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Abstract: A topological index, which is a number, is connected to a graph. It is often used in
chemometrics, biomedicine, and bioinformatics to anticipate various physicochemical properties
and biological activities of compounds. The purpose of this article is to encourage original research
focused on topological graph indices for the drugs azacitidine, decitabine, and guadecitabine as
well as an investigation of the genesis of symmetry in actual networks. Symmetry is a universal
phenomenon that applies nature’s conservation rules to complicated systems. Although symmetry
is a ubiquitous structural characteristic of complex networks, it has only been seldom examined in
real-world networks. The M-polynomial, one of these polynomials, is used to create a number of
degree-based topological coindices. Patients with higher-risk myelodysplastic syndromes, chronic
myelomonocytic leukemia, and acute myeloid leukemia who are not candidates for intense regimens,
such as induction chemotherapy, are treated with these hypomethylating drugs. Examples of these
drugs are decitabine (5-aza-20-deoxycytidine), guadecitabine, and azacitidine. The M-polynomial is
used in this study to construct a variety of coindices for the three brief medicines that are suggested.
New cancer therapies could be developed using indice knowledge, specifically the first Zagreb index,
second Zagreb index, F-index, reformulated Zagreb index, modified Zagreb, symmetric division
index, inverse sum index, harmonic index, and augmented Zagreb index for the drugs azacitidine,
decitabine, and guadecitabine.

Keywords: azacitidine drug; decitabine drug; guadecitabine drug; M-polynomial; valency-based
topological indices

1. Introduction

Investigating and even forecasting certain features of chemical compounds is per-
formed using the branch of graph theory known as “chemical graph theory” [1–3]. The
amount of components a molecule has and their connections may be used to predict a
molecule’s boiling point, according to molecular graph theory. Understanding this relation-
ship is very helpful when developing chemical processes, synthetic materials, or chemical
assembly lines. Chemists make use of a number of physical characteristics to comprehend
the structure of molecules. Topological indices (TIs) [4] are used to forecast the physio-
chemical properties and biological activities of bioactive substances, but their potential
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extends far beyond. For example, they can anticipate how dangerous a chemical will be.
Because medication performance can now be anticipated based on electrical structure,
the TI provides an alternative to empirical testing [5–9].

Transportation, communication network design, manufacturing and inventory plan-
ning, facility location and allocation, and VLSI (very large-scale integration) design are
just a few of the areas where symmetry is used. Numerous TIs have been created since
1947, and these indices are divided into groups based on the structural properties of the
graph [10–12], such as the degree of the vertices, the distance between neighboring vertices,
the graph’s eigenvalues, and others [13–15]. It is not always possible to compute some TIs
directly. Researchers employ polynomials to address this issue. The degree-dependent
M-polynomial for the TIs is one of them. The M-polynomial is a polynomial that is the sum
of all the various degree-based TI subtypes.

Graph polynomials are graph functions that are independent of graph isomorphism,
[16]. They are generally polynomials in one or two variables with integer coefficients. Since
certain subgraphs are virtually always counted, graph polynomials may be seen as regular
generating functions for the sequences of coefficients. The Hosoya polynomial [17–20] is
a significant polynomial in the area of distance-based TIs. In [21–25], more graph poly-
nomials were investigated. Deutsch and Klavzar [26] also proposed the M-polynomial,
a degree-based polynomial that may be applied to build a variety of indices. Its high degree
of flexibility led to its application in several research works to generate TIs. To calculate
additional varieties of graph coindices, a polynomial that takes into account nonadjacent
pairs of vertices is required because the M-polynomial only takes into account contribu-
tions from pairs of adjacent vertices. The M-polynomial and this polynomial both have
comparable modes of operation. The development of polynomials based on non-adjacent
pairings of chemical compound vertices was primarily motivated by this. Recently in 2022,
a new M-polynomial, namely M-polynomial, was proposed by Kirmani et al. [27,28] to
generalized the widely used M-polynomial. They focused on the degree-based topological
coindices (DBTCI). Following it, other authors produced many more works in this manner.
Applications of Graph Theory and Topological Indices

