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Abstract: In the present communication, a new concept of a cohesive fuzzy set (CHFS) has been
proposed as a synchronized generalization of complex fuzzy sets and hesitant fuzzy sets in a system-
atic way. The novelty of the introduced notion lies in the selection of the best alternative among the
available multiple favorable situations, where the possibility of its range is in the extended unit circle
of the complex plane. We study the relationship between the CHFS and the complex intuitionistic
fuzzy set (CIFS), along with validation of the obtained results. On the basis of the proposed notion,
various properties, operations, and identities have been established with their necessary proof. The
applications of CHFS in the process of filtering the signals for obtaining the reference signal using
the necessary Fourier cosine transform or inverse Fourier cosine transform and identifying the maxi-
mum number of sunspots in a particular interval of solar activity have been suitably discussed with
illustrative numerical examples. Some advantages of incorporating the proposed notion have also
been tabulated for better understanding.

Keywords: hesitant fuzzy set; complex fuzzy set; complex intuitionistic fuzzy set; electromagnetic
signals; sunspots

1. Introduction

Different researchers have designed various tools to solve the problems related to
uncertainty inherent in our day-to-day lives, among which the probability theory and the
theory of fuzzy sets are the most popular, as well as widely applicable. It may be noted
that the information regarding the relative frequency has due concern with the probability
theory, whereas, in the case of imprecise and inexact information having uncertainty for
the decision makers, the fuzzy set theory is utilized. Zadeh, in 1965, introduced the con-
cept of fuzzy sets (FSs) [1], which is found to be a more efficient decision aid technique,
providing the ability to deal with the uncertainty and the vagueness present in our real-life
problems. In the literature, it is prominently visible that the notion of fuzzy set theory
plays a vital role in the areas of medical science [2], engineering applications [3], opti-
mization [4], decision science [5], biological characterization problems [6], econometric [7],
image analysis [8], nonsingleton fuzzy logic systems [9], machine learning approach for
prediction [10], wireless sensor networks [11], memory array analysis [12], prioritization
analysis [13], supervised machine learning techniques [14], classification of networks [15],
etc. Moreover, Tang et al. [16] presented the algorithm of symmetry with the incorporation
of intuitionistic fuzzy entropy and utilized it in the classification problem. Due to the
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increasing componential factor, Atanassov [17] introduced the concept of the intuitionistic
fuzzy set (IFS), which includes membership, nonmembership, and hesitant function in the
information. While working on the parametrization, it has been well established that the
parametric versions of information measures provide better results in the technology of
hydrogen fuel cells while deploying VIKOR and TOPSIS decision-making techniques [18].
Furthermore, the parametric form of information measures has been successfully applied
in green supply chain management [19]. The parameterizations of attributes have also
been successfully implemented in the renewable energy source selection problem with the
incorporation of the matrix theory of picture fuzzy hypersoft information [20]. The notion
of q-rung orthopair fuzzy sets has been in various decision-making fields [21–25].

In due course of time, several types of complexities were added upon, and researchers
proposed various other generalizations of fuzzy sets and intuitionistic fuzzy sets. One of
the major limitations of the application of FSs and IFSs is that these sets are not capable to
address the periodicity occurring in some uncertain and incomplete/inexact information.
In addition to this, various other problems having a two-dimensional framework cannot
be modeled with FSs and IFSs. To counter this deficiency, Ramot et al. [26] extended the
existing structure of the fuzzy set to a complex fuzzy set (CFS), which added the phase
variable and also extended the range from [0, 1] to the unit circle in the complex plane, which
spans the information in a wider sense. The membership function µS(x) = rS(x)eiwS(x)

in the complex fuzzy set implies that all the membership values must lie inside the unit
circle on the complex plane. There is a kind of specific mapping between a CFS and Fourier
transform which can be observed by restricting the range to a complex unit disk, henceforth
having various applications in the field of communication systems, geological phenomena,
optical systems, etc. Furthermore, Imtiaz et al. [27,28] extended the fuzzy sets to ξ-complex
fuzzy sets with some of their important algebraic structural properties and extended them
to group structures and fuzzy morphisms for image development. Recently, Sathiyaseelan
et al. [29] presented the notion of symmetric matrices on the inverse soft expert sets and
discussed various applications. Furthermore, several other applications are used in the
fields of heart disease prediction [30], sensor communication [31], time series analysis [32],
energy-efficient routing control [33], traveling enterprises [34], water channel estimator [35],
and automation processes [36].

In the hesitant fuzzy set, the decision makers provide a set of various favorable (multi-
favorable situations) membership values for expressing their preferences/assessments at
the same time. On the other hand, the complex fuzzy set provides freedom to add a phase
component which enables us to gain information regarding a particular higher-dimensional
periodic problem. Under the shadow of the above-stated discussions on the various gener-
alizations and applications, we present a natural extension of the existing set to a novel
concept of a cohesive fuzzy set (complex hesitant fuzzy set), which can explicitly focus on
the set of the favorable situations for a particular uncertain higher-dimensional problem
with the possible extended range of unit disk having a phase component. The phase
component gives the advantage of addressing the impreciseness, which occurs periodically.
The objective behind introducing the concept of CHFS is that it not only deals with the
situation in which we are facing difficulty in choosing the best among the various favorable
options but also helps in neglecting the unfavorable situations among the wide range of
situations, which would certainly save both our time and energy.

Literature Review

Torra [37] first introduced the notion of the hesitant fuzzy set (HFS) along with various
operations (complement, union and intersection, etc.), which provided new dimensions
to the research, especially in the field of group decision making, where the problem of
multi-favorable situations can be better handled. For the sake of obtaining an overview
of the various existing extensions and generalizations, we present an explanatory tree
diagram in Figure 1 ([38–50]).
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Figure 1. Generalizations ([38–50]) and extensions of fuzzy sets.

In addition to various generalizations of fuzzy sets stated above and their respective
measures available in the literature, Xu and Xia [51] presented various distance measures,
similarity measures, and correlation coefficients for hesitant fuzzy sets. Moreover, Torra [37]
established a relation between HFS and IFS stating the enveloping procedure of IFS over
HFS. Xu et al. [52] elaborated the hesitant fuzzy sets theoretically with different support
systems and methodologies which have some kind of special advantageous features in the
group decision-making processes. They also described the consensus process as the hesitant
fuzzy setup to complete the decision-making process. Ren et al. [53] extended the concept of
HFS to normal wiggly hesitant fuzzy sets to improve the rationality of the decision-making
process and also proposed two introductory aggregation operators. Another important
contribution made in the study of HFS is the dual hesitant fuzzy set (DHFS), which was
proposed by Zhu et al. [54], in which the membership hesitancy function and nonmem-
bership hesitancy function are used to support more flexible access to assign the values to
each element in the domain. It may be noted that FS, IFS, and HFS can be treated as special
cases of DHFS. Furthermore, Garg et al. [55] added the probability factor to DHFS and
proposed the coefficients along with the weighted correlation coefficients for probabilistic
dual hesitant fuzzy sets (PDHFSs). The CFS has been extended to a complex intuitionistic
fuzzy set (CIFS) by Abdulzeez et al. [56], which added the complex membership and
nonmembership function. Garg and Rani [57,58] contributed to two studies in the field of
CIFS. First, they developed correlation/weighted correlation coefficients under the CIFS
setup, where the membership degrees were utilized to represent the two-dimensional infor-
mation. Secondly, they introduced and discussed the transformation relationships among
the similarity, distance, entropies, and inclusion measures. Yaqoob et al. [59] introduced
the notion of complex intuitionistic fuzzy graphs by combining two efficient theories (CIFS
and graph theory) and also explained their advantage with the help of examples in the
field of cellular network. In a study, Luqman et al. [60] discussed a detailed analysis on
hypergraph representations of complex fuzzy information for a geometrical understanding.
Moreover, Akram et al. [61] well presented a novel decision-making model utilizing the
complex picture fuzzy Hamacher aggregation operators, and Mahmood et al. [62] proposed
the notion of complex picture fuzzy N-soft sets with application in decision making.

