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Abstract: For a given mapping f in the framework of different spaces, the fixed-point equations
of the form f x = x can model several problems in different areas, such as differential equations,
optimization, and computer science. In this work, the aim is to find the best proximity point and
to prove its uniqueness on partial metric spaces where the symmetry condition is preserved for
several types of contractive non-self mapping endowed with a graph. Our theorems generalize
different results in the literature. In addition, we will illustrate the usability of our outcomes with
some examples. The proposed model can be considered as a theoretical foundation for applications
to real cases.
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1. Introduction

The increasing interest of fixed-point theory emerges due to its importance as a tool to
solve nonlinear equations. Many problems can be formulated as nonlinear equations of
the form f x = x, where f is a self-mapping. As shown by Banach [1], for every contractive
self-mapping f : X −→ X, the fixed-point equation f x = x has a unique solution in X.
For more details, we refer to [2–11]. Nevertheless, if f is a non-self mapping, this type
of equation does not necessarily have a solution. In this case, researchers tried different
approaches, where they established an approximate solution that was the nearest possible
point x to f x in the sense of the metric. This approximate point was said to be best proximity
point, which is more general than the fixed point. We note that this solution x is optimal
in the sense that the distance between f x and x is minimum. Recently, the best proximity
point and fixed-point theory have been combined with graph theory. The first initiative
was carried out by Jachymski [12]. He considered metric spaces with the structure of a
graph as a part where the symmetry condition is preserved in relation to the fixed-point
theory of contractive-type mappings. The principle of his work is that the fixed point needs
only to be satisfied on certain pairs of points joined with the edges of the graph. Fixed-
point and best-proximity-point theory on metric spaces with graphs have an application
in diverse sciences, such as computer science and engineering. In fact, fixed-point theory
is used to examine the stability analysis of complex neural networks. A new process of
contraction mapping principle is employed to explore the stability of impulsive cellular
neural networks with time-varying delays [13,14]. Chena et al. [15] introduced a suitable
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complete metric space and a contraction mapping of which the fixed point is a solution
of the system given by a class of impulsive stochastic delayed neural networks and thus
established the exponential stability of this system. Fixed-point theory can be applied also
in a communication network, which can be considered as a space formed by the node
iterative sequences of the path prediction algorithms [16,17]. The theory may be used
to describe the relation of network nodes and reflect the physical relation characteristic
presented by the network in general. The mapping f can be looked at as an operator used
for multiple aspects, such as cost and energy.

Motivated by the importance of the fixed-point theory and its application, especially
when it is coupled with graph theory, we focus in this paper on the best proximity point
theorems on a partial metric space endowed with a graph that is more general than fixed
point. Additionally, the partial metric is very useful in real work since the measure between
two nodes, x and y, such that x = y is not zero. This work can be considered a theoretical
framework for applications to real cases.

In the following section, we will present some preliminary definitions.

2. Preliminaries

First, we start by reminding the reader of the definition of a best proximity point.

Definition 1. Let (X, d) be a metric space, A1 and A2, two subsets of X, and a mapping f :
A1 −→ A2. We denote by d(A1, A2) the distance between A1 and A2 as follows:

d(A1, A2) = inf{d(u1, u2) : u1 ∈ A1, u2 ∈ A2}.

An element u ∈ A1 is called a best proximity point of the mapping f if

d(u, f u) = d(A1, A2). (1)

The best-proximity-point theory was introduced by Ky Fan [18]. He considered a
continuous mapping F : C −→ E where E, is a normed linear space and C is a compact
convex subset of E. Ky Fan gave an approximate solution of Fx = x; unfortunately,
his solution was not optimal. Later, many authors established existence and uniqueness
theorems on best proximity point for contractive mapping [19–27].

Definition 2 ([28]). Let X be a nonempty set, and if the function p : X2 −→ [0, ∞) satisfies the
following assumptions for all t, s, w ∈ X

(p1) t = s⇐⇒ p(t, t) = p(t, s) = p(s, s),
(p2) p(t, t) ≤ p(t, s),
(p3) p(t, s) = p(s, t),
(p4) p(t, s) ≤ p(t, w) + p(w, s)− p(w, w).