Any graph that mimics a particular molecular structure can be given a topological
graph index, also known as a molecular descriptor [29]. From this index, it is possible to
analyze numerical numbers and further look into some of a molecule’s physical characteris-
tics. As a result, it is a useful technique to eliminate costly and time-consuming laboratory
studies. In mathematical chemistry, molecular descriptors are crucial, particularly in studies
of quantitative structure–property relationships (QSPR) and quantitative structure–activity
relationships (QSAR) [30]. For example, Ghani at all. in [31] started work on entropy
by using topological indices. A topological descriptor is an illustration of a molecular
descriptor. There are several topological indices available today, some of which are used in
chemistry [32,33]. The structural characteristics of the graphs utilized for their computation
can be used to categorize them. The Hosoya index, for instance, is determined by counting
non-incident edges in a graph. In addition, the degrees of vertices are used to generate the
Randi connectivity index, the Zagreb group indices, the Estrada index, and other indices.

1.1. Azacitidine Drug

A medication called azacitidine [34] inhibits DNA methyltransferase. It is an analog
of cytidine’s pyridine nucleoside. Its chemical name is 4-amino1-D-ribofuranosyl-s-triazin-
2(1H)-one. Azacitidine has the empirical formula C8H12N4O5 (see Figure 1). Myelodys-
plastic syndrome, acute myeloid leukemia, and chronic myelomonocytic leukemia are all
treated with it.
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Figure 1. Azacitidine drug (C8H12N4O5).

1.2. Decitabine Drug

Myelodysplastic syndromes can be treated with the chemotherapeutic medication
decitabine [34]. It achieves this by modifying gene expression and increasing the likelihood
that DNA will not be protected. For people with significant MDS, refractory anemia, refrac-
tory anemia with ringed sideroblasts, refractory anemia with excess blasts and refractory
anemia with excess blasts in transform, decidetabine is prescribed. Patients who have
an International Prognostic Scoring System risk score of intermediate-1, intermediate-2,
or high risk may also benefit from this medication. Decitabine’s (see Figure 2) empirical
formula is C8H12N4O4.

Figure 2. Decitabine drug (C8H12N4O4).
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1.3. Guadecitabine Drug

The next-generation hypomethylating drug is guadecitabine [35]. More potent hy-
pomethylating drugs are required for the treatment of MDS. The active metabolite of
guadecitabine, decitabine, has a longer in vivo exposure period than decitabine given
intravenously. Guadecitabine (see Figure 3) is used to treat myelodysplastic syndromes
with intermediate or high risk because it is a more effective hypomethylating drug as
a consequence. The bone marrow does not mature or become healthy in patients with
myelodysplastic syndromes. It is also known as a collection of cancers.

Figure 3. Guadecitabine drug (C18H24N9O10P).

The Figure 4 represent the chemical structure of azacitidine drug.

Figure 4. (a) The chemical structure of azacitidine (b) The 3D plots for M-polynomial of azacitidine.

Figure 5 represents the chemical structure of decitabine.
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Figure 5. (a) The chemical structure of decitabine. (b) The 3D plots for M-polynomial of decitabine.

Figure 6 represents the chemical structure of guadecitabine.

Figure 6. (a) The chemical structure of guadecitabine. (b) The 3D plots for M-polynomial
of guadecitabine.

2. Preliminaries

Let us use the following notation for the rest of the paper. Let G = (V, E) be a
graph, where V = V(G) and E = E(G) represent the vertex set and edge set, respectively.
A molecular graph is a straightforward finite graph, where the edges represent chemical
bonds and the vertices represent atoms. The degree of a vertex x is the number of edges
incident to x, denoted by dx. The notation |Vi| denotes the number of vertices in the set Vi.
The notation |E(G)| denotes the number of edges in graph G or the size of a graph. Define

ρi = |Vi|, where Vi = {x ∈ V(G) | dx = i}.
ωij =

∣∣Eij
∣∣, where Eij = {xy ∈ V(G) | dx = i, dy = j}.

ωij =
∣∣Eij
∣∣, where Eij = {xy ∈ V(G) | dx = i, dy = j}.