The work in the present manuscript is organized as follows. Some standard definitions
and preliminaries related to the further extensions of fuzzy sets are presented in Section 2.
The notion of the cohesive fuzzy set (CHFS) is introduced with various operations, prop-
erties, and standard identities in Section 3. This extension of the fuzzy set is capable of
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dealing with situations in which there are multifavorable situations in the complex plane.
In Section 4, we present the application of CHFS in the field of filtering the signals using
the Fourier Cosine Transformation(FCT) and Inverse Discrete Fourier Cosine Transforma-
tion(IDFCT/DFCT). The detailed calculations for finding the reference signal by filtering
the available ones are shown subsequently. In Section 5, the methodology of identifying
the maximum number of sunspots in a particular interval under solar activity is presented
with an example. The advantages and the limitations of the proposed methodology are
listed in Section 6. Finally, the conclusions of the presented work are provided with the
explanation and scope for future work in Section 7.

2. Preliminaries

In this section, for the sake of better readability, we provide the basic notions and
definitions of hesitant fuzzy sets, complex fuzzy sets, and intuitionistic fuzzy sets, which
are some important extensions of fuzzy sets introduced by Torra [37], Ramot et al. [26] and
Atannassov [17] respectively. The hesitant fuzzy set is a fixed set of membership elements
in [0, 1], whereas the IFSs set adds the membership and nonmembership functions to the
fuzzy set. On the other hand, the complex fuzzy set (CFS) extends the range of FSs from
a real number [0, 1] to the unit circle in a complex plane, which is very helpful in solving
real-life problems, such as solar activity, containing phases as one more element. Here, we
present the following definitions which are readily available in the literature:

Definition 1 ((Fuzzy set) [1]). “Let A be set of uncertainty in a nonempty set X defined as

A = {< x, µA(x) > |x ∈ X}

where µA(x) is a membership function in [0, 1].”

Definition 2 ((Intuitionistic fuzzy set) [17]). “Let a fixed discourse X, an intuitionistic fuzzy
set A ⊂ X defined as:

A = {< x, µA(x), νA(x) > |x ∈ X}

where µA(x) and νA(x) are the degree of membership and nonmembership of element x ∈ X in
the interval [0, 1], respectively, with restrictions:

0 ≤ µA(x) + νA(x) ≤ 1

and the degree of nondeterminacy πA(x), degree of favor δA(x), and degree of against ηA(x) of the
element x ∈ X to A are defined as:

πA(x) = 1− µA(x)− νA(x)
δA(x) = µA(x) + πA(x) ∗ µA(x)
ηA(x) = νA(x) + πA(x) ∗ νA(x)

and πA(x) = 0 for every x ∈ X in case of ordinary fuzzy set.”

Definition 3 ((Hesitant fuzzy set) [37]). “Let a fixed set be X, an HFS function in terms of
hesitant fuzzy element (HFE) h on X that when applied to X returns a subset of [0, 1].

The mathematical symbol to express and understand the HFS easily is given by:

A = {< x, hA(x) > |x ∈ X};

where hA(x) is a set of values denoting the degree of membership of element x ∈ X in [0, 1].”
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Given three HFEs represented by h, h1, and h2, Torra [37] defined some operations on
them, which can be described as

hc = ∪γ∈h{1− γ};
h1 ∪ h2 = ∪γ1∈h1 ∪γ2∈h2 max{γ1, γ2};
h1 ∩ h2 = ∪γ1∈h1 ∪γ2∈h2 min{γ1, γ2}.

Definition 4 ((Complex fuzzy set) [26]). “Let a universe U, a complex fuzzy set S defined on
discourse U characterized by a membership function µS(x) that assigns any element x ∈ U a
complex-valued grade of membership in S. By definition, the complex valued function µS(x) of
the form rS(x) expiwS(x) lies within the unit circle in complex plane, where i =

√
−1, rS(x) and

wS(x) are both real valued, and rS(x) ∈ [0, 1].”

The complex fuzzy set S is represented in the following form:

S = {(x, µS(x))|x ∈ U}.

Definition 5 ((Complex intuitionistic fuzzy set) [56]). “Let a defined universe of discourse U,
a complex intuitionistic fuzzy set S added the membership and nonmembership functions µS(x)
and γS(x) respectively to the complex fuzzy set, that assigns any element x ∈ U. This element
x is a complex value element that contains both the membership and nonmembership values in S.
According to the definition, it is already defined that the values of µS(x), γS(x) and their sum
will always lie in the unit circle in the complex plane, and the complex membership µS(x) and
nonmembership γS(x) functions are of the form rS(x) expiwµS(x) and kS(x) expiwγS(x) respectively,
where i =

√
−1,wγS(x) and wµS(x) are real valued function.”

Moreover,

0 ≤ rS(x) ≤ 1, 0 ≤ kS(x) ≤ 1, and 0 ≤ rS(x) + kS(x) ≤ 1.

Now, the CIFS is represented as

S = {< x, µS(x) = a, γS(x) = a′ > |x ∈ U}, where

µS(x) : U → {a|a ∈ C, |a| ≤ 1},
γS(x) : U → {a′|a′ ∈ C, |a′| ≤ 1},

and |µS(x) + γS(x)| ≤ 1.

3. Cohesive Fuzzy Sets, Operations, and Properties

In this section, we introduce the concept of a cohesive fuzzy set and provide its formal
definition, along with various operations and related important properties.

The complex fuzzy set captures the phase component to process the information of a
higher dimensional periodic problem, while in the theory of hesitant fuzzy set theory, ex-
perts provide a set of various multifavorable situations for presenting their assessments. In
order to merge both requirements in a synchronized way, a natural extension to a set called
a cohesive fuzzy set is introduced for explicitly focusing on the set of favorable situations
for a particular uncertain higher-dimensional problem, with the possible extended range of
unit disk having a phase component.

Definition 6 (Cohesive fuzzy set). Consider a fuzzy set T defined on a fixed universe of discourse
S; a cohesive fuzzy set (CHFS) on T is in terms of function h when, applied on S, it returns a subset
of unit circle, i.e.,

S1 = {< x, hT(x) > |x ∈ S}; (1)
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where hT is a complex set of values in a unit circle of the complex plane, denoting the possible
membership degrees of elements x ∈ S to the set T ⊂ S. Here, hT is of the form rT(x) exp(iwT(x)),
where i =

√
−1, rT(x) and wT(x) both are real values and rT(x) ∈ [0, 1].

Example 1. For understanding the basic structure of CHFS, let S = {x1, x2, x3} be the reference
set. Suppose

hT1(x1) = {0.5 exp π, 0.8 exp
π

2
, 0.7 exp

π

2
},

hT2(x2) = {0.6 exp π, 0.9 exp π, 0.7 exp
π

4
},

and
hT3(x3) = {0.5 exp π, 0.7 exp

π

2
, 0.7 exp π}

denote the membership set of xi(i = 1, 2, 3) to the set T, respectively. Then, the cohesive fuzzy set
can be represented as

T = {< x1, {0.5 exp π, 0.8 exp
π

2
, 0.7 exp

π

2
} >,

< x2, {0.6 exp π, 0.9 exp π, 0.7 exp
π

4
} >,< x3,

{0.5 exp π, 0.7 exp
π

2
, 0.7 exp π} >}. (2)

Various Basic Operations/Results on Cohesive Fuzzy Sets

Given a cohesive fuzzy set T whose membership function is given by hT , we suitably
propose its lower and upper bound as given below:

• lower bound: h−T = min(hT) and
• upper bound: h+T = max(hT).

It may be noted that the pair of complex hesitant functions h−T and 1− h+T define the
complex intuitionistic fuzzy set. Next, we first propose the definition of the complement of
the cohesive fuzzy set as follows:

Definition 7 (Complement). Given a cohesive fuzzy set represented by membership function hT ,
its complement set is defined as follows:

hc
T = ∪µT∈hT{µT}c; (3)

where µT = rTeiwT , i.e.,

hc
T = ∪µT∈hT{µT}c = ∪rT∈hT ,wT∈hT{(1− rT)ei(−wT)}.

Proposition 1. The operation of complement, i.e.,

(hc
T)

c = hT (4)

Proof. It is easy to observe that (1− (1− rT))ei(−(−wT)) for all rT , wT ∈ hT , hence the
result.

Definition 8 (Union). Suppose there are two cohesive fuzzy sets represented by their hesitant
membership functions hT1 and hT2 , respectively. The union of these CHFSs, denoted by hT1 ∪ hT2 ,
can be defined as(

hT1 ∪ hT2

)
(x) = {hT ∈

(
hT1(x) ∪ hT2(x)

)
|hT ≥ max

(
h−T1

, h−T2

)
}.
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Definition 9 (Intersection). Suppose there are two cohesive fuzzy sets represented by their hesi-
tant membership functions hT1 and hT2 , respectively. The intersection of these CHFSs, denoted by
hT1 ∩ hT2 , can be defined as (

hT1 ∩ hT2

)
(x) =

{hT ∈
(
hT1(x) ∩ hT2(x)

)
|hT ≤ min

(
h+T1

, h+T2

)
}.

