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Abstract: In this paper, by equivalently reformulating the absolute value equation (AVE) into an
alternative two-by-two block nonlinear equation, we put forward an alternative SOR-like (ASOR-like)
iteration method to solve the AVE. The convergence of the ASOR-like iteration method is established,
subjecting to specific restrictions placed on the associated parameter. The selection of the optimal
iteration parameter is investigated theoretically. Numerical experiments are given to validate the
feasibility and effectiveness of the ASOR-like iteration method.
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1. Introduction

The absolute value equation, denoted by AVE, is to find a vector x ∈ Rn such that

Ax− |x| − b = 0, (1)

where A ∈ Rn×n, b ∈ Rn, |x| = (|x1|, |x2|, · · · , |xn|)> with xl being the l-th entry of x and
| · | denotes absolute value for real scalar. The AVE (1) is a special case of the generalized
AVE (GAVE)

Ax + B|x| − b = 0, (2)

with A, B ∈ Rn×n and b ∈ Rn, which was introduced in [1] and further studied in [2–4]. In
fact, if B is nonsingular, then (2) can be converted into (1). The AVE (1) is closely interrelated
to the linear complementarity problem (LCP), bimatrix games and others (see e.g., [1–8] and
the references therein).

In general, solving the AVE (1) is NP-hard [2]. Furthermore, when the AVE (1) is
solvable, it is NP-complete for testing whether the AVE (1) has a unique solution or
multiple solutions [9]. The existence of its solutions have been studied in [1,10–14], and an
outstanding and commonly used sufficient condition for solving the AVE (1) can be found
in [11], as follows.

Lemma 1 ([11]). Assume that A ∈ Rn×n is invertible. If ‖A−1‖ < 1, then the AVE (1) is
uniquely solvable for any b ∈ Rn.

For solving the AVE (1), a great deal of numerical methods have been proposed,
such as the Newton-type iteration methods [4,7,15–23], the Picard iteration method [24],
the preconditioned AOR iteration method [25], the generalized Gauss–Seidel iteration
method [26], the Levenberg–Marquardt methods [27,28], the exact and inexact Douglas–
Rachford splitting methods [29], the dynamical systems [30–35], the modified multivariate
spectral gradient algorithm [36], the modified HS conjugate gradient method [37], and
others (see e.g., [3,38–41] and the references therein).
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In recent years, the SOR-like iteration methods have attracted considerable attention.
Ke and Ma [42] first developed an SOR-like iteration method (Algorithm 1) by converting
the AVE (1) into a two-by-two block nonlinear equation to address the AVE (1), and proved
the convergence of the Algorithm 1 under the sufficient condition that ‖A−1‖ < 1 with
ω ∈ (0, 2).

Algorithm 1 ([42]). (The SOR-like iteration method)

Let the matrix A be nonsingular. Given two initial guesses x0, y0 ∈ Rn, for k = 0, 1, · · ·
until the generated sequence {xk} is convergent, compute{

xk+1 = (1−ω)xk + ωA−1(yk + b),

yk+1 = (1−ω)yk + ω|xk+1|.
(3)

In order to further explore the convergence conditions of the SOR-like iteration method
for solving the AVE (1) in [42], Guo et al. [43] proved the convergence of Algorithm 1 from
the perspective of spectral radius and got the optimal relaxation parameter ω0 = 2

1+
√

1−ρ

with ρ = ρ(D(xk+1)A−1), D(x) .
= diag(sign(x)). Herein, diag(x) represents a diagonal

matrix with xi as its diagonal entries for every i = 1, 2, · · · , n and

sign(xi) =


1, if xi > 0,

0, if xi = 0,

− 1, if xi < 0.

In the sequel, Chen et al. [44] investigated the theoretical optimal parameter ω∗opt and the
approximate optimal parameter ω∗aopt of Algorithm 1 for resolving the AVE (1), resulting in

ω∗opt =


1, if 0 < ‖A−1‖ ≤ 1

4
,

ωopt, if
1
4
< ‖A−1‖ < 1,

(4)

ω∗aopt(ν) =

√
4ν + 1− 1

2ν
. (5)

Meanwhile, by reformulating the AVE (1) as a two-by-two block nonlinear equation,
a fixed point iteration (FPI) method was suggested for solving the AVE (1) in [45], but the
convergence of the FPI method is only guaranteed for the case that 0 < ‖A−1‖ <

√
2

2 .
Furthermore, Yu et al. [46] put forward a modified fixed point iteration (MFPI) method
by introducing a nonsingular matrix Q, which guaranteed the convergence for solving
the AVE (1) with

√
2

2 ≤ ‖A−1‖ < 1 by selecting an appropriate parameter matrix Q. In
addition, Dong et al. [47] proposed a new SOR-like (NSOR) iteration method by rewriting
the AVE (1) into a new two-by-two block nonlinear system, and the convergence conditions
of the NSOR iteration method were proven from the perspective of spectrum. In this paper,
by reformulating the AVE (1) into a new alternative two-by-two block nonlinear system,
we propose an alternative SOR-like (ASOR-like) iteration method for solving the AVE (1)
and prove its convergence from the view of iteration error and spectrum, respectively.
Furthermore, the optimal iteration parameter selection is also discussed. In addition, we
use numerical experiments to demonstrate the feasibility and effectiveness of the ASOR-like
iteration method.

The layout of this paper is organized below. Section 2 explains some of the mathe-
matical notations and the lemmas that are used later in the proof. Section 3 and Section 4
propose the iterative format, the convergence conditions and the optimal iteration parame-
ter selection of the ASOR-like iteration method. In Section 5, some numerical experiments
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are conducted to prove the effectiveness of the proposed method by comparing it with
some existing algorithms. Finally, we give a brief conclusion in Section 6.

2. Preliminaries

In this section, we will present some notations, classical definitions, and some auxiliary
results that lay the foundation of our developments.

