = κ2x−ω2t and ν3 = κ3x−ω3t.

Let
κ1 = p1x + iq1, κ2 = p1x− iq1, and κ3 = τ,

ω1 = m + in, ω2 = m− in and ω3 = c + αc3 + α3βc5,

where

m = α2βp1
5 − 10α2βp1

3q1
2 + 5α2βp1q1

4 + βp1
2 − βq1

2 + cp1
2 − cq1

2,

n = q1(5α
2βp1

4 − 10α2βp1
2q1

2 + α2βq1
4 + 2βp1 + 2cp1),

and phase shift terms from Equation(5) are

A12 = −
q2

1
p2

1
, A23 = p1 + iq1 = ρ1 exp(iθ1) and A13 = p1 − iq1 = ρ1 exp(−iθ1),

where
ρ1 =

√
p1

2 + q1
2 and θ1 = tan−1(

q1

p1
).
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Using the above relations from Equation (12) we have

f (x, t) = 1 + 2eσ1 cos(ξ1) + eΛx−(cΛ+βΛ3+α2βΛ5)t + A12e2σ1

+2ρ1e(σ1+Λx−(cΛ+βΛ3+α2βΛ5)t cos(ξ1 + θ1) + ρ1
2 A12e{2σ1+Λx−(cΛ+βΛ3+α2βΛ5)t} , (13)

where σ1 = p1x−mt and ξ1 = q1x− nt.
Substituting Equation (13) into Equation (6),

Ψ(x, t) = 4β
{

ln(1 + 2eσ1 cos(ξ1) + eΛx−(cΛ+βΛ3+α2 βΛ5)t + A12e2σ1

+2ρ1e(σ1+Λx−(cΛ+βΛ3+α2 βΛ5)t cos(ξ1 + θ1) + ρ1
2 A12e{2σ1+Λx−(cΛ+βΛ3+α2 βΛ5)t})

}
xx

.
(14)

In Equation (14), the solution comes from the combination of exp and sinusoidal
functions exhibiting the interaction of a periodic rogue and bell shape line solitons, as
viewed in Figure 2 for p1 = −1.3, q1 = 0.2, c = 0.02, α = 0.05, β = 2, Λ = −0.5.
It is interesting that before the (t < 0) interaction there are 2 waves (periodic rogue
and bell shape line solitons) interacting at t = 0 and then rogue type soliton split into
two parts of rogue type waves (See Figure 2). Therefore, a completely non-elastic collision
solution is obtained. The actual structure of the collision is shown from its 3D plot in
Figure 2a and contour plots in Figure 2b. A corresponding 2D plot is shown in Figure 2c
for t = −2, t = 0, t = 2. Again, for the purely imaginary values of the parameters, the
solution to Equation (14) displays the collision of breather line waves with kinky waves,
providing kinky type breather waves. It is portrayed in Figure 2d,e for the parametric
values p1 = 0, q1 = 0.35, c = 0.5, α = 0.2, β = 0.5, Λ = 0.5. The corresponding 2D
plot is displayed in Figure 2f for t = −3, t = 0, t = 3. All the figures are drawn using
Maple software.
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Figure 2. (a,b) are the outlooks of Equation (14) in 3D and contour plots, respectively, with the
parametric values p1 = −1.2, q1 = 0.15, c = −1, α = 0.005, β = 2, Λ = −0.5. (c) signifies the
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Case3: For N = 4, we can find the four soliton solutions. The test function from
Equation (6) is

f (x, t) = 1 + eν1 + eν2 + eν3 + eν4 + A12eν1+ν2 + A13eν1+ν3+
A14eν1+ν4 + A23eν2+ν3 + A24eν2+ν4 + A34eν31+ν4 + A123eν1+ν2+ν3+
A234eν2+ν3+ν4 + A134eν1+ν3+ν4 + A1234eν1+ν2+ν3+ν4

(15)

where
ν1 = κ1x−ω1t, ν2 = κ2x−ω2t, ν3 = κ3x−ω3t and ν4 = κ4x−ω4t.

Let
κ1 = p1 + iq1, κ2 = p1 − iq1, κ3 = p2 + iq2 and κ4 = p2 − iq2,

ω1 = m1 + in1, ω2 = m1 − in1, ω3 = m2 + in2 and ω4 = m2 − in2,

where

m1 = α2βp1
5 − 10α2βp1

3q1
2 + 5α2βp1q1

4 + βp1
2 − βq1

2 + cp1
2 − cq1

2n1 = q1(5α
2βp1

4 − 10α2βp1
2q1

2 + α2βq1
4 + 2βp1 + 2cp1),

m2 = α2βp2
5− 10α2βp2

3q2
2 + 5α2βp2q2

4 +βp2
2−βq2

2 + cp2
2− cq2

2, n2 = q2(5α
2βp2

4− 10α2βp2
2q2

2 +α2βq2
4 + 2βp2 + 2cp2).