Then, the pair (X, p) is said to be a partial metric space.

Definition 3 ([28]). Consider a partial metric space (X, p). Then,

1. A sequence {an} in X converges to a point a if and only if lim
n→∞

p(an, a) = p(a, a).

2. A sequence {an} in X is called to be a Cauchy sequence if lim
n,m→∞

p(an, am) exists and is finite.

3. (X, p) is called to be complete if each Cauchy sequence {an} in X converges to a point a ∈ X
and lim

n,m→∞
p(an, am) = p(a, a).

4. Let Bp(t0, δ) be an open ball in (X, p). A mapping g : X −→ X is called to be continuous at
t0 ∈ X if for each ε > 0 there exists δ > 0, so that g(Bp(t0, δ)) ⊂ Bp(gt0, ε).

Next, we present the definition of the best proximity point in the partial metric spaces
(X, p).
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Definition 4 ([28]). Let A1, A2 be nonempty subsets of a partial metric space (X, p) and f :
A1 −→ A2 be a given mapping.

1. We denote by p(A1, A2) = inf{p(a1, a2) : a ∈ A1, a2 ∈ A2}.
2. An element u ∈ A is called a best proximity point for the mapping f if p(u, f u) = p(A1, A2).

Remark 1. For a given map f , a best proximity point of f is a generalization of its fixed point.

Consider the partial metric space (X, p). Let A1 and A2 be two nonempty subsets of
(X, p); we denote by A0 and B0 the following sets:

A0 = {a1 ∈ A1 : p(a1, a2) = p(A1, A2) for some a2 ∈ A2} (2)

B0 = {a2 ∈ A2 : p(a1, a2) = p(A1, A2) for some a1 ∈ A1}. (3)

Note that A0 and B0 are nonempty sets [29].

Definition 5 ([27]). Let (A1, A2) be a pair of nonempty subsets of (X, p) such that A0 6= ∅. The
pair (A1, A2) is called to have the P-property if and only if for x1, x2 ∈ A0 and y1, y2 ∈ B0

p(x1, y1) = p(A1, A2)
p(x2, y2) = p(A1, A2)

}
=⇒ p(x1, x2) = p(y1, y2).

For the convenience of the reader, we recall some basic concepts of graph theory which
we will use later.

Now, let us recall some preliminaries from graph theory. Let (X, p) be a partial metric
space and ∆ = X × X. A graph G is determined by the given of a pair (V, E), where
V = V(G) is a set of vertices coinciding with X and E = E(G) the set of its edges such that
∆ ⊂ E(G). Additionally, we presume that graph G does not contain parallel edges. Graph
G can be seen as a weighted graph by allocating to each edge the distance obtained by the
p-metric between its vertices. Let G−1 be the graph defined as follows:{

E(G−1) = {(a, b) ∈ X2 : (b, a) ∈ E(G)}
V(G−1) = V(G).

It is clear that G−1 derives from graph G by reversing the direction of its edges. We denote
by G−1, the graph obtained from G by reversing the direction of its edges that can be
defined as follows. Thereby, we denote by G̃ the undirected graph obtained by ignoring
the direction of edges of G.

Definition 6. Let u and u be two vertices in a graph G. A path in G from u to v of length s
(s ∈ N ∪ {0}) is a sequence (ak)

s
k=0 of s + 1 distinct vertices such that a0 = u, as = v and

(aj, aj+1) ∈ E(G) for i = j, 2, . . . , s. We denote

[u]NG = {v ∈ X : there is a path in G of length N from u to v}. (4)

Definition 7. • If there is a path between any two vertices of a graph G, we say that G is
connected.

• G is said to be weakly connected if G̃ is connected.

