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Abstract: In this paper, a new adaptive Levenberg–Marquardt method is proposed to solve the non-
linear equations including supply chain optimization problems. We present a new adaptive update
rule which is a segmented function on the ratio between the actual and predicted reductions of the
objective function to accept a large number of unsuccessful iterations and avoid jumping in local areas.
The global convergence and quadratic convergence of the proposed method are proved by using the
trust region technique and local error bound condition, respectively. In addition, we use the proposed
algorithm to test on the symmetric and asymmetric linear equations. Numerical results show that the
proposed method has good numerical performance and development prospects. Furthermore, we
apply the algorithm to solve the fresh agricultural products supply chain optimization problems.

Keywords: accelerate Levenberg–Marquardt method; adaptive function; trust region technique; local
error bound condition

1. Introduction

With the development of science and technology, more and more fields are involved
in the solution of nonlinear equation problems, such as chemistry, mechanics, economics
and product management [1–4]. For example, decentralized decision models in supply
chain management and gas pressure volume models in physics can be converted into the
following nonlinear equations

F(x) = 0, (1)

where F(x) : Rn → Rm is a continuously differentiable function. In particular, sym-
metric nonlinear equations with the Jacobian matrix symmetry also have a wide range
of applications, such as the gradient mapping of unconstrained optimization problem,
the Karush–Kuhn–Tucker (KKT) of equality constrained optimization problem, and other
fields [5,6].

The steepest descent method, Newton method, quasi-Newton method, Gauss–Newton
(GN) method are commonly used iterative methods for solving (1) [7–10]. The GN method
is one of the most famous methods, when the Jacobian matrix is Lipschitz continuous and
nonsingular at the solution of (1), the GN method has quadratic convergence. However,
when the Jacobian matrix is singular or nearly singular, the GN method may not be well
defined. In order to overcome this difficulty, the Levenberg–Marquardt (LM) method [11,12]
for solving (1) was proposed. At the k-th iteration, the trial step is

dk = −(JT
k Jk + λk I)−1(JT

k Fk), (2)

where Fk = F(xk), Jk = J(xk) is a Jacobian matrix of F(x) at xk, which may be a symmetric
matrix or non-symmetric matrix, I is an identity matrix and the LM parameter λk > 0.
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The LM method ensures the uniqueness of solution of (1), and it also has quadratic
convergence if Jk is Lipschitz continuous, nonsingular at the solution, and λk is selected
appropriately. In this sense, the update of the LM parameter has a great impact on the per-
formance and efficiency of algorithm, many effective LM parameters have been proposed.
Yamashita and Fukushima [13] chose the LM parameter as λk = ‖Fk‖2, and proved that
the LM method had quadratic convergence under the local error bound condition and Jk is
Lipschitz continuous at the solution. However, when {xk} is far away from the solution set,
λk may be very large, which makes dk very small and reduces the efficiency of algorithm;
when {xk} is sufficiently close to the solution set, λk may be smaller than the machine
epsilon and lose its role.

Based on these observations, Fan and Yuan [14] generalized the LM parameter in [13],
and proved that the numerical results for choosing λk = ‖Fk‖ is better than choosing
λk = ‖Fk‖2. Fan [15] first introduced the regularization factor µk into the LM method and
chose λk = µk‖Fk‖, with numerical results showing that this choice of λk provides the best
performance. However, when {xk} is far away from the solution set, the choice of both
LM parameters does not provide good results. Therefore, to avoid this situation, Fan and
Pan [16] chose the LM parameter as λk = µkρ(xk), in which µk is updated by a trust region
technique. They defined ρ(xk) as a positive function of Rn → R+, i.e.,

ρ(xk) =

{
ρ̃(xk), if ρ̃(xk) ≤ 1,
1, otherwise,

where ρ̃(xk) = O(‖Fk‖δ). This update strategy can obtain larger LM trial steps, so that the
iterative sequence can quickly converge to the solution set when {xk} is far away from the
solution set. Amini et al. [17] chose the LM parameter as

λk =
µk‖Fk‖

1 + ‖Fk‖
.

It is clear that when {xk} is far away from the solution set and ‖Fk‖ is very large,
‖Fk‖

1+‖Fk‖
is close to 1, so λk is close to µk. The choice of λk speeds up the efficiency of the

algorithm more than previous LM parameters.
In addition to the above different choices of LM parameters, the introduction of

adaptive technology also has a great impact on the LM method. As we all know, the ratio
rk between the actual and predicted reductions of the objective function reflects the degree
to which the approximate quadratic model approaches the value function. To make more
use of information about the ratio, Fan and Yuan [18] proposed an adaptive LM method by
selecting λk+1 = µk+1‖Fk+1‖δ, µk+1 = µkq(rk), q(rk) is a continuous non-negative function
about rk, and σ ∈ (0, 2]. The introduction of q(rk) avoids discontinuities when crossing the
threshold µk+1

µk
of the ratio, and better numerical results can be obtained.