Hence, from the Definitions 7–9 given above, we write the following equations:

hc
T = ∪µT∈hT{µT}c = ∪rT ,wT∈hT{(1− rT)e−iwT};

hT1 ∪ hT2 = ∪µT1∈hT1 , µT2∈hT2
max{µT1 , µT2}

= ∪rT ,wT∈hT{max
(
rT1 , rT2

)
ei max(wT1 ,wT2)};

hT1 ∩ hT2 = ∪µT1∈hT1 , µT2∈hT2
min{µT1 , µT2}

= ∪rT ,wT∈hT{min
(
rT1 , rT2

)
ei min(wT1 ,wT2)}. (5)

where µT , µT1 , and µT2 are of the form rTeiwT , rT1 eiwT1 , and rT2 eiwT2 , respectively.

Remark 1. The CIFS contains complex membership and nonmembership functions, both as given
in Definition 5. However, in the case of CHFS, only the complex membership function is considered.
Therefore, we can say that every CHFS is contained in CIFS, whereas the reverse is not true.

Definition 10. Suppose there is a cohesive fuzzy set given by hT , we define CIFS Aenv(hT) as the
envelope of hT . Now, the set Aenv(hT) is represented by < x, µS(x), γS(x) > with

µS(x) = min(hT) = min(µT)

γS(x) = 1−max(hT) = 1−max(µT)
(6)

where µT = rTeiwT .

Proposition 2. Now, the relationship between the cohesive fuzzy set and complex intuitionistic
fuzzy set is given by

• Aenv
(
hc

T
)
= (Aenv(hT))

c;
• Aenv

(
hT1 ∪ hT2

)
= Aenv

(
hT1

)
∪Aenv

(
hT2

)
;

• Aenv
(
hT1 ∩ hT2

)
= Aenv

(
hT1

)
∩Aenv

(
hT2

)
.

Proof. We know that

Aenv(hT) =< min h(x), 1−max h(x) >

=< h−T (x), 1− h+T (x) >

(Aenv(hT))
c =< 1− h+T (x), h−T (x) >

and that
Aenv(hc

T) =< min hc(x), 1−max hc(x) >

=< min
(
(1− rT(x))e−iwT(x)

)
, 1−max

(
(1− rT(x))e−iwT(x)

)
>

=< 1−max
(

rT(x)eiwT(x)
)

, 1− 1 + min
(

rT(x)eiwT(x)
)
>

=< 1− h+T (x), h−T (x) >
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So, it proves the first inequality.
Then,

Aenv
(
hT1 ∪ hT2

)
= Aenv

(
{hT ∈

(
hT1(x) ∪ hT2(x)

)
|hT ≥ max

(
h−T1

, h−T2

)
}
)

Thus, it implies that x lies in interval [max
(

h−T1
(x), h−T2

(x)
)

, max(h+T1
(x), h+T2

(x)]. This
implies that

Aenv
(
hT1 ∪ hT2

)
=< max

(
h−T1

, h−T2

)
,

min
(

1− h+T1
, 1− h+T2

)
>

This proves the second inequality.

Similarly, we can prove the third inequality. Finally, all the equalities are proved.
Next, for the sake of relative ordering over the cohesive fuzzy elements, some necessary

comparing laws are provided as follows:

Definition 11. For a given cohesive fuzzy element hT ,

f (hT) =
1

#hT
∑

rT ,wT∈hT

rTeiwT

is called the score function of hT , where #hT is the number of the elements in hT .

For two cohesive fuzzy elements hT1 and hT2 ,

if f
(
hT1

)
> f

(
hT2

)
then hT1 > hT2 ; if f

(
hT1

)
= f

(
hT2

)
,

then hT1 = hT2 .
Next, we defined some new operations on the cohesive fuzzy elements hT , hT1 , and

hT2 on the basis of the relations proposed in Proposition 2, which are given below:

• (hT)
λ = ∪rT ,wT∈hT

(
rTeiwT

)λ; where λ ∈ R, λ > 0

• λhT = ∪rT ,wT∈hT

(
1− (1− rT)

λ
)

eiλwT

• (Direct Sum) hT1 ⊕ hT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2

{
(
rT1 + rT2 − rT1 rT2

)
ei(wT1+wT2)}

• (Direct Product) hT1 ⊗ hT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2

{
(
rT1 rT2

)
ei(wT1+wT2)}

Some more important operations have been established using the above operations on
cohesive fuzzy elements as follows:

Theorem 1. For the three given cohesive fuzzy elements hT , hT1 , and hT2 , the following identities
hold:
(1) hT1

c ∪ hT2
c =

(
hT1 ∩ hT2

)c.
(2) hT1

c ∩ hT2
c =

(
hT1 ∪ hT2

)c.
(3)
(
hc

T
)λ

= (λhT)
c.

(4) λ
(
hc

T
)
=
(
hλ

T
)c.

(5) hc
T1
⊕ hc

T2
=
(
hT1 ⊗ hT2

)c.
(6) hc

T1
⊗ hc

T2
=
(
hT1 ⊕ hT2

)c.

Proof. The proof for the above-stated identities is outlined below:
(1) hT1

c ∪ hT2
c = ∪rT1 ,wT1∈hT1 rT1 ,wT1∈hT1
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max
((

1− rT1

)
e−iwT1 ,

(
1− rT2

)
e−iwT2

)
=
(
1−min

(
rT1 , rT2

))
e−i(1−min(wT1 ,wT2))

=
(
hT1 ∩ hT2

)c.
(2) hT1

c ∩ hT2
c = ∪rT1 ,wT1∈hT1 rT1 ,wT1∈hT1

min
((

1− rT1

)
e−iwT1 ,

(
1− rT2

)
e−iwT2

)
=
(
1−max

(
rT1 , rT2

))
e−i(1−max(wT1 ,wT2))

=
(
hT1 ∪ hT2

)c.

(3)
(
hc

T
)λ

= ∪rT ,wT∈hT

(
(1− rT)e−iwT

)λ

= ∪rT ,wT∈hT (1− rT)
λe−iλwT

= ∪rT ,wT∈hT

((
1− (1− rT)

λ
)

eiλwT
)c

= (λhT)
c.

(4) λ
(
hc

T
)
= ∪rT ,wT∈hT

(
1−

(
1− (1− rT)

λ
))

e−iλwT =
(
hλ

T
)c.

(5) hc
T1
⊕ hc

T2
= ∪rT1

,wT1
∈hT1

,rT2
,wT2
∈hT2
{
((

1− rT1

)
+
(
1− rT2

)
−
(
1− rT1

)(
1− rT2

))
e−i

(
wT1

+wT2

)
}

= ∪rT1
,wT1
∈hT1

,rT2
,wT2
∈hT2
{
(
1− rT1 rT2

)
e−i

(
wT1

+wT2

)
}

=
(
hT1 ⊗ hT2

)c.

(6) hc
T1
⊗ hc

T2
= ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2

{
(
1− rT1

)(
1− rT2

)
e−i(wT1+wT2)}

= ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2
{
(
1−

(
rT1 + rT2 − rT1 rT2

))
e−i(wT1+wT2)}

=
(
hT1 ⊕ hT2

)c.

Definition 12. Let hT1 and hT2 be two cohesive fuzzy elements; we propose the operators given below:

(1) hT1 o1hT2 = ∪µT1∈hT1
{ |µT1−µT2 |

1+|µT1−µT2 |
}

(2) hT1 o2hT2 = ∪µT1∈hT1
{ |µT1−µT2 |

1+2|µT1−µT2 |
}

(3) hT1 o3hT2 = ∪µT1∈hT1
{ |µT1−µT2 |

2 }

(4) hT1 o4hT2 = ∪µT1∈hT1
{ |µT1 .µT2 |

2 }
where µT1 and µT2 are in the form of rT1 eiwT1 and rT2 eiwT2 , respectively.

Remark 2. The following may be observed from the above definition:

• hT1 ⊕ hT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2

{
(
rT1 + rT2 − rT1 rT2

)
ei(wT1+wT2)}

= ∪µT1 ,wT1∈hT1 ,µT2 ,wT2∈hT2
{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}.

• hT1 ⊗ hT2 = ∪rT1 ,wT1∈hT1 ,rT2 ,wT2∈hT2

{
(
rT1 rT2

)
ei(wT1+wT2)}
= ∪µT1∈hT1 ,µT2∈hT2

{µT1 µT2}.