Inspired by the work of Jachymski in [12] and the platform of graph theory that he
introduced, in this paper, we generalize his results to a partial metric space for non-self
mappings. Therefore, the fixed points do not necessarily exist; for this reason, we focus
on the concept of the best proximity point on partial metric spaces endowed with a graph.
Nevertheless, the distance between two vertices of the graph is given by the partial metric.
Then, we can have nonzero self-distance for each vertex. Thereby, the theorems obtained
represent a generalization of some results, and the essential feature of this work is that it is
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a further extension of partial metric spaces with a graph structure on them. In the following
section, we will present our main results.

3. Main Results

Throughout the rest of the document, we consider (X, p) to be a partial metric space,
and G is a directed graph without parallel edges such that X = V(G).

Definition 8. Let A1 and A2 be two nonempty subsets of (X, p). A mapping f : A1 −→ A2 is
said to be G-contraction if for all x, y ∈ A1 with (x, y) ∈ E(G):

(i) p( f x, f y) ≤ αp(x, y) for some α ∈ [0, 1),

(ii)
p(x1, f x) = p(A1, A2)
p(y1, f y) = p(A1, A2)

}
=⇒ (x1, y1) ∈ E(G), ∀x1, y1 ∈ A1.

Theorem 1. Let (X, p) be a complete partial metric space, A and B be two nonempty closed subsets
of (X, p) such that (A, B) has the P-property. Let f : A −→ B be a continuous G-contraction such
that f (A0) ⊆ B0. Assume the following condition (C): x0 and x1 exist in A0 such that there is
a path in A0 between them and p(x1, f x0) = p(A, B). Then, there the sequence {xn}n∈N exists
with p(xn+1, f xn) = p(A, B) ∀ n ∈ N, and f has a unique best proximity point.

Proof. From condition (C), two points x0 and x1 in A0 exist such that p(x1, f x0) = p(A, B),
and a path (zi

0)
N
i=0 in G between them exists such that the sequence (zi

0)
N
i=0 contains points of

A0. Subsequently, z0
0 = x0, zN

0 = x1 and (zi
0, yi+1

0 ) ∈ E(G) ∀0 ≤ i ≤ N. Given that z1
0 ∈ A0,

f (A0) ⊆ B0 and from the definition of A0, z1
1 ∈ A0 exists such that p(z1

1, f z1
0) = p(A, B). By

proceeding this way, for i = 2, . . . , N, zi
1 ∈ A0 exists such that p(zi

1, f zi
0) = p(A, B). Since

(zi
0)

N
i=0 is a path in G, then (z0

0, z1
0) = (x0, z1

0) ∈ E(G). From the above, we have p(x1, f x0) =
p(A, B) and p(z1

1, f z1
0) = p(A, B). f is a G-contraction; consequently, (x1, z1

1) ∈ E(G). In
the same way, we obtain

(zi−1
1 , zi

1) ∈ E(G) for i = 2, . . . , N. (5)

Consider x2 = zN
1 . Therefore, (zi

1)
N
i=0 is a path from x1 = z0

1 to x2 = zN
1 . For each

i = 2, . . . , N, as zi
1 ∈ A0 and f zi

1 ∈ f (A0) ⊆ B0, then by the definition of B0 there exists
zi

2 ∈ A0 such that p(zi
2, f zi

1) = p(A, B). Additionally, we have p(x2, f x1) = p(A, B).
Similar to the above, we obtain

(x2, z1
2) ∈ E(G) and (zi−1

2 , zi
2) ∈ E(G)∀ i = 1, 2, . . . , N. (6)

Let x3 = zN
2 . Then, (zi

2)
N
i=0 is a path from z0

2 = x2 and zN
2 = x3. By repeating this process,

for all n ∈ N, we create a path (zi
n)

N
i=0 from xn = z0

n and xn+1 = zN
n , which gives us a

sequence {xn}n∈N where xn+1 ∈ [xn]NG and p(xn+1, f xn) = p(A, B) such that

p(zi
n+1, f zi

n) = p(A, B) ∀ i = 0, . . . , N. (7)