We concentrate the concept of the M-polynomial for a non-adjacent pair of vertices
and define M-polynomial as follows:
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M(G, x, y) = ∑
i≤j

ωij(G) xi yj,

where ωij, is the number of edges xy /∈ E(G) such that {d(x), d(y)} = {i, j}.
On the edge set E(G) of a graph G, the DBTCI can be stated as

DBCI(G) = ∑
xy/∈E(G)

z(x, y).

Formulation of Certain Coindices from M-Polynomial

In Table 1, a few DBTCI are listed along with their connections to the M-polynomial
of a graph G.

φx(z(x, y)) = x
(

∂(z(x,y))
∂x

)
, φy(z(x, y)) = y

(
∂(z(x,y))

∂y

)
, Sx(z(x, y)) =

∫ x
0

z(t,y)
t dt,

Sy(z(x, y)) =
∫ y

0
z(x,t)

t dt and J(z(x, y)) = z(x, x).

Table 1. Derivation of DBTCI using M-polynomial.

DBCI z(du, dv) Derivation from M(G, x, y)

First Zagreb coindex ω1

(
du + dv

) (
φx + φy

)
(M(G)) at x = y = 1

Second Zagreb coindex ω2 du dv

(
φx φy

)
(M(G)) at x = y = 1

F- coindex F
(

d2
u + d2

v

) (
φ2

x + φ2
y

)
(M(G)) at x = y = 1

Reformulated Zagreb coindex
RZ

(
du + dv

)
du dv

(
φx φy(φx + φy)

)
(M(G)) at x =

y = 1
Modified Zagreb coindex M∗ 1

du dv
(Sx Sy)(M(G)) at x = y = 1

Symmetric deg devision coindex
SDD

d2
u+d2

v
du dv

(φx Sy + Sx φy))(M(G)) at x =
y = 1

Inverse sum indeg coindex ISI du dv
du+dv

(Sx J φx φy)(M(G)) at x = y = 1
Harmonic coindex H 2

du+dv
(2Sx J)(M(G)) at x = 1

Augmented Zagreb coindex AZ
(

du dv
du+dv−2

)3
(S3

x ψ−2 J φ3
x φ3

y)(M(G)) at x = 1

The proof of the following observation is due to Berhe [36].
We have the following for a connected graph G with n vertices:

(i) If i = j then ωij =
∣∣Eij
∣∣ = ρi(ρi−1)

2 −ωii.
(ii) If i < j then ωij =

∣∣Eij
∣∣ = ρiρj −ωij.

Theorem 1. Let A be the molecular graph of Azacitidine. The M polynomial for A is M(A; x, y) =
9xy2 + 31xy3 + 9x2y2 + 28x2y3 + 16x3y3.

Proof. For the molecular graph of azacitidine (see Figures 1, 4 and 7), we can easily
calculate the edge partition given in the main theorems by using the hand shake lemma [37].
According to the “handshaking theorem,” a graph’s vertex total is equal to twice as many
edges as it has edges, as in Equation (1). Since a vertex’s degree is determined by how
many edges intersect it, the sum of degrees determines how frequently an edge intersects a
vertex overall:

n

∑
i=1

dx = 2× |E(G)| (1)
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Figure 7. The molecular graph of azacitidine.

There are 17 vertices and 18 edges from the construction of azacitidinen (Figure 7),
we have five categories of edge set of A based on the degree of vertices. ω12 = |E12| = 1,
ω13 = |E13| = 4, ω22 = |E22| = 1, ω23 = |E23| = 7 and ω33 = |E33| = 5. In addition, V(A)
may be divided into three groups according on the number of vertices, that is, ρ1 = |V1| = 5,
ρ2 = |V2| = 5 and ρ3 = |V3| = 7. Using Observation 1, we obtain

ω12 = ρ1ρ2 −ω12 = 5(5)− 1 = 9
ω13 = ρ1ρ3 −ω13 = 5(7)− 4 = 31

ω22 = ρ2(ρ2−1)
2 −ω22 = 5(4)

2 − 1 = 9
ω23 = ρ2ρ3 −ω23 = 5(7)− 7 = 28

ω33 = ρ3(ρ3−1)
2 −ω33 = 7(6)

2 − 5 = 21− 5 = 16.