We start by recalling some notations and definitions used in this paper. Rn×n is the set
of all n× n real matrices and Rn = Rn×1. I is the identity matrix with suitable dimension.
ρ(A) denotes the spectral radius of A and is defined by the formula ρ(A)

.
= max |λ(A)|

where λ(A) denotes the eigenvalue of A. ‖A‖ .
= max{‖Ax‖ : x ∈ Rn, ‖x‖ = 1} denotes

the spectral norm of A, where ‖x‖2 = xHx. ‖A‖2 denotes the 2-norm of A. Based on this
definition we can derive

‖Ax‖ ≤ ‖A‖‖x‖, ‖A + B‖ ≤ ‖A‖+ ‖B‖, ‖AB‖ ≤ ‖A‖‖B‖, (6)

where A, B ∈ Rn×n and x ∈ Rn (see Chapter 5 of [48]).

Lemma 2 ([49]). For any vectors x, y ∈ Rn, the following results hold:

• ‖|x| − |y|‖ ≤ ‖x− y‖;
• If 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖;
• Assume that P is a nonnegative matrix. If x ≤ y, then Px ≤ Py.

3. An Alternative SOR-like Iteration Method

In this section, we put forward an alternative two-by-two block nonlinear system of
the AVE (1). Let y = x, and then the AVE (1) is equivalent to{

Ay− |x| = b,

x− y = 0,
(7)

that is

Az :=
(

A −D(x)
−I I

)(
y
x

)
=

(
b
0

)
:= b,

where D(x) := diag(sign(x)), x ∈ Rn.
Let A = D −L− U , where

D =

(
A 0
0 I

)
, L =

(
0 0
I 0

)
, U =

(
0 D(x)
0 0

)
,

and then the following fixed point equation can be gained,

(D −ωL)z = [(1−ω)D + ωU ]z + ωb,

where the parameter ω > 0. That is,(
A 0
−ωI I

)(
y
x

)
=

(
(1−ω)A ωD(x)

0 (1−ω)I

)(
y
x

)
+

(
ωb
0

)
. (8)

Based on (8), we establish the following matrix splitting iteration method to solve the
AVE (1), called the alternative SOR-like (ASOR-like) iteration method. The algorithmic
framework for this method is as follows.
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Algorithm 2 (The ASOR-like iteration method)

Let the matrix A be nonsingular. Given two initial guesses x0, y0 ∈ Rn, for k = 0, 1, · · ·
until the generated sequence {xk} is convergent, compute{

yk+1 = (1−ω)yk + ωA−1(|xk|+ b),

xk+1 = (1−ω)xk + ωyk+1.
(9)

In the following, we demonstrate the main outcomes of this paper. Theorems 1 and 2
are inspired by that of Theorem 3.1 in [42] and Theorem 2.1 in [44], respectively. Let (y∗, x∗)
be the solution pair of the nonlinear system (7), then we have

y∗ = (1−ω)y∗ + ωA−1(|x∗|+ b), (10)

x∗ = (1−ω)x∗ + ωy∗. (11)

Let the vector pair (yk, xk) be generated by (9), and define the iteration errors as

ey
k = y∗ − yk and ex

k = x∗ − xk. (12)

Then, the convergence results of the ASOR-like iteration method can be obtained
as follows.

Theorem 1. Let the matrix A be invertible. Denote

ν = ‖A−1‖ and T =

(
|1−ω| ων

ω|1−ω| |1−ω|+ ω2ν

)
,

if ‖T‖ < 1, then ‖Ek+1‖ ≤ ‖Ek‖, where ‖Ek+1‖ = (‖ey
k+1‖, ‖e

x
k+1‖)

T .

Proof. From (9), (10), (11), and (12), we have

ey
k+1 = (1−ω)ey

k + ωA−1(|x∗| − |xk|), (13)

ex
k+1 = (1−ω)ex

k + ωey
k+1. (14)

According to (13), (14) and Lemma 2, we can get

‖ey
k+1‖ ≤ |1−ω|‖ey

k‖+ ων‖|x∗| − |xk|‖
≤ |1−ω|‖ey

k‖+ ων‖ex
k‖,

‖ex
k+1‖ ≤ |1−ω|‖ex

k‖+ ω‖ey
k+1‖.

Thus, we can derive that(
1 0
−ω 1

)(
‖ey

k+1‖
‖ex

k+1‖

)
≤
(
|1−ω| ων

0 |1−ω|

)(
‖ey

k‖
‖ex

k‖

)
. (15)

Let

P =

(
1 0
ω 1

)
≥ 0.

According to Lemma 2, multiplying (15) from left by the nonnegative matrix P, it
holds that (

‖ey
k+1‖
‖ex

k+1‖

)
≤
(
|1−ω| ων

ω|1−ω| |1−ω|+ ω2ν

)(
‖ey

k‖
‖ex

k‖

)
. (16)
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Denote

‖Ek+1‖ =
(
‖ey

k+1‖
‖ex

k+1‖

)
and T =

(
|1−ω| ων

ω|1−ω| |1−ω|+ ω2ν

)
≥ 0.

In the light of (16), it follows that

‖Ek+1‖ ≤ ‖TEk‖ ≤ ‖T‖‖Ek‖.

If ‖T‖ < 1, then we can obtain

‖Ek+1‖ ≤ ‖Ek‖.

This completes the proof.

Theorem 2. Let the matrix A be invertible. Denote ν = ‖A−1‖, ϕ = |1−ω|, ψ = ω2ν, if

0 ≤ 3ϕ2 + 2ψ2 + 2ϕψ < min{1 + ϕ4, 2}, (17)

then the following inequality holds,

|||(ey
k+1, ex

k+1)||| ≤ |||(e
y
k , ex

k )|||, (18)

where ||| · ||| is defined by

|||(ey, ex)||| =
√
‖ey‖2 + ω−2‖ex‖2.

