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Abstract: The optimal control theory in mathematics aims to study the finding of control for a dynamic
system over time, where an objective function is optimized. It has a broad range of applications in
engineering, operations research, and science. The main purpose of this study is to provide numerical
algorithms for two cases of optimal control problems of fractional order that involve fractional order
derivatives with free and non-free terminal time. In addition to comparing the numerical results
for three test problems with exact solutions of these problems, various computer simulations are
also introduced.

Keywords: optimal control; fractional differential equations (FDEs); fractional optimal control problems
(FOCPs); free terminal time

1. Introduction

Optimal control is the study of finding a dynamic control system over time in order to
optimize an objective function. It has many uses in operations research, engineering, and
science. For instance, the dynamic system could be a spacecraft with controls that corre-
spond to rocket thrusters, and the goal could be to reach the moon using the least amount of
fuel. In terms of result, the dynamic system could be a country’s economy with the goal to
minimize unemployment; in this scenario, the controls could be fiscal and monetary policy.
It is also possible to integrate operations research issues into the framework of optimal
control theory by using a dynamic system. Additionally, a branch of mathematics and
physics known as the fractional dynamics examines how objects and systems behave by
differentiating fractional orders. Research on fractional dynamical systems has produced
novel findings that have attracted the interest of a significant audience of professionals,
including mathematicians, physicists, applied researchers, and practitioners. This is due to
the topic’s wide applications in science and technology. In contrast to integer-order models,
however, fractional-order models offer the potential to express non-local relations in time
and space using power law memory kernels [1]. Consequently, this indicates that they offer
more accurate and more realistic results. Moreover, the standard integral and differential
calculus are generalized to any order in fractional calculus. If the order of the fractional
derivative operator is an integer m, we obtain an m-fold integral when m is negative and
the traditional derivative of order m when m is positive. Furthermore, for the review of the
literature on numerical studies of fractional optimal control problems (FOCPs), Agrawal [2]
preformed a formulation and numerical scheme for FOCPs, the work in [3] introduced the
numerical solution of some types of FOCPs, while Bhrawy et al. [4] introduced an accurate
numerical technique for solving FOCPs. Furthermore, a new method for the numerical
solution of FOCPs was introduced in [5]. Furthermore, to solve multidimensional FOCPs
with a quadratic performance index, the authors of [6] developed a practical numerical
method for the purpose of solving FOCPs, and Doha et al. [7] investigated an effective
numerical method based on the shifted orthonormal Jacobi polynomials. However, the
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generalized differential transform approach was used in [8] to introduce the numerical
solutions of the coupled space-and-time Burgers equations. Lotfi et al. [9] introduced a
numerical technique for solving FOCPs, Pooseh et al. [10] introduced a numerical scheme
to solve FOCPs, Zhao and Li [11] solved the time–space fractional telegraph equation using
the fractional difference-finite element, and Mechee and Senu [12] studied the numerical so-
lution of fractional differential equations of Lane–Emden type by the method of collocation.
For the space fractional diffusion equations, Zhou et al. [13] studied the quasi-compact
finite difference schemes, and Bhrawy et al. [14] investigated a new Jacobi spectral colloca-
tion approach for fractional coupled Schrödinger systems and 1 + 1 fractional Schrödinger
equations. At the same time, for the review of the literature on Legendre polynomials, using
a Chebyshev–Legendre operational technique, Bhrawy et al. [15] solved the fractional opti-
mal control for dynamical systems problems (FOCDSs). In fact, Yousefi et al. [16] employed
a Legendre multiwavelet collocation approach in order to solve the FOCPs. In contrast,
Bhrawy and Ezz-Eldien [17] used a new Legendre operational technique for solving delay
FOCPs, in similar to Dirichlet boundary conditions, Heydari et al. [18] solved fractional
partial differential equations (FPDEs) using the Legendre wavelets method. On the other
hand, for the solution of fractional sub-diffusion and reaction sub-diffusion equations, Doha
et al. [7] utilized an effective Legendre spectral tau matrix formulation, Khan and Khalil [19]
provided a new approach that is based on Legendre polynomials. In parallel to these re-
searchers, Sweilam and Al-Ajami [20] solved some types of FOCPs using the Legendre
spectral-collocation method; additionally, some authors studied different cases of fractional
differential equations. To solve the space fractional order diffusion equation, Sweilam
et al. [21] utilized the second sort of shifted Chebyshev polynomials, but a discrete method
for solving FOCPs was introduced in [22], while ref. [23] established a fractional adaptation
strategy for lateral control of an AGV; whereas, Pinto and Tenreiro Machado [24] introduced
the fractional dynamics of computer virus propagation, Pooseh et al. [25] studied the FOCPs
with free terminal time by using operational matrices of Bernstein polynomials, Jafari and
Tajadodi [26] solved the FOCPs, and Jesus and Tenreiro Machado [27] investigated the
fractional control of heat diffusion systems. Thereafter, for a review of more literature on
the applications, Ahmad and El-Khazali [28] introduced the fractional-order dynamical
models of love and David et al. [29] studied fractional-order calculus, meanwhile, analog
fractional-order controllers for temperature and motor control applications were studied
in [30,31] introduced a 2D dynamic analysis of the model of disturbances in the calcium
neuronal model and its implications in neurodegenerative disease; the work in [32] intro-
duced the fractional sub-equation method and its applications to nonlinear fractional PDEs,
whereas Kreyszig [33] studied historical apologia, fundamental ideas, as well as certain
applications. Lastly, a fractional-order iterative learning control (FOILC) design challenge
for linear time-varying systems with nonuniform trial durations was addressed in [34].
Additionally, a closed-loop FOILC updating legislation has been provided for activities
with variable trial lengths. A central idea that unifies the coordination, prioritization, and
execution of digital transformations within a firm was investigated in [35] in organizations
that needed to build management procedures to oversee initiatives to investigate new
digital technologies. For the purpose of tracking control of fractional-order linear systems,
Zhao et al. [36] developed a revolutionary FOILC approach. In the meantime, the same
beginning condition assumption is relaxed with the introduction of an initial state learning
mechanism. For the FOCPs exposed to fractional systems with equality and inequality
constraints, Sabermahani and Ordokhani [37] investigated fractional optimal control issues
using the Fibonacci wavelets and Galerkin approach.