Hence , by the definition of M polynomial, we have

M(A; x, y) = ∑
i≤j

ωij(A) xi yj

= ∑
1≤2

ω12(A)xy2 + ∑
1≤3

ω13(A)xy3 + ∑
2≤2

ω22(A)x2y2 + ∑
2≤3

ω23(A)x2y3

+ ∑
3≤3

ω33(A)x3y3

= 9xy2 + 31xy3 + 9x2y2 + 28x2y3 + 16x3y3.

Now we present some DBTCI of azacitidine using M-polynomial.

Theorem 2. Let A be the molecular graph of azacitidine. Then
(1) ω1(A) = 423 (2) ω2(A) = 459 (3) F(A) = 1079 (4) RZ(A) = 2274 (5) ω∗2(A) =

23.528 (6) SDD(A) = 236.5 (7) H(A) = 21.267 (8) ISI(A) = 95.85 (9) AZ(A) = 654.875.

Proof. For computing the DBTCI, we consider M(A; x, y) = 9xy2 + 31xy3 + 9x2y2

+28x2y3 + 16x3y3.
φx(z(x, y)) = 9xy2 + 31xy3 + 18x2y2 + 56x2y3 + 48x3y3.
φy(z(x, y)) = 18xy2 + 63xy3 + 18x2y2 + 84x2y3 + 48x3y3.
(φx + φy)(z(x, y)) = 27xy2 + 124xy3 + 36x2y2 + 140x2y3 + 96x3y3.
φxφy(z(x, y)) = 18xy2 + 93xy3 + 36x2y2 + 168x2y3 + 144x3y3.
(φ2

x + φ2
y)(z(x, y)) = 45xy2 + 310xy3 + 72x2y2 + 364x2y3 + 288x3y3.

(φx + φy)φxφy(z(x, y)) = 54xy2 + 372xy3 + 144x2y2 + 840x2y3 + 864x3y3.
SxSy(z(x, y)) = 9

2 xy2 + 31
3 xy3 + 9

4 x2y2 + 28
6 x2y3 + 16

9 x3y3.
(Sxφy + Syφx)(z(x, y)) = 45

2 xy2 + 310
3 xy3 + 72

4 x2y2 + 364
6 x2y3 + 288

9 x3y3.
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Sx J(z(x, y)) = 9
3 x3 + 40

4 x4 + 28
5 x5 + 16

6 x6.
Sx Jφxφy(z(x, y)) = 6x3 + 129

4 x4 + 168
5 x5 + 24x6.

(S3
x ψ−2 J φ3

x φ3
y)(z(x, y)) = 72x + 1413

8 x2 + 224x3 + 729
4 x4.

Now, these data in Table 1 immediately yield the aforementioned results:

ω1(A) = (φx + φy)((z(x, y)))|x=y=1 = 423.
ω2(A) = (φx φy)((z(x, y)))|x=y=1 = 459.
F(A) = (φ2

x + φ2
y)((z(x, y)))|x=y=1 = 1079.

RZ(A) = ((φx + φy)φxφy)((z(x, y)))|x=y=1 = 2274.
ω∗2(A) = (SxSy)((z(x, y)))|x=y=1 = 23.528.
SDD(A) = (Sxφy + Syφx)((z(x, y)))|x=y=1 = 236.5.
H(A) = (Sx J)((z(x, y)))|x=1 = 21.267.
ISI(A) = (Sx Jφxφy)((z(x, y)))|x=1 = 95.85.
AZ(A) = (S3

x ψ−2 J φ3
x φ3

y)(z(x, y))|x=1 = 654.875.

Theorem 3. Let T be the molecular graph of decitabine. Then M(T; x, y) = 23xy2 + 21xy3

+14x2y2 + 21x2y3 + 12x3y3.