Proof. According to the proof of Theorem 1, we get(
‖ey

k+1‖
‖ex

k+1‖

)
≤
(
|1−ω| ων

ω|1−ω| |1−ω|+ ω2ν

)(
‖ey

k‖
‖ex

k‖

)
. (19)

Denote

Q =

(
1 0
0 ω−1

)
≥ 0.

Multiplying (19) from left by the nonnegative matrix Q, we get(
‖ey

k+1‖
ω−1‖ex

k+1‖

)
≤
(
|1−ω| ω2ν
|1−ω| |1−ω|+ ω2ν

)(
‖ey

k‖
ω−1‖ex

k‖

)
.

Then it can be concluded that

|||(ey
k+1, ex

k+1)||| ≤ ‖T̂‖ · |||(e
y
k , ex

k )|||,

where

T̂ =

(
|1−ω| ω2ν
|1−ω| |1−ω|+ ω2ν

)
:=
(

ϕ ψ
ϕ ϕ + ψ

)
≥ 0.

Next, we discuss the selection of the iteration parameter ω such that ‖T̂‖2 < 1, thus
the inequality (18) holds.

Because

T̂>T̂ =

(
2ϕ2 ϕ2 + 2ϕψ

ϕ2 + 2ϕψ ϕ2 + 2ψ2 + 2ϕψ

)
is a symmetric positive semidefinite matrix, then we have ‖T̂‖2 = ρ(T̂>T̂) = κmax(T̂>T̂),
where κ is an eigenvalue of T̂>T̂, and then it holds that

(κ − 2ϕ2)[κ − (ϕ2 + 2ψ2 + 2ϕψ)]− (ϕ2 + 2ϕψ)2 = 0,
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namely,
κ2 − (3ϕ2 + 2ψ2 + 2ϕψ)κ + ϕ4 = 0,

from which we obtain

κ =
3ϕ2 + 2ψ2 + 2ϕψ±

√
(3ϕ2 + 2ψ2 + 2ϕψ)2 − 4ϕ4

2
.

Consequently,

κmax(T̂>T̂) =
3ϕ2 + 2ψ2 + 2ϕψ +

√
(3ϕ2 + 2ψ2 + 2ϕψ)2 − 4ϕ4

2
.

In particular,

κmax(T̂>T̂) < 1 ⇐⇒ 3ϕ2 + 2ψ2 + 2ϕψ +
√
(3ϕ2 + 2ψ2 + 2ϕψ)2 − 4ϕ4 < 2

⇐⇒
√
(3ϕ2 + 2ψ2 + 2ϕψ)2 − 4ϕ4 < 2− (3ϕ2 + 2ψ2 + 2ϕψ).

Hence, a sufficient condition for the convergence is{
3ϕ2 + 2ψ2 + 2ϕψ ∈ (0, 2),

3ϕ2 + 2ψ2 + 2ϕψ ∈ (0, 1 + ϕ4).
(20)

From (20), we have κmax(T̂>T̂) < 1 provide (17), which completes the proof.

Note that if the conditions of Theorem 2 are satisfied, then we obtain

0 ≤ |||(ey
k+1, ex

k+1)||| ≤ ‖T̂‖ · |||(e
y
k , ex

k )||| ≤ · · · ≤ ‖T̂‖
k+1 · |||(ey

0, ex
0)|||.

Hence, lim
k→∞
‖ey

k‖ = 0 and lim
k→∞
‖ex

k‖ = 0. Therefore, the iteration sequence {xk}∞
k=0

generated by (9) will convergent to the solution of the AVE (1).
In order to further study the existence of parameter ω for solving AVE (1), from the

perspective of spectrum, we analyze the range and the optimal choice of parameter ω
under the convergence condition of Algorithm 2. To determine the spectrum of iteration
matrix, we consider the following eigenvalue problem

λ

(
A 0
−ωI I

)(
z1
z2

)
=

(
(1−ω)A ωD(x)

0 (1−ω)I

)(
z1
z2

)
,

where λ is an arbitrary eigenvalue of T(ω). This means that we can provide a good
approximation for optimal choice of parameter ω with D(x)→ D. Then we focus on the
following eigenvalue equation

λ

(
A 0
−ωI I

)(
z1
z2

)
=

(
(1−ω)A ωD

0 (1−ω)I

)(
z1
z2

)
. (21)

It is important to be able to find the optimal parameter ω (hereafter abbreviated as
ω∗opt) to minimize ρ(T(ω)) for Algorithm 2; that is

ω∗opt = argmin{ρ(T(ω))},

where
ρ(T(ω)) = max|λ|.

To this end, we need the following auxiliary lemmas.

Lemma 3 ([50]). Consider the quadratic equation x2− bx + c = 0, where b and c are real numbers.
Both roots of the equation are less than one in modulus if and only if |c| < 1 and |b| < 1 + c.



Symmetry 2023, 15, 589 7 of 17

Lemma 4. If zHz = 1 and ‖z‖ = 1, there exists z0 satisfying zH
0 Bz0 = ‖B‖ for any matrix B.

Proof. Due to zH Bz =
√
(zH Bz)H(zH Bz) =

√
zH BHzzH Bz =

√
zH BH Bz, then there exists

z0 satisfying
√

zH
0 BH Bz0 = max

‖z‖=1

√
zH BH Bz = ‖B‖.