From (7) and the P-property, we obtain

p(zi−1
n , zi

n) = p( f zi−1
n−1, f zi

n−1) ∀ i = 1, . . . , N. (8)
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By the triangular inequality, we obtain for all n ≥ 0,

p(xn, xn+1) = p(z0
n, zN

n ) (9)

≤ p(z0
n, z1

n) + p(z1
n, z2

n) + . . . + p(zN−1
n , zN

n )−
N−1

∑
i=1

p(zi
n, zi

n)

≤
N

∑
i=1

p(zi−1
n , zi

n)

=
N

∑
i=1

p( f zi−1
n−1, f zi

n−1). (10)

Given that f is a G-contraction, for all n ∈ N, (zi−1
n−1, zi

n−1) ∈ E(G) and according to (10),
we obtain

p(xn, xn+1) ≤ α
N

∑
i=1

p(zi−1
n−1, zi

n−1) ∀n ∈ N. (11)

By induction, it results that ∀n ∈ N

p(xn, xn+1) ≤ αn
N

∑
i=1

p(zi−1
0 , zi

0) = λαn. (12)

where λ =
N

∑
i=1

p(zi−1
0 , zi

0).

Now, we claim that the sequence {xn} is Cauchy. For n, m ∈ N, m ≥ n and from
property (p4) of the partial metric, we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + . . . + p(xm−1, xm)−
m−1

∑
i=n+1

p(xi, xi)

≤ p(xn, xn+1) + p(xn+1, xn+2) + . . . + p(xm−1, xm)

≤ λαn + λαn+1 + . . . + λαm−1

= λαn(1 + α + . . . + αm−n−1)

≤ λ
αn

1− α
.

Since α < 1, then lim
n,m−→∞

p(xn, xm) = 0. Therefore, {xn}n∈N is a Cauchy sequence and

u0 ∈ A exists such that lim
n→∞

xn = u0. From the continuity of f , we obtain f xn −→
f u as n −→ ∞. Now, from the continuity of the partial metric function we obtain
p(xn, f xn) converges to p(u, f u) as n −→ ∞. Since from the all beforementioned, we
have p(xn+1, f xn) = p(A, B) then {p(xn+1, f xn)}n is a constant sequence equal to p(A, B).
Finally, we obtain p(u, f u) = p(A, B). Then, u0 is a best proximity point of f .

Suppose that there exist s1 and s2 such that

p(s1, f s1) = p(A, B) (13)

p(s2, f s2) = p(A, B). (14)

In order to obtain s1 = s2 in (X, p), we must prove that p(s1, s2) = p(s1, s1) = p(s2, s2).
Knowing that the pair (A, B) has the P-property, using (13) and (14), we obtain
p(s1, s2) = p( f s1, f s2). Since f is a G-contraction, we obtain p(s1, s2) = p( f s1, f s2) ≤
αp(s1, s2) where α < 1. Therefore,

p(s1, s2) = 0. (15)
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By the triangular inequality, we have

p(s1, s1) ≤ p(s1, s2) + p(s2, s1)− p(s2, s2)

≤ 2p(s1, s2)︸ ︷︷ ︸
=0

−p(s2, s2).

Thus, p(s1, s1) + p(s2, s2) = 0, which implies that

p(s1, s1) = p(s2, s2) = 0. (16)

Finally, (15) and (16) give that s1 = s2.

Example 1. Consider X = [0, ∞) and define p : [0, ∞)× [0, ∞) −→ [0, ∞) such that p(a, b) =
max{a, b}. Clearly, p satisfies the properties (p1) − (p4) in Definition 2 and then it is a par-
tial metric. Let A = [3, 4] and B = [1, 4], two closed subsets of X. It is easy to obtain
p(A, B) = inf{p(x1, x2) : x1 ∈ A, x2 ∈ B} = 4. Let us show that the pair (A, B) has the

P-property. Let x1, x2 ∈ A and y1, y2 ∈ B such that
max{x1, y1} = 4 = p(A, B) = 4
max{x2, y2} = 4 = p(A, B) = 4