Proof. Consider T to be the molecular graph of decitabine which contains 16 vertices and 17
edges. The following is the distribution of edges based on vertex degrees: ω12 = |E12| = 1,
ω13 = |E13| = 3, ω22 = |E22| = 1, ω23 = |E23| = 9 and ω33 = |E33| = 3. And the partition
of vertices that depend on their degrees are given as ρ1 = |V1| = 4, ρ2 = |V2| = 6 and
ρ3 = |V3| = 6. By Observation 1, we obtain

ω12 = ρ1ρ2 −ω12 = 4(6)− 1 = 23
ω13 = ρ1ρ3 −ω13 = 4(6)− 3 = 21

ω22 = ρ2(ρ2−1)
2 −ω22 = 6(5)

2 − 1 = 14
ω23 = ρ2ρ3 −ω23 = 6(6)− 9 = 27

ω33 = ρ3(ρ3−1)
2 −ω33 = 6(5)

2 − 3 = 12.

Hence, by the definition of the M-polynomial, we have

M(T; x, y) = ∑
i≤j

ωij(G)xiyj

= ω12xy2 + ω13xy3 + ω22x2y2 + ω23x2y3 + ω33x3y3

= 23xy2 + 21xy3 + 14x2y2 + 27x2y3 + 12x3y3.

Theorem 4. For a decitabine graph, we have
(1) ω1(T) = 386 (2) ω2(T) = 399 (3) F(T) = 926 (4) RZ(T) = 1892 (5) ω∗2(T) =

26.833 (6) SDD(T) = 225 (7) H(T) = 22.617 (8) ISI(T) = 88.283. (9) AZ(T) = 1455.5625.

Proof. For computing the DBTCI of decitabine (Figure 8), we consider M(T; x, y) = 23xy2

+21xy3 + 14x2y2 +21x2y3 + 12x3y3.

φx(z(x, y)) = 23xy2 + 21xy3 + 28x2y2 + 42x2y3 + 36x3y3.
φy(z(x, y)) = 46xy2 + 63xy3 + 28x2y2 + 63x2y3 + 36x3y3.
(φx + φy)(z(x, y)) = 69xy2 + 84xy3 + 56x2y2 + 105x2y3 + 72x3y3.
φxφy(z(x, y)) = 46xy2 + 63xy3 + 56x2y2 + 126x2y3 + 108x3y3.
(φ2

x + φ2
y)(z(x, y)) = 115xy2 + 210xy3 + 112x2y2 + 273x2y3 + 216x3y3.

(φx + φy)φxφy(z(x, y)) = 138xy2 + 252xy3 + 224x2y2 + 630x2y3 + 648x3y3.
SxSy(z(x, y)) = 23

2 xy2 + 21
3 xy3 + 14

4 x2y2 + 21
6 x2y3 + 12

9 x3y3.
(Sxφy + Syφx)(z(x, y)) = 115

2 xy2 + 210
3 xy3 + 112

4 x2y2 + 273
6 x2y3 + 216

9 x3y3.
Sx J(z(x, y)) = 23

3 x3 + 35
4 x4 + 21

5 x5 + 12
6 x6.
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Sx Jφxφy(z(x, y)) = 46
3 x3 + 119

4 x4 + 126
5 x5 + 108x6.

(S3
x ψ−2 J φ3

x φ3
y)(z(x, y)) = 184x + 1463

8 x2 + 168x3 + 2187
16 x4.

Now, these data in Table 1 immediately yield the aforementioned results.

ω1(T) = (φx + φy)((z(x, y)))|x=y=1 = 386.
ω2(T) = (φx φy)((z(x, y)))|x=y=1 = 399.
F(T) = (φ2

x + φ2
y)((z(x, y)))|x=y=1 = 926.

RZ(T) = ((φx + φy)φxφy)((z(x, y)))|x=y=1 = 1892.
ω∗2(T) = (SxSy)((z(x, y)))|x=y=1 = 26.833.
SDD(T) = (Sxφy + Syφx)((z(x, y)))|x=y=1 = 225.
H(T) = (Sx J)((z(x, y)))|x=1 = 22.617.
ISI(T) = (Sx Jφxφy)((z(x, y)))|x=1 = 88.283.
AZ(T) = (S3

x ψ−2 J φ3
x φ3

y)(z(x, y))|x=1 = 1455.5625.

Figure 8. The molecular graph of decitabine.