Theorem 2. With hT1 and hT2 being the two cohesive fuzzy elements, we have the following
identities:
(1)
(
hT1 ⊕ hT2

)
∩
(
hT1 o1hT2

)
=
(
hT1 o1hT2

)
;

(2)
(
hT1 ⊕ hT2

)
∪
(
hT1 o1hT2

)
=
(
hT1 ⊕ hT2

)
;

(3)
(
hT1 ⊗ hT2

)
∩
(
hT1 o1hT2

)
=
(
hT1 o1hT2

)
;

(4)
(
hT1 ⊗ hT2

)
∩
(
hT1 o1hT2

)
=
(
hT1 ⊗ hT2

)
;

(5)
(
hT1 ⊕ hT2

)
∩
(
hT1 o2hT2

)
=
(
hT1 o2hT2

)
;

(6)
(
hT1 ⊕ hT2

)
∪
(
hT1 o2hT2

)
=
(
hT1 ⊕ hT2

)
;

(7)
(
hT1 ⊗ hT2

)
∩
(
hT1 o2hT2

)
=
(
hT1 o2hT2

)
;

(8)
(
hT1 ⊗ hT2

)
∩
(
hT1 o2hT2

)
=
(
hT1 ⊗ hT2

)
;

(9)
(
hT1 ⊕ hT2

)
∩
(
hT1 o3hT2

)
=
(
hT1 o3hT2

)
;
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(10)
(
hT1 ⊕ hT2

)
∪
(
hT1 o3hT2

)
=
(
hT1 ⊕ hT2

)
;

(11)
(
hT1 ⊗ hT2

)
∩
(
hT1 o3hT2

)
=
(
hT1 o3hT2

)
;

(12)
(
hT1 ⊗ hT2

)
∩
(
hT1 o3hT2

)
=
(
hT1 ⊗ hT2

)
;

(13)
(
hT1 ⊕ hT2

)
∩
(
hT1 o4hT2

)
=
(
hT1 o4hT2

)
;

(14)
(
hT1 ⊕ hT2

)
∪
(
hT1 o4hT2

)
=
(
hT1 ⊕ hT2

)
;

(15)
(
hT1 ⊗ hT2

)
∩
(
hT1 o4hT2

)
=
(
hT1 o4hT2

)
;

(16)
(
hT1 ⊗ hT2

)
∩
(
hT11 o4hT2

)
=
(
hT1 ⊗ hT2

)
.

Proof. All the above-listed properties were proven one by one. In view of Definition 12 stated
above, we have
(1)
(
hT1 ⊕ hT2

)
∩
(
hT1 o1 hT2

)
=

∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

 ∩
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

}


= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

min

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2 ,
|µT1−µT2 |

1+|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

} =
(
hT1 o1 hT2

)
.

(2)
(
hT1 ⊕ hT2

)
∪
(
hT1 o1 hT2

)
=

∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

 ∪
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

}


= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

max{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2 ,

|µT1−µT2 |
1+|µT1−µT2 |

}

= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

=
(
hT1 ⊕ hT2

)
.

(3)
(
hT1 ⊗ hT2

)
∩
(
hT1 o1 hT2

)
=

∪µT1∈hT1
µT2∈hT2

{µT1 µT2}

 ∩
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

}


= ∪µT1∈hT1

µT2∈hT2

min{µT1 µT2 ,
|µT1−µT2 |

1+|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

} =
(
hT1 o1 hT2

)
.

(4)
(
hT1 ⊗ hT2

)
∪
(
hT1 o1 hT2

)
=

∪µT1∈hT1
µT2∈hT2

{µT1 µT2}

 ∪
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
1+|µT1−µT2 |

}


= ∪µT1∈hT1

µT2∈hT2

max{µT1 µT2 ,
|µT1−µT2 |

1+|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{µT1 µT2} =
(
hT1 ⊗ hT2

)
.

(5)
(
hT1 ⊕ hT2

)
∩
(
hT1 o2 hT2

)
=

∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

 ∩
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

}


= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2
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min{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2 ,
|µT1−µT2 |

1+2|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

} =
(
hT1 o2 hT2

)
.

(6)
(
hT1 ⊕ hT2

)
∪
(
hT1 o2 hT2

)
=

∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

 ∪
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

}


= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

max{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2 ,

|µT1−µT2 |
1+2|µT1−µT2 |

}

= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

=
(
hT1 ⊕ hT2

)
.

(7)
(
hT1 ⊗ hT2

)
∩
(
hT1 o2 hT2

)
=

∪µT1∈hT1
µT2∈hT2

{µT1 µT2}

 ∩
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

}


= ∪µT1∈hT1

µT2∈hT2

min{µT1 µT2 ,
|µT1−µT2 |

1+2|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

} =
(
hT1 o2 hT2

)
.

(8)
(
hT1 ⊗ hT2

)
∪
(
hT1 o2 hT2

)
=

∪µT1∈hT1
µT2∈hT2

{µT1 µT2}

 ∪
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
1+2|µT1−µT2 |

}


= ∪µT1∈hT1

µT2∈hT2

max{µT1 µT2 ,
|µT1−µT2 |

1+2|µT1−µT2 |
}

= ∪µT1∈hT1
µT2∈hT2

{µT1 µT2} =
(
hT1 ⊗ hT2

)
.

(9)
(
hT1 ⊕ hT2

)
∩
(
hT1 o3 hT2

)
=

∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

 ∩
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
2 }


= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

min{µT11 eiwT2 + µT2 eiwT1 − µT1 µT2 ,

|µT1−µT2 |
2 }

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
2 } =

(
hT1 o3 hT2

)
.

(10)
(
hT1 ⊕ hT2

)
∪
(
hT1 o3 hT2

)
=

∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

 ∪
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
2 }


= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

max{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2 ,

|µT1−µT2 |
2 }

= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

=
(
hT1 ⊕ hT2

)
.

(11)
(
hT1 ⊗ hT2

)
∩
(
hT1 o3 hT2

)
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=

∪µT1∈hT1
µT2∈hT2

{µT1 µT2}

 ∩
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
2 }


= ∪µT1∈hT1

µT2∈hT2

min{µT1 µT2 ,
|µT1−µT2 |

2 }

= ∪µT1∈hT1
µT2∈hT2

{ |µT1−µT2 |
2 }

=
(
hT1 o3 hT2

)
.

(12)
(
hT1 ⊗ hT2

)
∪
(
hT1 o3 hT2

)
=

∪µT1∈hT1
µT2∈hT2

{µT1 µT2}

 ∪
∪µT1∈hT1

µT2∈hT2

{ |µT1−µT2 |
2 }


= ∪µT1∈hT1

µT2∈hT2

max{µT1 µT2 ,
|µT1−µT2 |

2 }

= ∪µT1∈hT1
µT2∈hT2

{µT1 µT2} =
(
hT1 ⊗ hT2

)
.

(13)
(
hT1 ⊕ hT2

)
∩
(
hT1 o4 hT2

)
=

∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

 ∩
∪µT1∈hT1

µT2∈hT2

{ |µT1 µT2 |
2 }


= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

min{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2 ,
|µT1 µT2 |

2 }
= ∪µT1∈hT1

µT2∈hT2

{ |µT1 µT2 |
2 } =

(
hT1 o4 hT2

)
.

(14)
(
hT1 ⊕ hT2

)
∪
(
hT1 o4 hT2

)
=

∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

 ∪
∪µT1∈hT1

µT2∈hT2

{ |µT1 µT2 |
2 }


= ∪µT1 ,wT1∈hT1

µT2 ,wT2∈hT2

max{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2 ,

|µT1 µT2 |
2 }

= ∪µT1 ,wT1∈hT1
µT2 ,wT2∈hT2

{µT1 eiwT2 + µT2 eiwT1 − µT1 µT2}

=
(
hT1 ⊕ hT2

)
.

(15)
(
hT1 ⊗ hT2

)
∩
(
hT1 o4 hT2

)
=

∪µT1∈hT1
µT2∈hT2

{µT1 µT2}

 ∩
∪µT1∈hT1

µT2∈hT2

{ |µT1 µT2 |
2 }


= ∪µT1∈hT1

µT2∈hT2

min{µT1 µT2 ,
|µT1 µT2 |

2 }

= ∪µT1∈hT1
µT2∈hT2

{ |µT1 µT2 |
2 } =

(
hT1 o4 hT2

)
.