}
=⇒

max{x1, y1} = max{x2, y2}, which gives that max{x1, x2} = max{y1, y2} = 4 =⇒ p(x1, x2) =
p(y1, y2). Then, the pair (A, B) has the P-property. Suppose that the map f : A −→ B is defined
as follows:

f (a) =
a + 1

2
, ∀a ∈ A. (17)

Consider a graph G with V(G) = X and E(G) = {(a, b) ∈ X × X : p(a, b) < 5}. Let us
prove that f is a G-contraction. Consider x, y ∈ A = [3, 4], p( f x, f y) = max{ f x, f y} =

max{ x+1
2 , y+1

2 } =
x + 1

2
w.l.o.g. Since 3 ≤ x ≤ 4 and 2 ≤ f x ≤ 2.5, then x+1

2 ≤
2.5
2 max{x, y}. Therefore, p( f x, f y) ≤ αp(x, y) with α = 2.5

2 < 1. Now, let x1, y1 ∈ A
and (x, y) ∈ E(G) such that

p(x1, f x) = p(A, B) = 4 (18)

p(y1, f y) = p(A, B) = 4. (19)

From (18), (19) and the P-property we obtain p(x1, y1) = p( f x, f y) ≤ αp(x, y) < p(x, y).
Since (x, y) ∈ E(G), then p(x, y) < 5, which gives p(x1, y1) < 5; therefore, (x1, y1) ∈ E(G).
Hence, the map f is a G-contraction. Additionally, let x0 ∈ A0, from (2), x0 ∈ A = [3, 4], and

y ∈ [1, 4] exists such that max{x0, y} = p(A, B) = 4. f x0 =
x0 + 1

2
such that 2 ≤ f x0 ≤

5
2

=⇒ f x0 ∈ B, and x ∈ A = [3, 4] exists satisfying max{x, f x0} = p(A, B) = 4; then f x0 ∈ B0.
Hence, f (A0) ⊆ B0. Consider x0, x1 ∈ A0, and let us check the condition (C). Let x0 = 3.5,
x1 = 4 and N = 1. Since max{x0, x1} = 4 < 5, then the pair (x0, x1) ∈ E(G). From (17),
f x0 = 2.25, and we obtain max{x1, f x0} = max{4, 2.25} = 4 = p(A, B). Thus, condition (C)
holds. Finally, all of the assumptions of Theorem 1 are satisfied. Hence, a unique best proximity point
u = 4 ∈ A = [3, 4] exists that is p(u, f u) = p(A, B) = 4. Indeed, p(4, f (4)) = max{4, 2.25} =
4 = p(A, B).

As a consequence of Theorem 1, if X = A = B, then we obtain a fixed point instead of
the best proximity point, which generalizes many results in the literature.

Corollary 1. Consider a complete partial metric space (X, p) and a continuous self-mapping f :
X −→ X such that for all t, s ∈ X, if (t, s) ∈ E(G) then ( f t, f s) ∈ E(G) and p( f t, f s) ≤ αp(t, s)
where α ∈ [0, 1). Then, the following statements hold:

(i) if (t, f s) ∈ E(G) then { f n(t)}n∈N converges to a fixed point of f ,
(ii) if there is x0 ∈ X such that (x0, f x0) ∈ E(G) and G is weakly connected, then for all t ∈ X,

{ f n(t)}n∈N converges to a unique fixed point of f .
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Definition 9 ([30]). Let (X, p) be a partial metric space and A, B ⊆ X such that A 6= ∅ and
B 6= ∅. A mapping f : A −→ B is said to be proximal-contraction if there exists α ∈ [0, 1)
such that

p(u, f x) + p( f x, f y) + p( f y, v) ≤ αp(x, y) ∀x, y ∈ A (20)

satisfying p(u, f x) = dist(A, B) and p(v, f y) = dist(A, B) for some u, v ∈ A.