In fact, similar adaptive techniques have been proposed in the trust region algorithms.
If rk is sufficiently greater than 1, the iteration is too successful at this time, then we can
reduce µk to a very small value. Then, the algorithm will continue to perform a large
number of consecutive unsuccessful iterations. On the other hand, if rk → −∞, dk is
a far-from-satisfactory trial step, then we can increase µk greatly. At this moment, the
successive iteration points will be close to each other and the algorithm will converge
slowly. Therefore, Hei [19] proposed an R-function by using an adaptive update strategy
to update the trust region radius ∆k, i.e., ∆k+1 = R(rk)∆k. Furthermore, Walmag and
Delhez [20] proposed a Λ-function to update the trust region radius, i.e., ∆k+1 = Λ(rk)∆k,
where Λ is a non-negative and bounded function about rk. On this basis, Lu et al. [21]
argued that the consistency between the model and the objective function is not good
enough in too-successful iterations, so an L-function was proposed to update the trust
region radius. They showed that the L-function contains some favorable features of the
R-function and the Λ-function, and the method is more efficient in too-successful iterations.
In this paper, we want to learn from the presentation of the L-function and provide a
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new adaptive strategy to update the LM parameter. Our innovations mainly include
the following:

♦ A new adaptive accelerated LM method is proposed, which can improve the
consistency between the model and the objective function in too-successful iterations by
using the ratio information of the actual reduction to the predicted reduction;

♦ The new algorithm can solve the situation in which the iterative sequence is far
away from the optimal solution set, accept a large number of unsuccessful iterations and
avoid jumping in local areas, thus improving the efficiency and stability of the algorithm;

♦ The new adaptive accelerated LM method has global convergence and quadratic
convergence under local error bound.

The rest of this paper is organized as follows. In Section 2, we describe in detail
a new adaptive accelerated LM method which makes full use of the ratio information.
Furthermore, we demonstrate that the new algorithm has global convergence under the
appropriate conditions and maintains quadratic convergence under local error bound
condition. In Section 3, numerical results are given, indicating that the new algorithm is
efficient. The conclusion is given in the last section.

2. Methodology
2.1. The Adaptive Accelerated Levenberg–Marquardt Method

In this section, our main aim is to discuss how to update the LM parameter to propose
a new adaptive accelerated LM method. It is easy to see from (2) that dk is the solution to
the optimization problem

min
d∈Rn

‖Fk + Jkd‖2 + λk‖d‖2 .
= ψk(d). (3)

If

∆k = ‖ − (JT
k Jk + λk I)−1(JT

k Fk)‖, (4)

then dk is also the solution of the subproblem

min
d∈Rn

‖Fk + Jkd‖2 .
= ϕk(d),

s.t. ‖d‖ ≤ ∆k. (5)

Therefore, the LM method can be regarded as a trust region method, which implicitly
modifies the trust region radius ∆k. The difference between the general trust region method
and the LM method is that the LM method does not directly update the trust region radius,
but updates the regularization factor µk.

We define the actual reduction and predicted reduction of the merit function ‖Fk‖2 at
the k-th iteration as

Aredk = ‖Fk‖2 − ‖F(xk + dk)‖2 (6)

and
Predk = ϕk(0)− ϕk(dk). (7)

The ratio between the actual and predicted reductions of the objective function is
defined by

rk =
Aredk
Predk

. (8)

This ratio determines whether the trial step dk is accepted. Here, we choose the LM
parameter as

λk+1 =
µk+1‖Fk+1‖
1 + ‖Fk+1‖

. (9)
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The usual empirical rules [22–25] of µk+1 can be usually summarized as follows

µk+1 =


4µk, if rk < p1,
µk, if p1 ≤ rk ≤ p2,
max{ µk

4 , m}, if rk > p2,
(10)

where m > 0 and 0 < p1 < p2 < 1 are constants.
Iterations with rk greater than p2 are very successful iterations. In this case, it is usually

assumed that the approximation of the model function to the objective function is accurate
and µk should be reduced. However, at too-successful iterations, i.e., rk is sufficiently
greater than 1, the consistency between the model and the objective function is not good
enough. Thus, we use an adaptive strategy to update the factor µk+1, i.e., µk+1 = K(rk)µk,
where K(rk) is a function about rk.