Theorem 5. Let G be the molecular graph of guadecitabine. Then, we have M(G; x, y) = 111xy2

+107xy3 + 6xy4 + 88x2y2 + 176x2y3 + 13x2y4 + 83x3y3 + 13x3y4.

Proof. Consider that the graph G of guadecitabine (Figure 9) has 37 vertices and 41 edges.
The partition of edges that depends on the vertex degrees is given as ω12 = |E12| = 1,
ω13 = |E13| = 5, ω14 = |E14| = 2, ω22 = |E22| = 3, ω23 = |E23| = 20, ω24 = |E24| = 1,
ω33 = |E33| = 8 and ω34 = |E34| = 1. Similarly, the partition of vertices that depends on
their degrees is given as ρ1 = |V1| = 8, ρ2 = |V2| = 14, ρ3 = |V3| = 14 and ρ4 = |v4| = 1.
By Observation 1, we obtain

ω12 = ρ1ρ2 −ω12 = 8(14)− 1 = 111
ω13 = ρ1ρ3 −ω13 = 8(14)− 5 = 107

ω14 = ρ1ρ4 −ω14 = 8(1)− 2 = 6
ω22 = ρ2(ρ2−1)

2 −ω22 = 14(13)
2 − 3 = 88

ω23 = ρ2ρ3 −ω23 = 14(14)− 20 = 176
ω24 = ρ2ρ4 −ω24 = 14(1)− 1 = 13

ω33 = ρ3(ρ3−1)
2 −ω33 = 14(13)

2 − 8 = 83
ω34 = ρ3ρ4 −ω34 = 14(1)− 1 = 13.

By the definition of the M-polynomial, we obtain
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M(G; x, y) = ω12xy2 + ω13xy3 + ω14xy4 + ω22x2y2 + ω23x2y3 + ω24x2y4 + ω33x3y3 + ω34x3y4

= 111xy2 + 107xy3 + 6xy4 + 88x2y2 + 176x2y3 + 13x2y4 + 83x3y3 + 13x3y4.

Figure 9. The molecular graph of guadecitabine.

Theorem 6. For a guadecitabine graph, we have
(1)ω1(G) = 2690 (2)ω2(G) = 2982 (3)F(G) = 6798 (4)RZ(G) = 14956 (5)ω∗2(G) =

155.93 (6)SDD(G) = 1442.583 (7)H(G) = 140.007 (8)ISI(G) = 622.369 (9)AZ(G) =
4604.481.

Proof. For computing the DBTCI, we consider M(G; x, y) = 111xy2 + 107xy3 + 6xy4 +
88x2y2 + 176x2y3 + 13x2y4 + 83x3y3 + 13x3y4.

φx(z(x, y)) = 111xy2 + 107xy3 + 6xy4 + 176x2y2 + 352x2y3 + 26x2y4 + 249x3y3 +
39x3y4.

φy(z(x, y)) = 222xy2 + 321xy3 + 24xy4 + 176x2y2 + 528x2y3 + 52x2y4 + 249x3y3 +
52x3y4.

(φx +φy)(z(x, y)) = 333xy2 + 428xy3 + 6xy4 + 30x2y2 + 352x2y3 + 880x2y4 + 78x3y3 +
498x3y4.

φxφy(z(x, y)) = 222xy2 + 321xy3 + 24xy4 + 352x2y2 + 1056x2y3 + 104x2y4 + 747x3y3 +
156x3y4.

(φ2
x + φ2

y)(z(x, y)) = 555xy2 + 1070xy3 + 102xy4 + 704x2y2 + 2288x2y3 + 260x2y4 +

1494x3y3 + 325x3y4.
(φx +φy)φxφy(z(x, y)) = 666xy2 + 1284xy3 + 120xy4 + 1408x2y2 + 5280x2y3 + 624x2y4

+4482x3y3 + 1092x3y4.
SxSy(z(x, y)) = 111

2 xy2 + 107
2 xy3 + 6

4 xy4 + 88
4 x2y2 + 176

6 x2y3 + 13
8 x2y4 + 83

9 x3y3+
13
12 x3y4.

(Sxφy + Syφx)(z(x, y)) = 555
2 xy2 + 1070

3 xy3 + 102
4 xy4 + 704

4 x2y2 + 2288
6 x2y3 + 260

8 x2y4 +
1494

9 x3y3 + 325
12 x3y4.