Definition 10. Let A1 and A2 be two nonempty subsets of (X, p). A mapping f : A1 −→ A2 is
called to be Gprox-contraction if for all x1, x2 ∈ A1, with (x1, x2) ∈ E(G):

(i) p(u, f x1) + p( f x1, f x2) + p( f x2, v) ≤ αp(x1, x2) for some u, v ∈ A1 and α ∈ [0, 1),

(ii)
p(u, f x1) = p(A1, A2)
p(v, f x2) = p(A1, A2)

}
=⇒ (u, v) ∈ E(G), ∀u, v ∈ A1.

Theorem 2. Let (X, p) be a complete partial metric space, and let A and B be two nonempty
closed subsets of (X, p) such that (A, B) has the P-property. Let f : A −→ B be a continuous
Gprox-contraction such that f (A0) ⊆ B0. Assume that x0 and x1 exist in A0 such that there is a
path in A0 between them and p(x1, f x0) = p(A, B). Then, f has a unique best proximity point.

Proof. It is enough to prove that the restriction f|A0
satisfies the conditions of Theorem 1.

Let us start by proving that the map f : A0 −→ B0 is a (A0, B0) G-contraction mapping into
B0. Consider t, s ∈ A0. From the definition of A0 and B0 and knowing that f (A0) ⊆ B0,
t0, s0 ∈ A0 exists such that p(t0, f t) = p(A, B) and p(s0, f s) = p(A, B). Then, using the
P-property of (A, B), we obtain p(t0, s0) = p( f t, f s). Hence, by the triangular inequality
we obtain

p( f t, f s) = p(t0, s0)

≤ p(t0, f t) + p( f t, f s) + p( f s, s0)

− p( f t, f t)− p( f s, f s)

≤ p(t0, f t) + p( f t, f s) + p( f s, s0)

≤ αp(t, s).

Therefore, f : A0 −→ B0 is a G-contraction mapping. On the other hand, as
p(A0, B0) = p(A, B), then the pair (A0, B0) has the P-property. Hence, by Theorem 1,
we obtain the uniqueness of the best proximity point of f .

Next, we propose a new concept of contractive mappings in a partial metric space.

Definition 11. Let (X, p) be a partial metric space; A1, A2 are two subsets of X and G a directed
graph. A non-self mapping f : A1 −→ A2 is said to be proximally G-edge conserving if for each
t1, t2, u1, u2 ∈ A1,

(t1, t2) ∈ E(G)
p(u1, f t1) = p(A1, A2)
p(u2, f t2) = p(A1, A2)

 =⇒ (u1, u2) ∈ E(G).

Definition 12. Let (X, p) be a partial metric space; A1, A2 are two subsets of X and G a directed
graph. A non-self mapping f : A1 −→ A2 is said to be the Gp-proximal C-contraction if there
α ∈ [0, 1) exists and for each t1, t2, u1, u2 ∈ A,

(t1, t2) ∈ E(G)
p(u1, f t1) = p(A1, A2)
p(u2, f t2) = p(A1, A2)

 =⇒ p(u1, u2) ≤ α[
p(t1, u2) + p(t2, u1)

2
− 2p(A1, A2)].

Theorem 3. Let (X, p) be a complete partial metric space. Let A and B be two nonempty closed
subsets of X such that A0 6= ∅ and let f : A −→ B a mapping satisfying the following properties:
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(i) f is proximally G-edge conserving continuous and Gp-proximal C-contraction such that
f (A0) ⊆ B0,

(ii) w0, w1 ∈ A0, p(w1, f w0) = p(A, B) exists and (w0, w1) ∈ E(G).

Then, f has a best proximity point in A, and there exists u ∈ A such that p(u, f u) = p(A, B).
Moreover, the sequence {wn} defined by p(wn, f wn−1) = p(A, B) ∀n ∈ N converges to u.