The following proof is inspired by [51]. Notice that D2 = I where D is a diagonal
matrix. Without loss of generality, suppose that zH

1 z1 = 1. From (21), it holds that

λ2z1 = {(ω2 A−1D + (2− 2ω)I)λ− (ω− 1)2 I]}z1. (22)

There exists a vector z1 satisfying zH
1 A−1Dz1 = ‖A−1D‖. Multiplying both sides

of (22) by zH
1 from left and using Lemma 4, we obtain

λ2 − (ω2µ + 2− 2ω)λ + (ω− 1)2 = 0, (23)

where µ = ‖A−1D‖. The roots of (23) are given by

λ =
(ω2µ + 2− 2ω)±

√
(ω2µ + 2− 2ω)2 − 4(ω− 1)2

2
. (24)

According to Lemma 3, we obtain a sufficient condition such that the two roots of (23)
are both less than one, that is {

|(ω− 1)2| < 1, (25)

F := |ω2µ− (2ω− 2)| < 1 + (ω− 1)2 := G. (26)

It is easy to check that (25) is equivalent to ω ∈ (0, 2). Equation (26) seems harder to be
verified at first sight. Hence, we will proceed to discuss more about it. Notice

F < ω2ν + |2ω− 2| := F̂ and G = ω2 − 2ω + 2,

a sufficient condition for (26) is F̂ < G for ω ∈ (0, 2). Let fν(ω)
.
= F̂− G, and then fν(ω) <

0 holds for ω ∈ (0, 1] when ν < 1. For ω ∈ (1, 2), we have fν(ω)
.
= (ν− 1)ω2 + 4ω− 4 < 0.

The roots of fν(ω) are

ω1 =
−2− 2

√
ν

ν− 1
and ω2 =

−2 + 2
√

ν

ν− 1
.

Thus, we can obtain 1 < ω2 < 2 < ω1 if ν < 1, which leads to the solution set of
fν(ω) < 0 being ω ∈ (1, ω2).

In conclusion, when ν ∈ (0, 1), if

ω ∈ (0,
2− 2

√
ν

1− ν
)

.
= Ω, (27)

the roots of (23) are strictly lower than one in modulus.

Remark 1. It is well-known that ω ∈ (0, 2) is the selection of parameter ω for the classical
SOR iteration method and the SOR-like iteration method in [42], which is also the basic necessary
convergent condition. Considering the relationship between the convergence conditions of the ASOR-
like method from the two perspectives, it is easy to check that (25) is equivalent to 1+ ϕ4 < 2, which
is a sufficient condition of (20). This also shows that the convergence condition from the spectral
perspective based on [51] is tighter than those from the norm perspective based on [42,44].
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4. Optimal Parameter for the ASOR-like Iteration Method

In this section, we consider the choice of the iteration parameter ω. Let $(ω)
.
=

ω2µ + 2− 2ω, τ(ω)
.
= (ω− 1)2. According to (24), we get

max|λ| =


$(ω) +

√
$2(ω)− 4τ(ω)

2
, if $(ω) > 0,

|$(ω)−
√

$2(ω)− 4τ(ω)|
2

, if $(ω) ≤ 0,

from which we minimize max|λ| to approximately obtain the following condition:$2(ω)− 4τ(ω) = 0, if $(ω) > 0,

$(ω)−
√

$2(ω)− 4τ(ω) = 0, if $(ω) ≤ 0.
(28)

In fact, due to µ ≤ ν, $(ω) ≤ 0 can shrink to a sufficient condition $̂(ω)
.
= ω2ν +

2 − 2ω ≤ 0, which means ω ∈ [ 1−
√

1−2ν
ν , 2) for ν ∈ (0, 1

2 ) and ω is an empty set for
ν ∈ [ 1

2 , 1). However, from (28), we only need to prove τ(ω) = 0 when $̂(ω) ≤ 0 that obtains

ω∗opt = 1 < 1−
√

1−2ν
ν for ν ∈ (0, 1

2 ) and $̂(ω∗opt) = ν > 0. This is a contradictory inequality.
In addition, when $(ω) > 0, according to (28), we get

$2
max(ω)− 4τ(ω) = 0⇐⇒ hν(ω)

.
= ν2ω4 − 4νω3 + 4ω2 − 8ω + 4 = 0, (29)

which implies max |λ| = $max(ω)+
√

$2
max(ω)−4τ(ω)
2 with $max(ω) = ω2ν + 2− 2ω > 0 and

µ ≤ ν. For $max(ω) > 0, after some simple algebraic operations, we get the existence of ω

that ω ∈ (0, 1−
√

1−2ν
ν ) ∈ (0, 2) for ν ∈ (0, 1

2 ) and ω ∈ (0, 2) for ν ∈ [ 1
2 , 2). The roots of hν(ω)

can be solved by the function roots in Matlab to get the theoretical optimal parameter ω∗opt,
expressed as

ω1(ν) =

√
ν + 1−

√
2
√

ν + 1− ν

ν
, ω2(ν) =

√
ν + 1 +

√
2
√

ν + 1− ν

ν
,

ω3(ν) =
−
√

ν + 1 +
√
−2
√

ν− 1 + ν

ν
, ω4(ν) =

−
√

ν + 1−
√
−2
√

ν− 1 + ν

ν
.

(30)

In order to explore the characteristics of the roots of the quadratic Equation (29), we
plot the contour for hν(ω) and the ωi(ν) for i = 1, 2, 3, 4 with ν ∈ (0, 1) in Figure 1. In fact,
ω1(ν) and ω2(ν) with ν ∈ (0, 1) are both real values when 2

√
ν > 0 > ν− 1, ω3(ν) and

ω4(ν) with ν ∈ (0, 3− 2
√

2) ≈ (0, 0.172) are both real values when 2
√

ν < 1− ν. In this
case, the complex roots are not considered. Therefore, it is obvious that ν1 = 1−

√
3

2 ≈ 0.134
for ω∗opt ∈ (0, 2) and

lim
ν→0+

ω1(ν) = 1, lim
ν→0+

ω4(ν) = 1, lim
ν→ν1

ω4(ν) = ω4(ν1) = 2, lim
ν→1

ω1(ν) = ω1(1) = 2−
√

2 ≈ 0.5858.

However, due to ω4(ν) /∈ (0, 1−
√

1−2ν
ν ) in ν ∈ (0, ν1), from Figure 1, we know that

ω∗opt = ω1(ν), if ν ∈ (0, 1). (31)
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Figure 1. The contours of hν(ω) with ν = [0.01 : 0.01 : 0.99] and ω = [0.01 : 0.01 : 1.99] (left) and the
curve of ωi(ν) for i = 1, 2, 3, 4 with ν = [0.001 : 0.001 : 0.999] (right).