The term phase shift terms of Equation(5) are

A12 = −
q2

1
p2

1
, A23 = p1 + iq1 = ρ1 exp(iθ1) and A13 = p1 − iq1 = ρ1 exp(−iθ1).

A14 = −
q2

2
p2

2
, A14 = p2 + iq2 = ρ2 exp(iθ2) and A23 = p2 − iq2 = ρ2 exp(−iθ2).

To find the values of ρ1, ρ2, θ1 and θ2, we will apply ρi =
√

pi
2 + qi

2 and θi = tan−1( qi
pi
),

where i = 1, 2.
Simplifying Equation (15) and applying the above relations, we have

f (x, t) = 1 + 2eσ1 cos(ξ1) + A12e2σ1 + 2eσ2 cos(ξ2) + A34e2σ2+

2ρ1e(σ1+σ2) cos(ξ1 + ξ2 + θ1) + 2ρ2e(σ1+σ2) cos(ξ1 − ξ2 + θ2)+

2a12ρ1ρ2e(2σ1+σ2) cos(ξ2 + θ1 + θ2) + 2A34ρ1ρ2e(σ1+2σ2) cos(ξ1 + θ1 − θ2)+

a12a34ρ1
2ρ2

2e(2σ1+2σ2),

(16)

Here σ1 = a1x−m1t, ξ1 = b1x− n1t, σ2 = a2x−m2t and ξ2 = b2x− n2t.
Substituting Equation (16) into Equation (6),

Ψ(x, t) = 4β ln(1 + 2eσ1 cos(ξ1) + A12e2σ1 + 2eσ2 cos(ξ2) + A34e2σ2+

2ρ1e(σ1+σ2) cos(ξ1 + ξ2 + θ1) + 2ρ2e(σ1+σ2) cos(ξ1 − ξ2 + θ2)+

2a12ρ1ρ2e(2σ1+σ2) cos(ξ2 + θ1 + θ2) + 2A34ρ1ρ2e(σ1+2σ2) cos(ξ1 + θ1 − θ2)

+a12a34ρ1
2ρ2

2e(2σ1+2σ2))xx.

(17)

In Equation (17), the solution comes from the mixture of exp and periodic sinusoidal
functions exhibiting the interaction of double periodic rogue solitons, as shown in Figure 3
with p1 = −1.3, p2 = 1, q1 = 0.8, q2 = 0.45, c = 2, α = 0.25, β = 1. It is interesting
that in earlier (t < 0) and later (t > 0) interactions, each rogue remains in the same
solitonic nature and interacts at t = 0 coming along the reverse paradox (See Figure 3).
We see that some rogue waves periodically get into each soliton, being equidistant from
one another. The real structure, direction, and collision solutions are observed from its 3D
plot in Figure 3a and contour plots in Figure 3b. The 2D plot is represented in Figure 3c with
t = −5, t = 0, t = 5. Again, the solution to Equation (17) shows the interaction of double-
breather shape line solitons with an acute angle for the purely imaginary parameters. It’s
3D and contour shapes are portrayed in Figure 3d,e for the parametric values p1 = 0,
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p2 = 0, q1 = 1, q2 = 1, c = 1, α = −1, β = 1 and the 2D plot is represented in Figure 3f
with t = −1, t = 0, t = 1. All the figures are drawn usingMaple software.
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2D plot of breather wave for 1,0,1 ==−= ttt . 
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In this research, we have successfully employed the Hirota bilinear technique to 

analyze exact multi-wave solutions of the KdV-5model. Diverse types of parameters have 
been nominated to obtain and distinguish the dynamical properties of the multi-wave 
solutions for nonlinear systems. Consequently, we derived periodic lump waves with a 
rogue-type line wave, which is symmetric with the line, periodic cross-lump wave, 
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Figure 3. (a,b) are the outlooks of Equation (17) in 3D and contour plots, respectively, with the
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corresponding 2D plot for Equation (17) for the values of t = −5, t = 0, t = 5; (d,e) represent the
outlook of the breather waves for the parameters p1 = 0, p2 = 0, q1 = 1, q2 = 1, c = 1, α = −1,
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3. Conclusions

In this research, we have successfully employed the Hirota bilinear technique to
analyze exact multi-wave solutions of the KdV-5model. Diverse types of parameters have
been nominated to obtain and distinguish the dynamical properties of the multi-wave
solutions for nonlinear systems. Consequently, we derived periodic lump waves with a
rogue-type line wave, which is symmetric with the line, periodic cross-lump wave, lump-
type periodic breather wave, and kinky-lump-type periodic breather waves setting complex
values of free parameters. This technique has some advantages as it is easy, recognizable,
and elementary, and it can also be used for other nonlinear models.
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