(16)
(
hT1 ⊗ hT2

)
∪
(
hT1 o4 hT2

)
=

∪µT1∈hT1
µT2∈hT2

{µT1 µT2}

 ∪
∪µT1∈hT1

µT2∈hT2

{ |µT1 µT2 |
2 }


= ∪µT1∈hT1

µT2∈hT2

max{µT1 µT2 ,
|µT1 µT2 |

2 }
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= ∪µT1∈hT1
µT2∈hT2

{µT1 µT2} =
(
hT1 ⊗ hT2

)
.

Hence, this proves all the above-stated identities. Similarly, various other operations
and relations can further be established for the cohesive fuzzy set.

4. Application of Cohesive Fuzzy Sets in Reference Signal

In this section, we incorporate the proposed notion of a cohesive fuzzy set in the
application field of filtering the electromagnetic signals for obtaining the reference signal
from the number of signals obtained. The propagation and parameter of an electromagnetic
signal can be understood through the following diagram given in Figure 2:

Propagation of Electromagnetic Waves 

(Selecting the Reference Signal) 

Figure 2. Components of electromagnetic signal.

In the subsequent sections, we first present a new methodology by incorporating
Fourier Cosine Transformationto identify reference electromagnetic signals and secondly,
by using Inverse Discrete Fourier Cosine Transformation, we present another methodology
for identifying reference electromagnetic signals. To increase the clarity, the flowchart
explaining the procedure is given in Figure 3.

IDENTIFYING REFERENCE SIGNAL

START

The received signals are 

obtained in the form of the 

Fourier Transformation.

CFS  is used to detect the required signal from the receiving 

signals which are affected by  its phase and amplitude 

differences.

Applied CHFS to the set of signal in 

which the Fourier cosine series is 

obtained whose value is mainly greater 

than the threshold value.

Signal with completely 

different phase and value 

less than threshold value is 

rejected.

END

START

The received signals are 

obtained in the form of the 

Inverse Discrete Fourier  

transformation (IDFCT).

Use particular case for the IDFCT, that is,

On the basis of applicability to CHFS, 

only Inverse Discrete Fourier Cosine 

Transformation is selected.

The Inverse Fourier Sine 

Transformation is rejected 

due to non-applicability.

Finally, the most similar value of the 

transmitted signal with the reference 

signal is matched and selected.

END

Figure 3. Methodology for electromagnetic signal.

4.1. Identifying Reference Electromagnetic Signal Using Fourier Cosine Transformation(FCT)

Here, the processing of electromagnetic signals was carried over by implementing
the introduced concept of a cohesive fuzzy set in identifying the signal of interest among
the large number of signals received by the receiver. Ramot et al. [26] demonstrated the
use of a complex fuzzy set in signal processing, where L different speech signals and
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electromagnetic signals, viz., T1(t), T2(t), ..., TL(t), have been detected and sampled by
the digital receiver. Each received signal is sampled N times. Let Tl(k) denote the kth

(1 ≤ k ≤ N) sample and the lth signal (1 ≤ l ≤ L).
Furthermore, the Fourier transform of the received signals was obtained, and each one

is represented as the sum of Fourier components given below:

Tl(k) =
1
N

N

∑
n=1

Cl,ne
i2π(n−1)(k−1)

N ; (7)

where Cl,n(1 ≤ n ≤ N) are complex Fourier coefficients of Tl .
It may be noted that, in the case of a cohesive fuzzy set, we take the Fourier cosine

transform of the received signals, each of which is represented as the sum of Fourier
cosine components

Tl(k) =
1
N

N

∑
n=1

Cl,n cos
(

i2π(n− 1)(k− 1)
N

)
; (8)

where Cl,n(1 ≤ n ≤ N) are complex Fourier coefficients of Tl .
Therefore, the above-mentioned sum may be rewritten as

Tl(k) =
1
N

N

∑
n=1

Pl,neiαl,n cos
(

i2π(n− 1)(k− 1)
N

)
; (9)

where Cl,n = Al,neiαl,n , with Pl,n and αl,n being real-valued, and Pl,n ≥ 0 ∀n.
The aim of the above-proposed application is to determine whether any signal among

received L signals can be identified as the reference signal R. Therefore, in a similar manner,
the reference signal R is also sampled N times, and its corresponding Fourier cosine series
may be written as

R(k) =
1
N

N

∑
n=1

PR,neiαR,n cos
(

i2π(n− 1)(k− 1)
N

)
; (10)

where
CR,n = PR,neiαR,n , with 1 ≤ n ≤ N,

PR,n and αR,n to be real valued and PR,n ≥ 0 ∀ n.

Next, we formally list the steps of the proposed methodology for identifying the
reference signal with the help of the similarity measures between the signals T1, T2, ..., TL to
R as follows:

Step 1: We first normalize the amplitudes of all Fourier cosine coefficients for any candidate
signal Tl(1 6= l 6= L). Suppose Pl denotes the N-dimensional vector of amplitudes of the
candidate signal’s (T) Fourier coefficients:

Pl = (Pl,1, Pl,2, ..., Pl,N),

and PR denotes the N-dimensional vector of amplitudes of the reference signal’s (R)
Fourier coefficients:

PR = (PR,1, PR,2, ..., PR,N).

We consider the normalized vector Ql in the form given below:

Ql =
1

Pl .‖Pl‖
, where ‖Pl‖ =

√√√√ N

∑
n=1

(Pl,n)
2,



Symmetry 2023, 15, 595 15 of 30

and the normalized vector QR in the form given below:

QR =
1

PR.‖PR‖
, where ‖PR‖ =

√√√√ N

∑
n=1

(PR,n)
2.

Thus, the vector Ql = (Ql,1, Ql,2, ..., Ql,N) represents the normalized amplitudes of
T′l s Fourier cosine coefficients. Similarly, QR = (QR,1, QR,2, ..., QR,N) is the normalized
amplitude of R′s Fourier cosine coefficients.

Step 2: Next, we calculate the complex grade similarity for every Fourier cosine coefficient
of Tl in relevance with the reference signal R. Then, the grade of similarity between
Cl,n to CR,n may be denoted by νR,Tl (n) and given by

νR,Tl (n) = rR,Tl (n)e
iwR,Tl

(n); (11)

where

rR,Tl (n) = e
−(QR,n−Ql,n)

2

QR,nQl,n and wR,Tl = (αR,n − αl,n).

Here, νR,Tl(n) represents the complex grade of membership, which includes phase and
amplitude terms. The phase term contains the information of the relative phase between
the Cl,n and CR,n. The amplitude term rR,Tl in the range [0, 1] is normalized and used to
measure the distance exponentially between the Cl,n and CR,n. The effect of outside factors
such as path loss, the distance of transmission source from the digital receiver, etc., is
reduced by using normalized amplitudes Ql,n and QR,n. The case of the relative amplitude
of Cl,n in Tl is compared with CR,n in R, so that synchronized results may be obtained in
either case of strong and weak signals.

Step 3: Furthermore, the complex grade similarity νR,Tl is obtained by summing the grade
similarity of each of the Fourier cosine coefficients νR,Tl (n)∀n(1 ≤ n ≤ N), in which either
Ql,n or QR,n must be larger than the QThreshold. This QThreshold is used to prevent νR,Tl from
the Fourier cosine coefficients with small amplitudes in Tl and R. Next, the sum of the
complex grade similarity is divided by the number of coefficients (m). The considered
coefficients of Ql,n and QR,n must have greater amplitudes compared with the QThreshold
and, consequently, map the amplitude of νR,Tl in the range of [0, 1] subject to

νR,Tl =
∑M νR,Tl (n)

m
; (12)

where
M = {n|Ql,n or QR,n > QThreshold}

and the number of elements in M is denoted by m.
Hence, the sum of νR,Tl given in Equation (12) is totally dependent on the phase term

of νR,Tl . The phase term is an important factor to determine whether the grade of similarity
increase or decreases among C′l,ns and C′R,ns. This issue of phase has been reduced in our
proposed methodology as we are taking Fourier cosine transformation, due to which only
one factor will affect the phase term.

Thus, the amplitude of νR,Tl , which is used to determine Tl to R, is subject to the
following conditions:

(1) The identified signal Tl w.r.t R must be close to 1.
(2) The normalized amplitudes of the Fourier coefficients of Tl and R are similar.
(3) The relative phases of the Fourier coefficients of candidate and reference signals i.e.,

Tl and R, are similar.