Now, we devote our attention to investigating the approximate optimal parameter
ω∗aopt. Let lν(ω) = max{ϕ(ω), ψ(ω)}, and then we have

T̂(ω) ≤
(

lν(ω) lν(ω)
lν(ω) 2lν(ω)

)
= lν(ω)

(
1 1
1 2

)
.
= lν(ω)H.

It follows that

‖T̂(ω)‖2 ≤ ‖lν(ω)H‖2 = lν(ω)‖H‖2 = lν(ω)
3 +
√

5
2

.

Let δ = 2
3+
√

5
, and this lν(ω) satisfies ‖T̂(ω)‖2 ≤ lν(ω)

δ , where lν(ω)
δ is an upper bound of

‖T̂(ω)‖ with ω ∈ (0, 2). This is the reason that we find ω∗aopt in minimizing lν(ω).
It is not difficult to find that ϕ(ω) is strictly monotonously decreasing for ω ∈ (0, 1)

and is strictly monotonously increasing for ω ∈ (1, 2). In addition, ψ(ω) is strictly
monotonously increasing in ω ∈ (0, 2). By simply drawing and analyzing function ϕ(ω)
and ψ(ω), we derive that

ω∗aopt = arg min{lν(ω)} = −1 +
√

1 + 4ν

2ν
> 0. (32)

It notices that ω∗aopt is obtained by ϕ(ω) = 1− ω = ω2 − ν = ψ(ω) with ω ∈ (0, 2)
and ν ∈ (0, 1).

Remark 2. Consider the range of values of ω obtained by the above convergence conditions,
according to (27), (30), (31), and (32), we plot the Figure 2. It is easy to see that the blue curve
divides the green area into two parts; the top part is actually the condition of $̂(ω) ≤ 0, and the
bottom part is actually the condition of $max(ω) > 0. According to the condition of (27), when
ν = 1

3 , it holds 2−2
√

ν
1−ν = 1−

√
1−2ν
ν . Therefore, it leads to the new convergence conditions that if

$max(ω) > 0, ω ∈ (0, 1−
√

1−2ν
ν ) for ν ∈ (0, 1

3 ) and ω ∈ (0, 2−2
√

ν
1−ν ) for ν ∈ [ 1

3 , 1); if $̂(ω) ≤ 0,

ω ∈ ( 1−
√

1−2ν
ν , 2−2

√
ν

1−ν ) for ν ∈ (0, 1
3 ). Furthermore, ω∗opt, ω∗aopt ∈ Ω.
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Figure 2. Left: The range and curves of the parameter ω ∈ (0, 2) with ν ∈ [0.001 : 0.001 : 0.999] (the

black line : ω∗opt; the red line : ω∗aopt; the blue line : ω(ν) = 1−
√

1−2ν
ν for ν ∈ (0, 1

2 ); the green area: Ω);
Right: the curve of r(ν) with ν = [0.001 : 0.001 : 0.999].

Comparing ω∗opt and ω∗aopt, we have

lim
ν→1

ω∗aopt(ν) =

√
5− 1
2

≈ 0.618, lim
ν→1

ω∗opt(ν) = 2−
√

2 ≈ 0.586.

The right of Figure 2 illustrates the gap of the ω∗opt and ω∗aopt where r(ν) = ω∗aopt −ω∗opt.

5. Numerical Results

In this section, we will present three numerical examples to compare the ASOR-like
iteration method with the previous algorithms to illustrate the feasibility and effectiveness
of the ASOR-like iteration method. The following six algorithms will be tested.

1. SOR-like-exp method [42]: namely, the iteration format is (3). We choose the experi-
mental optimal parameter ω∗exp with the smallest iteration step of the corresponding
method in ω = [0.001 : 0.001 : 1.999] (in Example 1) and ω = [0.01 : 0.01 : 1.99] (in
Example 2 and Example 3).

2. ASOR-like-exp method: its iteration format is (9). The optimal parameter selection of
the ASOR-like-exp method is consistent with the SOR-like-exp method.

3. SOR-like-opt method [44]: its iteration format is consistent with the SOR-like-exp
method where the theoretical optimal parameter ω∗opt follows (4). ω∗opt can be calculated
by the classical bisection method with the termination criterion is |g1

ν(ω)| ≤ 10−10 or
the updated ends of the interval b2 − b1 ≤ 10−10, see [44] for specific operations.

4. ASOR-like-opt method: its iteration format is consistent with the ASOR-like-exp
method, and ω∗opt is calculated in accordance with (31).

5. SOR-like-aopt method [44]: its iteration format is consistent with the SOR-like-exp
method where the approximate optimal parameter ω∗aopt follows (5).

6. ASOR-like-aopt method: its iteration format is consistent with the ASOR-like-exp
method and ω∗aopt is calculated in accordance with (32).

The numerical experiments are explained in several aspects in the following. On the
one hand, the choice of parameters ω are particularly important, which greatly affects the
CPU time of numerical experiments. On other hand, in order to facilitate the comparison
of algorithms, we select the following three experiments that satisfy the unique solution
property of the AVE (1) for comparison.

All test problems are conducted under MATLAB R2016a on a personal computer
with 1.19 GHz central processing unit (Intel(R) Core(TM) i5-1035U), 8.00 GB memory and
Windows 10 operating system. The description of each method includes the number of
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iteration steps (denoted by “IT”), the CPU time (denoted by “CPU”) and residual relative
error (denoted by “RES”). The stopping criterion of iteration is

RES(xk)
.
= ‖Axk − |xk| − b‖2 < 10−5

or the prescribed maximal iteration number kmax = 1000 is exceeded (“–” is used in the
following tables to illustrate this case). All tests are started from the initial zero vector.

Example 1. Considering the random AVE (1) with ‖A−1‖ < 1 in [16,44], the influence of the
condition number and the density of A (abbreviation for cond(A) and density(A)) on the tests will
be discussed during the numerical implements.