Proof. From the property (ii), w0, w1 ∈ A0 exist such that

p(w1, f w0) = p(A, B) and (w0, w1) ∈ E(G). (21)

Since f (A0) ⊂ B0, we have f w1 ∈ B0; then, by definition of B0, w2 ∈ A0 exist such that

p(w2, f w1) = p(A, B). (22)

By the proximal G-edge preserving of f and from (21) and (22), we obtain (w1, w2) ∈ E(G).
Similarly, we create the sequence {wn} in A0 such that

p(wn, f wn−1) = p(A, B) and (wn−1, wn) ∈ E(G) ∀n ∈ N. (23)

Let us establish that the sequence {wn} is Cauchy. We notice that if n0 ∈ N, exists such
that wn0 = wn0+1, then from (23) wn0 is a best proximity point of f . Let us suppose that
wn−1 6= wn ∀n ∈ N. Since f is G-proximal C-contraction, we have for each n ∈ N

(wn−1, wn) ∈ E(G)
p(wn, f wn−1) = p(A, B)
p(wn+1, f wn) = p(A, B)

 =⇒

p(wn, wn+1) ≤ α[
p(wn−1, wn+1) + p(wn, wn)

2
− 2p(A, B)]

≤ α[
p(wn−1, wn+1) + p(wn, wn)

2
].

Using the property (p4) of the partial metric, we obtain p(wn−1, wn+1) ≤ p(wn−1, wn) +
p(wn, wn+1)− p(wn, wn). Therefore,

p(wn, wn+1) ≤
α

2
[p(wn−1, wn) + p(wn, wn+1)]

which gives

(1− α

2
)p(wn, wn+1) ≤

α

2
p(wn−1, wn).

Then,

p(wn, wn+1) ≤
α/2

(1− α

2
)

p(wn−1, wn) = kp(wn−1, wn), (24)

where k =
α/2

(1− α

2
)
< 1.

By induction, we obtain

p(wn, wn+1) ≤ kn p(w0, w1) ∀n ∈ N. (25)
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From (25), for each n, m ∈ N with m > n and by the triangular inequality we have

p(wn, wm) ≤ p(wn, wn+1) + p(wn+1, wn+2) + . . . +

+ p(wm−1, wm)−
m−1

∑
i=n+1

p(wi, wi)

≤
m−1

∑
i=n

p(wi, wi+1)

≤
m−1

∑
i=n

ki p(w0, w1)

≤ kn

1− k
p(w0, w1) −→ 0 as n −→ ∞.

Then, the sequence {wn} is Cauchy. Since A is closed, there exists u0 ∈ A such that
lim

n−→∞
wn = u0. Then, by the continuity of f , f wn converges to f u0. Since the partial metric

is continuous, we obtain

p(wn+1, f wn) −→ p(u, f u) as n −→ ∞. (26)

Using (23), we obtain that p(u, f u) = p(A, B). Hence, the point u is a best proximity point
of f in A.

To prove the uniqueness, consider t, s ∈ A two of the best proximity points of the
mapping f . Then, (t, s) ∈ E(G) and p(t, f t) = p(s, f s) = p(A, B). Since f is Gp-proximal
C-contraction,

p(t, s) ≤ α

2
[p(t, s) + p(s, t)]− 2p(A, B)

≤ αp(t, s).

Therefore, p(t, s) = 0. On the other hand, the triangular inequality of the partial metric
we obtain p(t, t) ≤ p(t, s) + p(s, t)− p(s, s), which implies that p(t, t) + p(s, s) = 0 =⇒
p(t, t) = p(s, s) = 0. Given that p(t, s) = 0, we obtain t = s.

4. Conclusions

In conclusion, we want to introduce some open questions.

Question 1: Let (X, m) be a complete M-metric space, and A and B be two nonempty
closed subsets of (X, m). Let f : A −→ B be a nonself continuous G-contraction satisfying
the assumptions of Theorem 1. Does f have a unique best proximity point?

Question 2: Let (X, p) be a partial metric space. A mapping f : X −→ X is said to be an
expanding if p( f x1, f x2) ≥ λ(x1, x2) ∀x1, x2 ∈ X where λ > 1. Does f have a unique best
proximity point ?
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