Step 4: Finally, the electromagnetic signal Tl may be identified as R by comparing the
values of |ν(R,Tl)

| to νThreshold. If the obtained value of |ν(R,Tl)
| exceeds the threshold, then

the identified signals Tl may be considered as R.
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The above-proposed methodology, which utilizes the Fourier Cosine Transformationin
calculating the similarity between two signals, is supposed to play a significant role in
signal analysis applications, where the relative phase between the Fourier component of
the signals is considered to be an important factor.

4.2. Identifying Reference Electromagnetic Signal Using Inverse Discrete Fourier Cosine
Transformation(IDFCT)

In this subsection, we use the Inverse Discrete Fourier Cosine Transformationto de-
velop a methodology to find the reference signal among the transmitted signals received
by the receiver.

Xueling et al. [63] used the Lth Inverse Discrete Fourier Transform (IDFT) coefficient
of a length L sequence x(L) and defined it as

x(p) =
1
L

L−1

∑
p=0

x′(L)ei 2π
L Lp, p ∈ 0, 1, 2, ..., L− 1;

where x(L) have different values and consider the special case in which U[L] = x′(L)
and U[L] ∈ [0, 1].

In a similar way, we also consider the special case of Inverse Discrete Fourier Cosine
Transformation(IDFCT), as shown below:

x(p) =
1
L

L−1

∑
p=0

x′(L) cos
(

2π

L
Lp
)

, p ∈ 0, 1, 2, ..., L− 1.

Definition 13. The DFCT for x′(L) : 1 ≤ L ≤ L is given by matrix in the product form:

x′(0)
x′(1)
x′(2)

.

.

.
x′(L− 1)


=



1 1 1 . . . 1
1 cos

(−2π
L
)

cos
(
−4π

L

)
. . . cos

(
−2π(L−1)

L

)
1 cos

(
−4π

L

)
cos
(−8π

L
)

. . . cos
(
−4π(L−1)

L

)
. . . . . . .
. . . . . . .
. . . . . . .

1 cos
(
−2π(L−1)

L

)
cos
(
−4π(L−1)

L

)
. . . cos

(
−2π(L−1)2

L

)




x(0)
x(1)
x(2)

.

.

.
x(L− 1)


.
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However, the IDFCT is given by 

x(0)
x(1)
x(2)

.

.

.
x(L− 1)


=

1
L



1 1 1 . . . 1
1 cos

( 2π
L
)

cos
(

4π
L

)
. . . cos

(
2π(L−1)

L

)
1 cos

(
4π
L

)
cos
( 8π

L
)

. . . cos
(

4π(L−1)
L

)
. . . . . . .
. . . . . . .
. . . . . . .

1 cos
(

2π(L−1)
L

)
cos
(

4π(L−1)
L

)
. . . cos

(
2π(L−1)2

L

)




x′(0)
x′(1)
x′(2)

.

.

.
x′(L− 1)


.

Next, with the help of the above definitions, we propose a new methodology to detect
particular signals among the various signals received by the receiver.

Suppose l(u1(L), u2(L) u3(L), ..., ul(L)) is the number of electromagnetic signals re-
ceived by the receiver, and each of these signals is noted L times. Suppose xl(L) is the
lth(1 ≤ l ≤ L) signal, then the Discrete Fourier Cosine Transformationis given by

ul(L) =
1
L

L−1

∑
p=0

U[L] cos
(

2π

L
Lp
)

; L, p = 0, 1, 2, ..., L− 1, (13)

where U[L] ∈ [0, 1].
Here, U[L] = θ′S(p) and 2π

L Lp = wS(p) are called the amplitude and phase term,
respectively. Thus, Equation (13) denotes the model for signal representation.

Now, we construct a particular kind of matrix to detect the particular signal among
the different signals received by the receiver. For this, we consider a reference signal R,
which has also been noted L times, and its DFCT is given below:

R(L) =
1
L

L−1

∑
p=0

θ′(p) cos
(

2π

L
Lp
)

; L, p = 0, 1, 2, ..., L− 1, (14)

where θ′(p) ∈ [0, 1].
The procedural steps of the proposed methodology in order to compare the similarity

between the two signals are listed as follows:

Step 1:
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Expanding ul(L) = 1
L ∑L−1

p=0 U[L] cos
( 2π

L Lp
)

for p = 0, 1, 2, ..., L− 1 leads to

ul(L) =
1
L
[U[0] cos

(
2π

L
L(0)

)
+ U[1] cos

(
2π

L
L(1)

)
+ U[2]

cos
(

2π

L
L(2)

)
+ ... + U[L− 1] cos

(
2π

L
L(L− 1)

)
].

(15)

Now, we put the values of L = 0, 1, 2, ..., L− 1 in Equation (15), through which we
obtain the Lth sample of the signal which is explained by taking individual discrete cases:

For L = 0 case:

ul(0) =
1
L
[U[0] cos

(
2π

L
(0)(0)

)
+ U[1] cos

(
2π

L
(0)(1)

)
+ U[2]

cos
(

2π

L
(0)(2)

)
+ ... + U[L− 1] cos

(
2π

L
(0)(L− 1)

)
].

ul(0) =
1
L
[U[0].1 + U[1]1 + U[2].1 + ... + U[L− 1].1]. (16)

For L = 1 case:

ul(1) =
1
L
[U[1].1 + U[1] cos

(
2π

L
(1)(1)

)
+ U[2] cos

(
2π

L
(1)(2)

)
+... + U[L− 1] sin

(
2π

L
(1)(L− 1)

)
].

(17)

For L = 2 case:

ul(2) =
1
L
[U[1].1 + U[1] cos

(
2π

L
(2)(1)

)
+ U[2] cos

(
2π

L
(2)(2)

)
+ ...

+U[L− 1] cos
(

2π

L
(2)(L− 1)

)
].

(18)

Similarly, for L = L− 1 case:

ul(L− 1) =
1
L
[U[1].1 + U[1] cos

(
2π

L
(L− 1)(1)

)
+ U[2]

cos
(

2π

L
(L− 1)(2)

)
+ ... + U[L− 1] cos

(
2π

L
(L− 1)2

)
].

(19)

In a similar manner, we obtain the values for L samples of the reference signal.
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Step 2:
Now, we construct the matrix for L-samples of signal ul(L) and the reference signal

as follows: 

ul(0)
ul(1)
ul(2)

.

.

.
ul(L− 1)


=

1
L



1 1 1 . . . 1
1 cos

( 2π
L
)

cos
(

4π
L

)
. . . cos

(
2π(L−1)

L

)
1 cos

(
4π
L

)
cos
( 8π

L
)

. . . cos
(

4π(L−1)
L

)
. . . . . . .
. . . . . . .
. . . . . . .

1 cos
(

2π(L−1)
L

)
cos
(

4π(L−1)
L

)
. . . cos

(
2π(L−1)2

L

)




U(0)
U(1)
U(2)

.

.

.
U(L− 1)


and 

θ(0)
θ(1)
θ(2)

.

.

.
θ(L− 1)


=

1
L



1 1 1 . . . 1
1 cos

( 2π
L
)

cos
(

4π
L

)
. . . cos

(
2π(L−1)

L

)
1 cos

(
4π
L

)
cos
( 8π

L
)

. . . cos
(

4π(L−1)
L

)
. . . . . . .
. . . . . . .
. . . . . . .

1 cos
(

2π(L−1)
L

)
cos
(

4π(L−1)
L

)
. . . cos

(
2π(L−1)2

L

)




θ′(0)
θ′(1)
θ′(2)

.

.

.
θ′(L− 1)


.

It may be noted that the first matrix equation given above represents that the trans-
mitted signal has been obtained by multiplying the phase term matrix and amplitude
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matrix. Similarly, the second matrix equation given above represents the components of
the reference signal.
Step 3:

In view of the above two matrix equations and for the desired analysis, we take the
absolute values of all the obtained values to bring them in the range of the disk of radius
one in complex plane. These absolute values are given below:

|θ(0)|
|θ(1)|
|θ(2)|

.

.

.
|θ(L− 1)|


and



|ul(0)|
|ul(1)|
|ul(2)|

.

.

.
|ul(L− 1)|


.

Step 4:
Finally, we select the maximum absolute cosine value among all the cases of ul(l) and

reference signal. Then, the most similar values will be considered to be reference signals.