Let min(cond(A)) be 1, 10, or 102, respectively, and the results are used to analyze the
superiority of the ASOR-like method in different optimal parameter ω. Let x∗ = −100 +
200× rand(n, 1) and b = Ax∗ − |x∗| is generated. For Example 1, the information (the
order n, the approximate density of A (abbreviation for a.density(A)), cond(A) and ‖A−1‖)
of random AVE problems under specific conditions obtained by numerical experiments are
shown in Tables 1–3.

Table 1. Numerical results for Example 1 with min(cond(A)) = 1.

Method

n 256 512 1024 2048 4096

a.density(A) 0.003 0.003 0.0003 0.00003 0.000003

density(A) 0.0039 0.0029 9.7656× 10−4 4.8828× 10−4 2.4414× 10−4

cond(A) 2.5059 2.8172 3.5639 1.5041 2.5778

‖A−1‖ 0.4024 0.9875 0.7948 0.6119 0.6153

SOR-like-exp

ω∗exp 0.972 0.977 0.926 0.973 0.995
IT 15 34 26 29 25

CPU 18.5880 230.0134 100.1782 221.7795 457.9501
RES 9.8549× 10−6 9.7743× 10−6 9.5922× 10−6 9.7838× 10−6 9.7806× 10−6

ASOR-like-exp

ω∗exp 0.973 0.977 0.927 0.973 0.995
IT 15 34 26 29 25

CPU 22.1293 226.7375 97.8316 211.2889 464.9240
RES 9.8864× 10−6 9.8190× 10−6 9.9883× 10−6 9.9058× 10−6 9.8234× 10−6

SOR-like-opt

ω∗opt 0.924 0.623 0.705 0.8 0.798
IT 18 78 46 44 41

CPU 0.0156 0.0249 0.0135 0.0185 0.0323
RES 5.3732× 10−6 8.1300× 10−6 6.6885× 10−6 8.1115× 10−6 8.4195× 10−6

ASOR-like-opt

ω∗opt 0.667 0.587 0.606 0.629 0.629
IT 36 86 59 67 62

CPU 0.0067 0.0227 0.0071 0.0164 0.0308
RES 6.7158× 10−6 8.4438× 10−6 8.4476× 10−6 7.8581× 10−6 8.6371× 10−6

SOR-like-aopt

ω∗aopt 0.765 0.620 0.657 0.7 0.699
IT 27 78 51 56 52

CPU 0.0066 0.0200 0.0082 0.0137 0.0252
RES 9.4714× 10−6 9.1027× 10−6 8.9346× 10−6 7.8581× 10−6 7.8337× 10−6

ASOR-like-aopt

ω∗aopt 0.765 0.620 0.657 0.7 0.699
IT 28 79 52 56 52

CPU 0.0045 0.0188 0.0070 0.0151 0.0248
RES 6.8235× 10−6 8.7466× 10−6 8.0426× 10−6 8.9334× 10−6 9.2929× 10−6
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Table 2. Numerical results for Example 1 with min(cond(A)) = 10.

Method

n 256 512 1024 2048 4096

a.density(A) 0.003 0.003 0.0003 0.00003 0.000003

density(A) 0.0039 0.0029 9.7656× 10−4 4.8828× 10−4 2.4414× 10−4

cond(A) 14.7244 16.3457 35.1532 19.9552 43.1216

‖A−1‖ 0.5628 0.8446 0.7157 0.5137 0.7003

SOR-like-exp

ω∗exp 0.974 0.979 0.983 0.986 0.993
IT 11 13 10 10 9

CPU 2.0967 16.7058 6.5141 15.7872 34.3956
RES 9.5213× 10−6 9.7642× 10−6 9.4063× 10−6 9.1467× 10−6 9.3907× 10−6

ASOR-like-exp

ω∗exp 0.975 0.98 0.984 0.987 0.994
IT 11 13 10 10 9

CPU 2.0719 16.9688 6.5851 15.9789 34.7201
RES 9.9142× 10−6 9.6326× 10−6 9.3416× 10−6 8.8497× 10−6 8.4067× 10−6

SOR-like-opt

ω∗opt 0.829 0.682 0.744 0.858 0.752
IT 19 30 23 17 23

CPU 0.0106 0.0182 0.0129 0.0129 0.0203
RES 3.7751× 10−6 5.6117× 10−6 6.0539× 10−6 5.1048× 10−6 4.6180× 10−6

ASOR-like-opt

ω∗opt 0.636 0.6 0.615 0.645 0.617
IT 32 37 33 31 34

CPU 0.0053 0.0108 0.0061 0.0093 0.0182
RES 7.0505× 10−6 9.4759× 10−6 8.9738× 10−6 8.0716× 10−6 5.3617× 10−6

SOR-like-aopt

ω∗aopt 0.713 0.647 0.674 0.728 0.678
IT 25 32 27 24 28

CPU 0.0036 0.0125 0.0069 0.0085 0.0173
RES 8.5072× 10−6 8.8675× 10−6 9.9723× 10−6 8.0679× 10−6 4.6255× 10−6

ASOR-like-aopt

ω∗aopt 0.713 0.647 0.674 0.728 0.678
IT 26 33 29 25 29

CPU 0.0032 0.0119 0.0065 0.0080 0.0163
RES 7.6108× 10−6 8.3079× 10−6 4.7287× 10−6 6.9463× 10−6 4.9004× 10−6

Table 3. Numerical results for Example 1 with min(cond(A)) = 100.