The free and non-free terminal time optimal control for dynamical systems (OCDSs)
is introduced in this study. Additionally, the direct search approach to the unconstrained
optimization problem is investigated. The proposed numerical methods for solving the
optimal control problems of fractional orders with free and non-free terminal time are then
constructed. The algorithm of the known procedure as Hooke and Jeeves’s method is used
in the computation.
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2. Main Problem

A dynamic system’s optimal control problem is the task of determining the control
law that minimizes a performance index in terms of the state and control variables. Many
authors have recently studied a wide range of optimization issues related to the integer
optimal control of differential systems. In this research, we propose a novel numerical
method for approximating the solutions of the fractional optimal control systems in both
cases with free- and non-free terminal time.

Case I: Non-Free Terminal Time
Consider

min
x(τ),u(τ)

J(τ, x(τ), u(τ)) = min
x(τ),u(τ)

∫ τ1

τ0

P(τ, x(τ), u(τ))dτ, (1)

subjected to the constricted dynamical system

αẋ(τ) + βDγx(τ) = γ(τ)x(τ) + f (τ)u(τ) + g(τ), τ0 ≤ τ ≤ τ1, 0 ≤ γ ≤ 1. (2)

The constricted boundary conditions are as follows:

x(τ0) = ζ, x(τ1) = η, (3)

where α, β 6= 0,

Case II: Free Terminal Time
Consider the FOCP in the equations

min
x(τ),u(τ),T

J(τ, T, x(τ), u(τ)) = min
x(τ),u(τ),T

∫ T

τ0

P(τ, x(τ), u(τ))dτ, (4)

subjected to the constricted dynamical system in Equation (2) with the free terminal time:

x(t0) = c, x(T) = d, (5)

where T is a free parameter.
Firstly, for using the proposed numerical approach, we use the basic polynomials to

approximate the state variable x(τ) with the control variable u(τ), and the known functions
e(τ), f (τ), and g(τ) are given. The second stage of the numerical method involves using
a search method such as the Hooke and Jeeves method to optimize the parameters of
the approximation in case of the problem of fractional order of optimal control systems
with free terminal time together to the parameter of T in case of non-free terminal time.
The manuscript is organized as follows. Section 3 introduces the basic definitions and
background related to the problem of this study, while Section 4 presents the numerical
methods and studies the proposed numerical method for solving FOCPs with free and
non-free terminal time. Furthermore, Section 5 introduces the implementations of test
examples for solving two types of fractional optimal control dynamical systems with free
and non-free terminal time. Lastly, this paper ends with a discussion and conclusions in
Section 6.