Example 2. Suppose that there are four different electromagnetic waves (u1(L), u2(L), u3(L) and

u4(L)) which have been detected by the receiver. Then, the sample of each signal is to be taken four
times. Assume that θ(L) is the reference signal. Then, the Discrete Fourier Cosine Transforma-
tion(DFCT) of these signals ul(L) and the reference signal θ(L) is given by

ul(L) =
1
4

3

∑
p=0

Ul [L] cos
(

2π

4
Lp
)

; L, p = 0, 1, 2, 3; (20)

and

θ(L) =
1
4

3

∑
p=0

θ′[L] cos
(

2π

4
Lp
)

; L, p = 0, 1, 2, 3; (21)

where Ul(L), θ′(L) ∈ [0, 1]. Furthermore, the Equation (20) gives

ul(L) =
1
4
[U[0] cos

(
2π

4
L(0)

)
+ U[1] cos

(
2π

4
L(1)

)
+ U[2]

cos
(

2π

4
L(2)

)
+ U[3] cos

(
2π

4
L(3)

)
.

(22)

Now, we take the values of L = 0, 1, 2, 3 and subsequently obtain the following equations:

ul(0) =
1
4
[U[0] cos

(
2π

4
(0)(0)

)
+ U[1] cos

(
2π

4
(0)(1)

)
+ U[2]

cos
(

2π

4
(0)(2)

)
+ U[3] cos

(
2π

4
(0)(3)

)
.

ul(0) =
1
4
[U[0].1 + U[1].1 + U[2].0 + U[3].1. (23)

ul(1) =
1
4
[U[0] cos

(
2π

4
(1)(0)

)
+ U[1] cos

(
2π

4
(1)(1)

)
+ U[2]

cos
(

2π

4
(1)(2)

)
+ U[3] cos

(
2π

4
(1)(3)

)
.

(24)
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ul(2) =
1
4
[U[0] cos

(
2π

4
(2)(0)

)
+ U[1] cos

(
2π

4
(2)(1)

)
+ U[2]

cos
(

2π

4
(2)(2)

)
+ U[3] cos

(
2π

4
(2)(3)

)
.

(25)

ul(3) =
1
4
[U[0] cos

(
2π

4
(3)(0)

)
+ U[1] cos

(
2π

4
(3)(1)

)
+ U[2]

cos
(

2π

4
(3)(2)

)
+ U[3] cos

(
2π

4
(3)(3)

)
.

(26)

Next, from all the above Equations (23)–(26), we obtain
ul(0)
ul(1)
ul(2)
ul(3)

 =

1
4


1 1 1 1
1 cos

( 2π
4
)

cos
(

4π
4

)
cos
( 6π

4
)

1 cos
(

4π
4

)
cos
( 8π

4
)

cos
(

12π
4

)
1 cos

( 6π
4
)

cos
(

12π
4

)
cos
(

18π
4

)




U1(0)
U1(1)
U1(2)
U1(3)

.

In a similar manner, for the case of the reference signal, the matrix equation obtained
is as follows: 

θ(0)
θ(1)
θ(2)
θ(3)

 =

1
4


1 1 1 1
1 cos

( 2π
4
)

cos
(

4π
4

)
cos
( 6π

4
)

1 cos
(

4π
4

)
cos
( 8π

4
)

cos
(

12π
4

)
1 cos

( 6π
4
)

cos
(

12π
4

)
cos
(

18π
4

)




θ′(0)
θ′(1)
θ′(2)
θ′(3)

.

Suppose that the provided values for the reference signal are as below:

θ′[p] =


0; p = 0
0; p = 1
0.2; p = 2
1; p = 3

(27)

Then, putting Equation (27) in the above references matrix equation, we obtain
θ(0)
θ(1)
θ(2)
θ(3)

 =
1
4


1 1 1 1
1 0 −1 0
1 −1 1 −1
1 0 −1 0




0
0

0.2
1

.
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Now, the absolute value matrix of the reference signal is given as
|θ(0)|
|θ(1)|
|θ(2)|
|θ(3)|

 =


0.3
0.1
0.2
0.1

.

The maximum value in the above matrix is 0.3.
Now, for the signal u1(L); L = 0, 1, 2, 3

U1[p] =


0.5; p = 0
0.7; p = 1
0.8; p = 2
1; p = 3

(28)


u1(0)
u1(1)
u1(2)
u1(3)

 =
1
4


1 1 1 1
1 0 −1 0
1 −1 1 −1
1 0 −1 0




0.5
0.7
0.8
1

.

Now, the absolute value matrix of reference signal u1(L) is
|u1(0)|
|u1(1)|
|u1(2)|
|u1(3)|

 =


0.8
0.1
0.1
0.1

.

The maximum value in the above matrix is 0.8.
Now, for the signal u2(L); L = 0, 1, 2, 3

U2[p] =


0.4; p = 0
0.6; p = 1
0.8; p = 2
1; p = 3

(29)


u2(0)
u2(1)
u2(2)
u2(3)

 =
1
4


1 1 1 1
1 0 −1 0
1 −1 1 −1
1 0 −1 0




0.4
0.6
0.8
1

.

Now, the absolute value matrix of reference signal u2(L) is
|u2(0)|
|u2(1)|
|u2(2)|
|u2(3)|

 =


0.7
0.1
0.1
0.1

.

The maximum value in the above matrix is 0.7.
Now, for the signal u3(L); L = 0, 1, 2, 3

U3[p] =


0.6; p = 0
1; p = 1
0.9; p = 2
0.8; p = 3

(30)
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
u3(0)
u3(1)
u3(2)
u3(3)

 =
1
4


1 1 1 1
1 0 −1 0
1 −1 1 −1
1 0 −1 0




0.6
1

0.9
0.8

.

Now, the absolute value matrix of reference signal u3(L) is
|u3(0)|
|u3(1)|
|u3(2)|
|u3(3)|

 =


0.8
0.1
0.1
0.1

.

The maximum value in the above matrix is 0.8.
Now, for the signal u4(L); L = 0, 1, 2, 3,

U4[p] =


0.8; p = 0
0.5; p = 1
0; p = 2
0; p = 3

(31)


u4(0)
u4(1)
u4(2)
u4(3)

 =
1
4


1 1 1 1
1 0 −1 0
1 −1 1 −1
1 0 −1 0




0.8
0.5
0
0

.

Now, the absolute value matrix of reference signal u4(L) is
|u4(0)|
|u4(1)|
|u4(2)|
|u4(3)|

 =


0.3
0.2
0.3
0.2

.

The maximum value in the above matrix is 0.3.
Now, listing all the maximum values and tabulating with the reference value, we obtain

θ(L)
u1(L)
u2(L)
u3(L)
u4(L)

 =


0.3
0.8
0.7
0.8
0.3

.

Based on the above, we determine that the signal u4(L) is the reference signal.

5. Cohesive Fuzzy Sets in Solar Activities/Cycles

Planning a space mission requires a good prediction of favorable situations for which
a large amount of data related to the solar cycles is required. With the help of estimation
based on these data, the best time interval for the space mission may accordingly be
predicted. In other words, the conditions of time interval and favorable situations both
play a vital role in the success of a particular mission. The most important real-life example
is the satellite on Mars (Mangalyaan) which was launched in the year 2013 and was planted
in orbit on Mars in the year 2014. In that case, the scientists considered all the possible
situations, and the particular time was selected according to the data collected regarding
the solar cycles. Thus, we can say that planning under the given set of uncertainties, which
may include fuzziness, is an essential component behind the success of any mission.

In this section, we consider the situations which can affect solar activity/cycles and
propose a brief outline of the methodology which could effectively help in the planning of
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such missions related to solar activities in the complex plane. About the above discussions,
Yazdanbaksh et al. [64] proposed the concept of an Adaptive Neuro Complex Fuzzy
Inferential System (ANCFIS), which played a significant role in the area of solar energy, and
also compared the results with the help of two techniques viz. the Adaptive Neuro-Fuzzy
Inference System (ANFIS) and Radial Basis Function Networks (RBFNs). In this way, the
proposed method and the obtained results were validated.

The idea behind implementing the cohesive fuzzy sets in the planning of the solar
activities is given by Figure 4 for a better understanding of the concept. Moreover, the
important role of CHFS in the case of solar activity is explained with the help of the
following example (Example 3).

On application of Fuzzy Set, 

the information is processed in 

the form of amplitude only.

START

The additional component, i.e., 

the phase variable is added by 

the application of  Complex 

Fuzzy Set. 

CHFS APPLICATION IN SOLAR ACTIVITY

Fuzzy Set. 

Applied CHFS to deal with the 

multi-favorable situations 

(Both phase & amplitude 

components are added).

END

On application of Fuzzy Set, 

the information is processed in 

the form of amplitude only.