Sx J(z(x, y)) = 111
3 x3 + 107

4 x4 + 6
5 x5 + 88

4 x4 + 176
5 x5 + 13

6 x6 + 83
36 x6 + 13

7 x7.
Sx Jφxφy(z(x, y)) = 222

3 x3 + 321
4 x4 + 24

5 x5 + 352
4 x4 + 1056

5 x5 + 104
6 x6 + 747

36 x6 + 156
7 x7.

(S3
x ψ−2 J φ3

x φ3
y)(z(x, y)) = 888x + 8521

8 x2 + 38400
27 x3 + 67163

64 x4 + 22464
125 x5.

Now, these data in Table 1 immediately yield the aforementioned results.
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ω1(G) = (φx + φy)((z(x, y)))|x=y=1 = 2690.
ω2(G) = (φxφy)((z(x, y)))|x=y=1 = 2982.
F(G) = (φ2

x + φ2
y)((z(x, y)))|x=y=1 = 6798.

RZ(G) = ((φx + φy)φxφy)((z(x, y)))|x=y=1 = 14956.
ω∗2(G) = (SxSy)((z(x, y)))|x=y=1 = 155.93.
SDD(G) = (Sxφy + Syφx)((z(x, y)))|x=y=1 = 1442.583.
H(G) = (Sx J)((z(x, y)))|x=1 = 140.007.
ISI(G) = (Sx Jφxφy)((z(x, y)))|x=1 = 622.369.
AZ(G) = (S3

x ψ−2 J φ3
x φ3

y)(z(x, y))|x=1 = 4604.481.

Display the graphical representations of the M-polynomials. We first create a horizon-
tal grid using the x and y parameters, and then we build a surface on top of that grid. These
graphs demonstrate diverse polynomial behavior depending on the parameters. By adjust-
ing the polynomials using these parameters, we may regulate topological coindices and,
therefore, a large number of features and activities.

3. Application

Consider the treatment for myelodysplastic syndrome (a group of conditions in which
the bone marrow produces blood cells that are misshapen and does not produce enough
healthy blood cells) with azacitidine. Azacitidine or decitabine belongs to the group of
drugs known as demethylation agents. An experimental medication being tested for the
treatment of acute myeloid leukemia and myelodysplastic syndrome is guadecitabine. Drug
design in medical research depends on the chemical, physiological, biological, and phar-
macological aspects of molecular structure. Different mathematical instruments include
forecasting certain chemistries’ features, such as the topological index. The topological
index allows us to link a single number to a molecular graph of a chemical complex. Polyg-
onal forms, trees, graphs, and other geometrical shapes are widely used to represent drugs
and other chemical compounds. In this study, we discuss the newly introduced invariants
for the drugs azacitidine, decitabine, and guadecitabine (first Zagreb index, second Zagreb
index, F-index, reformulated Zagreb index, modified Zagreb, symmetric division index,
inverse sum index, harmonic index, and augmented Zagreb index). The goal of this study
is to give the reader a current overview of drugs azacitidine, decitabine, and guadecitabines
and drugs-based medications that are now used to treat patients as well as information on
future therapeutic uses for these medications.

4. Conclusions

Building quantitative structure–activity relationships (QSAR), quantitative structure–
property relationships (QSPR), and quantitative structure–toxicity relationships (QSTR)
frequently uses topological indices (TIs) as molecular descriptors (QSTRs). In this article,
we examine a few topological features of three concise drugs, azacitidine, decitabine,
and guadecitabine, in terms of several DBTCIs. These three structures’ M-polynomials are
first determined, and then specific DBTCIs are derived using these polynomials. We also
produce the graphical representations of these polynomials in Figures 4b, 5b and 6b. These
figures are 3D plots also known as surface plots used to represent three-dimensional data
of the M-polynomial of (i) azacitidine, (ii) decitabine, (iii) guadecitabine. With our obtained
results, the F-index and RZ-index, future studies will evaluate how well the DBTCI can
forecast the physicochemical properties of various chemical compounds.
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