3. Preliminary

We have introduced the basic definitions and background related to the problem of
this study.

3.1. Basic Definitions of the Fractional Derivatives and (FOCDS) with Free and Non-Free Terminal Time

The fundamental definitions of fractional derivatives as well as the free and non-free terminal
times of fractional-order optimal control problems are introduced in this subsection.
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Definition 1. Non-Free Terminal Time (FOC) Problem
The (FOC) problem in Equations (1)–(3) is said to be a non-free terminal time if we have a

constraint in t1 that means it is fixed else free terminal time (FOC) if t1 = T is not a fixed parameter.
The following are two famous fractional derivatives since a large number of scholars have worked to
establish a fractional derivative. In the literature, the fractional derivative often was presented in
integral form. Two famous fractional derivatives are known as follows:

(i) Let f : [a, ∞) → <. and a > 0. The fractional definition of f using the Riemann–Liouville
derivative for α ∈ [n− 1, n) is defined by:

Definition 2. Riemann–Liouville Fractional Integral The left and right Riemann–Liouville (RL)
fractional integral operators of order α > 0

aDα
τy(τ) =

1
Γ(n− α)

dn

dτn

∫ τ

a

y(τ)
(τ − x)n−α−1 dx, (6)

and

aDα
τy(τ) =

1
Γ(n− 1)

dn

dτn

∫ τ

a
(τ − s)n−α−1y(s)ds, (7)

respectively, such that n is an integer and n− 1 < α < n, n ∈ N. Additionally, (ii) the Caputo
derivative definition of f , for α ∈ [n− 1, n), is defined as follows:

Definition 3. The Fractional Caputo Derivative

aDα
τ f (τ) =

1
Γ(n− α)

∫ τ

a

f (n)(τ)
(τ − x)α−n−1 dx, (8)

where n is an integer and n− 1 < α < n, n ∈ N The fractional integral and derivative in the
Definitions 2 and 3 satisfy the linearity properties for the fractional integrals and derivatives for
α > 0, n− 1 ≤ α < n.

3.2. Hooke and Jeeves Direct Search Method Analysis

In this subsection, the direct search method for solving the unconstrained optimiza-
tion problem

min
X

f (X), (9)

where the objective function f maps <n into <⋃{+∞} and X = (x1, x2, x3, . . . , xn), is intro-
duced.

3.2.1. Algorithm of Hooke and Jeeves Method

1. Set k = 0;
2. Choose an initial point X(k) and indicate the variable increments with4i for

i = 1, 2, . . . , N, where the factor of step reduction is a > 1, and the termination parameter is ε;
3. Use X(k) as the base point for an experimental move. Consider the result of the ex-

ploratory maneuver to be X. Set Z(k + 1) = X and proceed to Step 4 if the exploratory
move is successful; otherwise, proceed to Step 3;

4. Is ||4|| < ε? If so, terminate; otherwise, set A= A/a for i = 1, 2, . . . , N and go to Step 3;
5. Perform the pattern move after setting k = k+1: Xp(k+ 1) = Xp(k)+ X(k)−X(k+ 1);
6. Perform another exploratory move using Xp as the base point. Let the result be

X(k + 1);
7. Is f (X(k + 1)) < f (X(k))? If so, go to Step 5; otherwise, go to Step 4.
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3.2.2. The Convergence of Hooke and Jeeves Method

The set of points produced by the direct algorithm is consistently dense in the search
region for all box selection methods. When Nmax = 1 and Hmin = 0, the proposed
algorithm’s properties of convergence are examined. The sequence of the solutions of the
problem in Equation (9) is {X(0), X(1), . . . , X(k), X(k + 1), . . . }, which is obtained using
the Hooke and Jeeves method. This sequence satisfies the convergence conditions according
to the condition in step three.