Method

n 256 512 1024 2048 4096

a.density(A) 0.003 0.003 0.0003 0.00003 0.000003

density(A) 0.0039 0.0029 9.7656× 10−4 4.8828× 10−4 2.4414× 10−4

cond(A) 120.3861 307.0414 153.6908 109.2455 200.7276

‖A−1‖ 0.3826 0.6618 0.3243 0.9690 0.9450

SOR-like-exp

ω∗exp 0.994 0.995 0.996 0.998 1
IT 6 6 6 8 7

CPU 1.6663 14.5714 5.9188 15.1130 33.1430
RES 7.8386× 10−6 8.9158× 10−6 7.4674× 10−6 7.6907× 10−6 5.8261× 10−6

ASOR-like-exp

ω∗exp 0.995 0.996 0.996 0.998 1
IT 6 6 6 10 7

CPU 1.7731 14.7743 6.2905 15.1825 33.6529
RES 6.6006× 10−6 7.1726× 10−6 9.1736× 10−6 8.1919× 10−6 5.8261× 10−6
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Table 3. Cont.

Method

n 256 512 1024 2048 4096

a.density(A) 0.003 0.003 0.0003 0.00003 0.000003

density(A) 0.0039 0.0029 9.7656× 10−4 4.8828× 10−4 2.4414× 10−4

cond(A) 120.3861 307.0414 153.6908 109.2455 200.7276

‖A−1‖ 0.3826 0.6618 0.3243 0.9690 0.9450

SOR-like-opt

ω∗opt 0.936 0.773 0.967 0.630 0.639
IT 10 18 9 29 28

CPU 0.0096 0.0149 0.0151 0.0165 0.0255
RES 3.5974× 10−6 3.5650× 10−6 9.8522× 10−7 9.2673× 10−6 8.4378× 10−6

ASOR-like-opt

ω∗opt 0.671 0.622 0.686 0.588 0.591
IT 25 29 25 34 34

CPU 0.0035 0.0103 0.0057 0.0104 0.0190
RES 4.7060× 10−6 4.9047× 10−6 4.0254× 10−6 8.9792× 10−6 6.3144× 10−6

SOR-like-aopt

ω∗aopt 0.772 0.687 0.795 0.623 0.628
IT 18 22 17 30 29

CPU 0.0033 0.0096 0.0050 0.0110 0.0193
RES 3.0545× 10−6 8.0103× 10−6 5.4605× 10−6 6.4254× 10−6 7.6955× 10−6

ASOR-like-aopt

ω∗aopt 0.772 0.687 0.795 0.623 0.628
IT 19 24 18 31 31

CPU 0.0031 0.0081 0.0049 0.0103 0.0150
RES 3.5584× 10−6 6.2406× 10−6 5.6879× 10−6 8.5925× 10−6 5.2066× 10−6

From the numerical results displayed in Tables 1–3, we find that the “CPU” of the
ASOR-like-opt iteration method and the ASOR-like-aopt iteration method are less than the
SOR-like-opt iteration method and the SOR-like-aopt iteration method in general, but the
ASOR-like-opt iteration method compared to the SOR-like-opt iteration method requires
much iteration steps, the two methods for selecting the approximate optimal parameter
ω∗aopt or the experimental optimal parameter ω∗exp basically keep the same iteration steps.
In brief, the ASOR-like iteration method is superior to the SOR-like iteration method under
choosing appropriate optimal parameter.

Example 2 ([24]). Consider the two-dimensional convection diffusion equation

− (uxx + uyy) + q(ux + uy) + pu = f (x, y), (x, y) ∈ Υ,

u(x, y) = 0, (x, y) ∈ ∂Υ,

where q is a nonnegative constant, p is a real number, Υ = (0, 1)× (0, 1), and ∂Υ is its boundary.
By using the five-point finite difference scheme and the central difference scheme to the diffusive terms
and the convective terms, respectively. The equidistant step h = 1

m+1 and the mesh Reynolds number

r = qh
2 are denoted. Then we acquire the system of linear equations Rx = d, where the matrix of

R = Tx ⊗ Im + Im ⊗ Ty + pIn ∈ Rm2×m2
, Im ∈ Rm×m and In ∈ Rn×n are two identity matrices,

⊗ means the Kronecker product symbol, Tx = tridiag(t1, t2, t3) and Ty = tridiag(t1, 0, t3) are the
tridiagonal matrices with t1 = −1− r, t2 = 4, t3 = −1 + r. For our numerical experiments, we
define the matrix A in AVE (1) by making use of the matrix R as follows.

For any positive number p and q, the matrix R is nonsymmetric positive definite. When
q = 0, the matrix R provided is symmetric positive definite. We set A = R + 5(L− L>),
where L is the strictly lower part of R. It is not hard to find that the matrix A is nonsymmetric
positive definite. Let x∗i = (−1)ii, i = 1, 2, · · · , and b = Ax∗ − |x∗| is generated. We present
the numerical results for different values of m, p, q in Tables 4 and 5.
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Table 4. Numerical results for Example 2 with m = 10 and p = 0.

Method
q 0 1 10 100 1000

‖A−1‖ 0.6836 0.6568 0.4955 0.2682 0.2502

SOR-like-exp

ω∗exp 0.99 0.99 0.99 0.99 1
IT 14 14 13 10 7

CPU 17.3447 16.7893 15.9677 13.5858 10.6116
RES 6.1270× 10−6 5.2623× 10−6 5.4657× 10−6 4.4779× 10−6 1.8263× 10−6

ASOR-like-exp

ω∗exp 0.99 0.99 0.99 0.99 1
IT 14 14 13 10 7

CPU 16.5011 16.5607 15.8689 13.2042 10.3419
RES 6.3024× 10−6 5.4242× 10−6 5.6905× 10−6 4.7519× 10−6 1.8263× 10−6

SOR-like-opt

ω∗opt 0.761 0.775 0.869 0.993 1
IT 27 26 19 10 7

CPU 0.0207 0.0148 0.0118 0.0140 0.0103
RES 5.4247× 10−6 5.3442× 10−6 9.1631× 10−7 3.2788× 10−6 1.9915× 10−6

ASOR-like-opt

ω∗opt 0.619 0.623 0.648 0.702 0.708
IT 39 38 35 26 23

CPU 0.0095 0.0106 0.0086 0.0098 0.0078
RES 6.4887× 10−6 8.2543× 10−6 6.6371× 10−6 4.9962× 10−6 7.0446× 10−6

SOR-like-aopt

ω∗aopt 0.682 0.689 0.733 0.820 0.828
IT 32 32 27 18 16

CPU 0.0091 0.0095 0.0090 0.0068 0.0057
RES 8.4176× 10−6 6.1208× 10−6 9.5221× 10−6 7.4910× 10−6 3.6549× 10−6

ASOR-like-aopt

ω∗aopt 0.682 0.689 0.733 0.820 0.828
IT 33 32 28 19 16

CPU 0.0085 0.0093 0.0080 0.0062 0.0056
RES 7.2919× 10−6 8.8531× 10−6 7.2922× 10−6 4.2199× 10−6 9.4326× 10−6

Table 5. Numerical results for Example 2 with m = 10 and p = 1.