The additional component, i.e., 

the phase variable is added by 

the application of  Complex 

Fuzzy Set. 

CHFS APPLICATION IN SOLAR ACTIVITY

Fuzzy Set. 

Non-favorable

situations are 

neglected.

Non-favorable

situations are 

neglected.

Figure 4. Methodology for solar activities.

Example 3. Every eleven years the sun undergoes a period of activity called the “solar maximum",
followed by a period known as “solar minimum". During the solar maximum, a large number
of sunspots, solar flares, and coronal mass ejections are noticed, which can affect communications
and weather on Earth. During the solar minimum, a lesser number of sunspots are observed. This
implies that one way of tracking solar activity is by observing the amplitude of sunspots. In this way,
the dark blemishes observed on the face of the sun signify the sunspots and the sites where solar flares
are observed to occur. As per the data available with the Solar Science resource (NASA), [65], the
data collected show the monthly average of the number of sunspots observed since the year 1749. In
the case of solar activity, the simple fuzzy set denoted by T is efficient in collecting the data regarding
the amplitude of the sunspot, whereas in the case of the complex fuzzy set (CFS), one additional
piece of information regarding the phase of the sunspot is obtained. This additional information
helps to track the solar cycle with amplitude.

This helps us understand that a complex fuzzy set gives an added advantage over
the fuzzy set. In the present work, the proposed notion of a cohesive fuzzy set (CHFS)
would certainly have another extra advantage over the complex fuzzy set. It may be noted
that when CHFS is used in place of CFS, then in the case of solar activity it encounters
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the information regarding the interval in which the maximum number of sunspots are
obtained. Since the implementation of CHFS will be able to deal with the favorable set
of situations in the unit circle on a complex plane, this will therefore not only neglect the
useless data, but every element in the favorable set will also be considered.

Now, this is explained in detail with the help of empirical values. Consider an ordinary
fuzzy set T with high solar activity, which implies that the set T consists of a large number
of sunspots. However, the average number of sunspots observed during the month is used
to derive the grade of membership in a particular month. The grade of membership is
dependent on the average number of sunspots, i.e., if the number of sunspots is 200, it
signifies a large grade of membership, whereas 2 (number of sunspots) is associated with a
small grade of membership. If the grade of membership is 0.25 in set T, then it signifies the
average number of sunspots in that particular month, say, 50, which can vary considerably
if the solar cycle is considered. Therefore, a grade of membership of 0.25 may be treated as
inefficient. For example, it has been noted that the maximum number of sunspots in the
months of the years 1805 and 1956 was 50, and barely a quarter of the way up, respectively,
in the solar cycle. Thus, planning a space mission in these kinds of years was not supposed
to be possible. This signifies that it requires long-term planning to execute a mission related
to space.

Ramot et al. [26] introduced the notion of the complex fuzzy set, which was able to
deal with the phase variable with the explanation of the use of phase in tracking the cycle of
solar activity. Furthermore, they explained that the degree of membership can accordingly
be increased by using the phase element. Now, the degree of membership depends on both
the amplitude and phase variables. The limitation of using CFS is that it only deals with
the maximum value of membership of sunspots, whereas the nearby values are sometimes
neglected, which can also play an essential role in the tracking of solar activity.

Therefore, to overcome such limitations, it would always be better and advantageous
to apply the proposed notion of a cohesive fuzzy set (CHFS), which deals with the set of
favorable values which not only counter the limitation of the ordinary fuzzy set but also
provide an added feature over CFS. Hence, we can assert that CHFS plays a very important
role in the planning of any solar activity. It is important to consider the following three
conditions for achieving favorable sets in planning a solar activity:

• In the first condition, the amplitude will be in the range of [0.5, 1], and no restriction is
applied to the phase element.

• Secondly, the phase element will be in the range of
[

π
2 , 3π

2
]
, and no restriction is

applied on the amplitude.
• Thirdly, the amplitude and phase element will always lie in the range [0.5, 1] and[

π
2 , 3π

2
]
, respectively.

It may be noted that all the above conditions can always be better dealt with using
the help of cohesive fuzzy sets. Now, the first condition is only applicable for the year in
which the average number of sunspots is between 100 to 200, which will lead to a grade of
membership between [0.5, 1]. This will automatically increase the grade of membership
irrespective of the membership of phase, likely from the year 1990–1994 (according to the
data given in ref. [65]). Such conditions will automatically neglect the unfavorable data for
any solar activity.

In the second case, we restrict the phase parameter and select the years in which
the average number of sunspots is much less (such as in the year 1995—according to
ref. [65]). In those years, due to the decrease in the average number of sunspots, the
degree of membership will also decrease. Therefore, to increase the membership degree,
it is advisable to increase the phase element. In this way, in the years when there is less
amplitude of sunspots, a space mission can also be planned.

In the third case, this condition relates to the set of the most favorable situations
in which we restrict both amplitude and phase terms in the intervals in which both are
increasing. Hence, the degree of membership in this set will be the maximum for almost
all the data. Thus, planning a space mission in this interval of years will increase the
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chances of success. In this manner, all the nearby situations cannot be neglected, and each
of the elements of the sets in all the above cases can be dealt with using the help of CHFS.
The cases explained above can accordingly be worked out depending on the place of the
experiment. Therefore, the researchers must collect the data related to the solar cycles
according to the places and then plan any solar activity.

6. Comparative Analysis and Advantages of the Proposed Methodology

The advantages of CHFS in contrast with the utilization of fuzzy sets and complex
fuzzy sets are explained with the help of a characteristic table given as Table 1.

Table 1. Characteristic comparison with the existing sets.

Degree of
Membership FS CFS HFS CHFS

Amplitude X X X X

Phase × X × X

Advantages

Degree of
membership in

case of
amplitude is

obtained.

Degree of
membership in

case of
amplitude and

phase is
obtained.

Degree of
membership in

case of favorable
situation is
obtained.

Degree of
membership in

case of
amplitude and

phase is
obtained.

Advantages
over other

It is not able to
track the solar

cycle.

It contains both
the useful data
as well as the

nonuseful data,
which consumes
time. Secondly, it
also misses some

of the useful
data, as only the

max value is
considered.

It contains
favorable data

but in the range
[0, 1].

It only contains
the favorable

values in the set,
and also all the

values are
considered.

• The advantage of CHFS is that it contains the properties of both complex fuzzy set
(CFS) and hesitant fuzzy set (HFS), which enhances the efficiency of the proposed set
in solving the problems more efficiently.

• The CHFS contains the ability to address the problems of time periodicity and handling
the two-dimensional data set, which could not be addressed by Type-2 fuzzy sets or
some other extensions of fuzzy sets. Moreover, it deals with the set of favorable values,
which not only counter the limitation of the ordinary fuzzy set but also provide an
added feature over CFS.

• The proposed notion of CHFS deals with the favorable set, i.e., in the case of signals, a
favorable set of Cosine Transformation is considered, but the Sine Transformation is
rejected due to the limitation of the problem under consideration. This limitation of
the proposed methodology may be resolved in the future by introducing some new
concepts with some other examples.

• Similarly, in the case of solar cycles, the different particular favorable cases were
selected based on the structure of the problem.

7. Conclusions and Scope for Future Work

The new extension set coined as a cohesive fuzzy set has been successfully proposed,
which has the dual benefits of the complex fuzzy set with coverage of the hesitant fuzzy set.
We studied the various operations and several useful identities of the CHFS, which duly
explained the process of selection of the best alternative among the available multifavorable
situations with the possibility of its range in the extended unit circle of the complex plane.
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We successfully established the relationship between the cohesive fuzzy set and complex
intuitionistic fuzzy set and also validated the obtained results. The identification process of
the reference signal among various transmitted electromagnetic signals was accomplished
by utilizing the feature of cohesive fuzzy set and Fourier cosine transform/inverse Fourier
cosine transform. Moreover, the process of identifying the maximum number of sunspots in
a particular interval under a solar activity has been discussed and explained with suitable
references. The advantageous features of the proposed methodology are tabulated for
better readability. The proposed notion of a cohesive fuzzy set appears to be a promising
one for addressing certain real-life situations which cannot be dealt with by complex fuzzy
set and other extensions of fuzzy sets. The concepts of aggregation operators and complex
hesitant fuzzy relations for CHFS can further be worked out for solving various types
of decision-making problems. In addition to this, some new similarity measures in the
complex domain may be introduced and utilized for the problems of pattern recognition
and medical diagnosis.
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