Consider ξ ∈ E to be arbitrary, where

E = zm + hmeso[−1; 1]n.

For each valid box selection approach, let {δr}∞
r=1 represent the points produced by strategy Γ.

Let

∆(r) = max
Γ

max
ξ∈E

min
i=1,2,...,r

||ξi − δi||.

Then, ∆(r) −→ 0 as r −→ ∞.

4. The Numerical Method

In this section, the proposed numerical method for solving (FOC) problems with free-
and non-free terminal time is introduced.

4.1. Proposed Algorithm

In this subsection, we write the algorithm of the proposed numerical approach for
approximating the solutions of (FOC) in two cases: (FOC) problems with free- and non-free
terminal time. The steps of this algorithm are written as follows:

• Algorithm of non-free terminal time (FOC) problem:

1. Choose a suitable approximated base.

Ω = {Ω0(t), Ω1(t), Ω2(t), . . . , Ωn(t)},

2. Construct an approximated solution of (FOC),

x(t) =
n

∑
i=0

ciΩi(t) = c0Ω0(t) + c1Ω1(t) + · · ·+ cnΩn(t). (10)

In Equations (1) and (2) which satisfy the boundary conditions in Equation (3)
using the approximated base.

3. In case the differential equation in Equation (2) is given as explicit formula in the
control function u(t), then we have to evaluate the function u(t);

4. Substitute the approximated formulas of the functions x(t) and u(t) in Equation (1);
5. Use a suitable minimizing search methods such as the Hooke and Jeeves method

to find the minimal parameter(s) in Equation (1).

• Algorithm of free terminal time (FOC) problem:

1. Perform steps 1–4 in the previous algorithm;
2. Use suitable minimizing search methods such as the Hooke and Jeeves method

to find the best parameters (minimal) including the parameter T in Equation (1).

where T is the free parameter.

4.2. Dual Discreet Problem

• Algorithm of non-free terminal time (FOC) problem:
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1. From Equation (10), consider

x(t) =
n

∑
i=0

ciΩi(t), (11)

with the boundary conditions leading

c1 = γ0

η − ζΩ0(t1)
Ω0(t0)

−∑n
i=2 ci

(
Ωi(t0)Ω0(t1)

Ω0(t0)
−Ωi(t1)

)
Ω1(t1)

, (12)

where

γ0 =
Ω0(t0)Ω1(t1)−Ω1(t0)Ω0(t1)

Ω0(t0)Ω1(t1)
,

and

c0 =
ζ − c1Ω1(t0)−∑n

i=2 ciΩi(t0)

Ω0(t0)
, (13)

hence,

x(t) =
ζ −∑n

i=2 ciΩi(t0)

Ω0(t0)
Ω0(t) + γ0

η − ζΩ0(t1)
Ω0(t0)

−∑n
i=2 ci

(
Ωi(t0)Ω0(t1)

Ω0(t0)
−Ωi(t1)

)
Ω1(t1)

+

(
Ω1(t)−

Ω1(t0)

Ω0(t0)
Ω0(t)

)
+

n

∑
i=2

ciΩi(t). (14)

2. From the differential equation in Equation (2), we obtain the control function
u(t) as a function u(t) = f , then, we have to evaluate the function u(t) =
ψ(c2, c3, . . . , cn, Ω0(t), Ω1(t), . . . , Ωn(t));

3. From Equation (1), we obtain the optimal problem Minimum φ(c2, c3, . . . , cn), in
case of the free terminal time (FOC) problem, and Minimum φ(c2, c3, . . . , cn, T),
in case of the non-free terminal time (FOC) problem.

where T is free parameter.

5. Implementations (Numerical Examples)

In this section, we introduce two types of dynamical problems. The numerical method
introduced in Section 4 has been used for solving the optimal control problems of integer
and fractional order with free and non-free terminal time.