Method
q 0 1 10

‖A−1‖ 0.4535 0.4419 0.3633

SOR-like-exp

ω∗exp 0.99 0.99 0.99
IT 12 12 12

CPU 15.6642 15.6092 15.2944
RES 8.1549× 10−6 8.2374× 10−6 5.4467× 10−6

ASOR-like-exp

ω∗exp 0.99 0.99 0.99
IT 12 12 12

CPU 15.9589 15.4252 15.2944
RES 8.3692× 10−6 8.4516× 10−6 5.6546× 10−6

SOR-like-opt

ω∗opt 0.894 0.901 0.947
IT 17 17 14

CPU 0.0157 0.0118 0.0138
RES 6.8516× 10−6 3.9006× 10−6 6.5650× 10−7

ASOR-like-opt

ω∗opt 0.656 0.658 0.676
IT 33 33 30

CPU 0.0091 0.0089 0.0081
RES 9.4174× 10−6 7.1217× 10−6 8.6655× 10−6
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Table 5. Cont.

Method
q 0 1 10

‖A−1‖ 0.4535 0.4419 0.3633

SOR-like-aopt

ω∗aopt 0.747 0.751 0.779
IT 26 25 23

CPU 0.0079 0.0079 0.0068
RES 5.3883× 10−6 8.4835× 10−6 5.0107× 10−6

ASOR-like-aopt

ω∗aopt 0.747 0.751 0.779
IT 26 26 23

CPU 0.0075 0.0074 0.0066
RES 9.2671× 10−6 6.3792× 10−6 7.6512× 10−6

From Tables 4 and 5 we can see that all iteration methods can successfully produce
an approximately unique solution to the AVE (1) for selecting appropriate problem scales
n = m2 and the convective measurements q (q = 0, 1, 10, 100, 1000 when p = 0 and m = 10;
q = 0, 1, 10 when p = 1 and m = 10). In the case where it converges to the unique solution
of AVE (1), the ASOR-like-opt iteration method and the ASOR-like-aopt iteration method
are superior to the SOR-like-opt iteration method and the SOR-like-aopt iteration method
in “CPU”, respectively, and the numerical results with theoretical optimal parameters are
much better than the numerical results with experimental optimal parameters.

Example 3. Consider the AVE (1), where the sparse, symmetry matrix A with ‖A−1‖ < 1
comes from five different test problems in [42]. Let x∗ = (−1, 1,−1, 1, · · · ,−1, 1, · · · ) and
b = Ax∗ − |x∗| is generated.

From Table 6, we present the numerical results on the ASOR-like iteration method
incorporated with the SOR-like iteration method, corresponding to these optimal parame-
ters. Obviously, all iteration methods can compute an approximate solution of the problem
in [42]. In particular, the ASOR-like-opt iteration method outperforms the SOR-like-opt
iteration method for all small-scale full data matrix problems.

Table 6. Numerical results for Example 3.

Method
problem mesh1e1 mesh1em1 mesh2e1 Tre f ethen_20b Tre f ethen_200b

‖A−1‖ 0.5747 0.6397 0.7615 0.4244 0.4265

SOR-like-exp

ω∗exp 0.94 0.93 0.94 0.95 0.95
IT 15 15 17 10 10

CPU 2.8584 2.9256 26.1986 1.5056 47.5188
RES 9.2893× 10−6 9.8022× 10−6 8.0935× 10−6 7.8939× 10−6 7.9623× 10−6

ASOR-like-exp

ω∗exp 0.95 0.91 0.94 0.95 0.95
IT 15 16 17 10 10

CPU 2.8557 2.8761 27.4489 1.6236 46.2290
RES 7.0764× 10−6 9.3454× 10−6 8.6726× 10−6 9.0674× 10−6 9.1348× 10−6

SOR-like-opt

ω∗opt 0.822 0.785 0.721 0.911 0.91
IT 21 22 29 12 12

CPU 0.0080 0.0112 0.0188 0.0103 0.0191
RES 6.6983× 10−6 8.4588× 10−6 9.1045× 10−7 3.8820× 10−6 4.1161× 10−6

ASOR-like-opt

ω∗opt 0.635 0.625 0.61 0.662 0.661
IT 33 33 39 23 23

CPU 0.0032 0.0033 0.0125 0.0028 0.0148
RES 9.8908× 10−6 9.8762× 10−6 8.6726× 10−6 7.3721× 10−6 7.8951× 10−6



Symmetry 2023, 15, 589 16 of 17

6. Conclusions

The ASOR-like iteration method is developed to solve the AVE (1) by reformulating
equivalently the AVE (1) as an alternative two-by-two block nonlinear system. The con-
vergence results of the ASOR-like iteration method are proven under proper conditions
imposed on the involved parameter. The optimal parameter and the approximate optimal
parameter are explored. Numerical results are presented to demonstrate that the ASOR-
like iteration method with the optimal parameter is feasible and effective in the case of
small-scale problems. However, for large-scale problems, designing an efficient algorithm
is still to be further studied. In addition, the choice of the optimal iteration parameter in
theory is also worth considering from different perspectives.
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