Example 1. Let us take into consideration the following (FOC) problem with non-free terminal
time introduced by [10,25].

min
x(τ),u(τ)

J(τ, x(τ), u(τ)) = min
x(τ),u(τ)

∫ 1

0
(τu(τ)− (γ + 2)x(τ))2dτ, (15)

subjected to the dynamic system

Dγx(τ) + ẋ(τ) = τ2 + u(τ), (16)

with the boundary conditions (BCs)

x(0) = 0, x(1) =
2

3 + γ
, (17)
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where the exact solution is given by

(x(τ), u(τ)) = (
2τ2+γ

Γ(3 + γ)
,

2τ1+γ

Γ(2 + γ)
).

Using the approximation base Ω(t) = {τ2, τ, 1}, we have the approximation of x(τ) as

x(τ) = c0 + c1τ + c2τ2. (18)

If we use the BCs in Equation (17), we obtain c0 = 0 and c1 = 2
3+γ − c2. Then, the following

approximation is obtained

x(t) = t(c2 +
2

3 + γ
− c2t). (19)

Then, we have

u(τ) = x(τ) = (1 + τ1−γ)(c2 −
2

3 + γ
+ 2c2τ)− τ2. (20)

Substitute Equations (19) and (20) in the problem of minimizing in the Equation (15) to obtain the
optimal values of c2, and the non-free terminal parameter T. Hence, using the Hooke and Jeeves method for
the problem in parameter c2, the approximation of the problem is plotted in Figure 1a.

Example 2. Consider the following integer-order optimal control problem with non-free terminal time:

min
x(τ),u(τ),T

J(τ, x(τ), u(τ), T) = min
x(τ),u(τ),T

∫ T

0
(τu(τ)− 2x(τ))2dτ, (21)

subjected to the dynamic system

˙̇x(τ) + ẋ(τ) = τ2 + u(τ), (22)

with the boundary conditions

x(0) = 0, x(1) = 1, (23)

where the exact solution is given by

(x(τ), u(τ)) = (τ(2− τ),−τ2 + 2τ + 2).

Consider the solution of the optimization problem in Equations (21)–(23) written as follows

x(τ) = τ(1 + c2 − c2τ). (24)

This satisfies the boundary conditions in Equation (23). Then, we have

u(τ) = −τ2 + 2c2t + 3c2 − 1. (25)

Substitute Equations (24) and (25) in minimizing the problem in Equation (21) to obtain the
optimal values of c2 = 0.989 and T = 0.997. Hence, the approximation of the problem is written as
x(τ) = τ(2− τ) and then, it is plotted in Figure 1b.

Example 3. Let us consider the following optimal control problem of fractional order with non-free
terminal time which was introduced by [25]

min
x(τ),u(τ),T

J(τ, x(τ), u(τ), T) = min
x(τ),u(τ),T

∫ T

0
(τu(τ)− (γ + 2)x(τ))2dτ, (26)
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subject to the control system

Dγ
τ x(τ) + ẋ(τ) = τ2 + u(τ), (27)

and the boundary conditions

x(0) = 0, x(T) = 1. (28)

Consider the solution of the optimization problem in Equations (26)–(28) written as follows:

x(τ) = c2τ2 + (
1
T
− c2T)τ, (29)

which satisfied the boundary conditions in Equation (28). Then, we have

u(τ) = −τ2 + 2c2τ + 3c2 − 1. (30)

Substitute Equations (29) and (30) in minimizing the problem in Equation (26) to obtain the
optimal solutions using the Hooke and Jeeves method. Hence, the approximation of the problem is
plotted in Figure 1c.
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Figure 1. A Comparison of Numerical Solutions of (FrOCDS) Evaluated by the Hooke and Jeeves
Direct Search Method for the Implementations in (a) Example 1, (b) Example 2, and (c) Example 3.
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6. Discussion and Conclusions

The main purpose of this study is to introduce numerical methods for solving two
cases of fractional-order optimal dynamical control systems with free and non-free terminal
time. The study also offers a comparison of the numerical results obtained by using the
proposed method with the exact solutions for three test problems. From the numerical
results of the proposed method, we observe that the method is applicable to a class of (FOC)
problems with free or non-free terminal time. Moreover, the proposed method achieves
good agreement with exact solutions. As a result, the new method is efficient and provides
encouraging results. This direction of this research can be extended in the future to new
directions such as improving the numerical studies of stochastic optimal control problems
to the continuity of the research in this domain.
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