We construct K(rk) as follows:

K(rk) =


β1 + (β2 − β1)exp(−(−rk+p1

p1
)2), if rk ≤ p1,

β2, if p1 < rk < p2,
1−β3exp(p2)

1−exp(p2)
− (1−β3)exp(p2)

1−exp(p2)
exp(−rk + p2)− 1

2 , if rk ≥ p2,
(11)

where 0 < β2 < 1 < β1 ≤ β3 and 0 < p1 < p2 < 1 are constants. Here, K(rk) satisfies the
following properties

(1) lim
rk→−∞

K(rk) = β1;

(2) lim
rk→p1

K(rk) = β2;

(3) lim
rk→p2

K(rk) =
1
2 ;

(4) lim
rk→+∞

K(rk) =
1−β3exp(p2)

1−exp(p2)
− 1

2 .

If we obtain a satisfactory trial step dk and ratio rk, then we accept trial step dk and
reduce µk; otherwise, we reject trial step dk and increase µk. At too-successful iterations, the
actual reduction of the objective function obtained at iteration k is obviously greater than
the predicted reduction. Although the current iteration allows the algorithm to progress
towards the optimum, the approximation of the model function to the objective function is
bad. Therefore, to avoid reducing µk too quickly, we use the K-function to update µk.

According to the properties of the K-function, the rate of µk reduction is the fastest
when rk is close to 1, i.e., when the model function provides an accurate local approximation
of the objective function. The new idea we propose is to allow µk to be updated at a variable
rate according to rk, which would improve the efficiency and stability of the algorithm.

Based on the above analysis, we state a description of the new adaptive accelerated
LM method (Algorithm 1) as follows.

In Algorithm 1, m is a given lower bound of the parameter µk. It is introduced to
prevent the step from being too large when the sequence is near the solution.
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Algorithm 1 NAALM.

0. Given x0 ∈ Rn, µ0 > m > 0, 0 ≤ p0 < p1 < p2 < 1, 0 < β2 < 1 < β1 ≤ β3, ε > 0.
Let k := 0.

1. Compute Fk and Jk. If ‖JT
k Fk‖ ≤ ε, stop. Otherwise, compute λk by (9).

2. Solving the following system

(JT
k Jk + λk I)d = −JT

k Fk (12)

to determine dk.
3. Compute Predk, Aredk and rk by (6)–(8), respectively.
4. Set

xk+1 =

{
xk + dk, if rk ≥ p0,

xk, if rk < p0. (13)

5. Choose µk+1 as
µk+1 = max {m, K(rk)µk}, (14)

where K(rk) is given by (11). Set k := k + 1 and go to Step 1.

2.2. The Global Convergence

In this section, to obtain the global convergence of NAALM algorithm, we make the
following assumption.

Assumption 1. F(x) is continuously differentiable, F(x) and the Jacobian matrix J(x) are Lips-
chitz continuous, i.e., there exist positive constants L1 and L2 such that

‖J(y)− J(x)‖ ≤ L1‖y− x‖, ∀ x, y ∈ Rn, (15)

and
‖F(y)− F(x)‖ ≤ L2‖y− x‖, ∀ x, y ∈ Rn. (16)

Lemma 1. Let dk be computed by (12), then the inequality

Predk ≥ ‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖
‖JT

k Jk‖

}
(17)

holds for all k ≥ 0.

Proof. From (7), for α ∈ [0, 1], we have

‖Predk‖ = ‖Fk‖2 − ‖Fk + Jkdk‖2

≥ ‖Fk‖2 −
∥∥∥∥∥Fk − Jk

α‖dk‖
‖JT

k Fk‖
JT
k Fk

∥∥∥∥∥
2

(18)

≥ 2α‖dk‖‖JT
k Fk‖ − α2‖dk‖2‖JT

k Fk‖,

then

‖Predk‖ ≥ max
0≤α≤1

(
2α‖dk‖‖JT

k Fk‖ − α2‖dk‖2‖JT
k Fk‖

)
≥ ‖JT

k Fk‖min

{
‖dk‖,

‖JT
k Fk‖
‖JT

k Jk‖

}
. (19)

The proof is complete.
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Theorem 1. Under the conditions of Assumption 1, the sequence {xk} generated by NAALM
algorithm satisfies

lim
k→∞
‖JT

k Fk‖ = 0. (20)

Proof. If the theorem is not true, then there exist a positive τ and infinitely many k such that

‖JT
k Fk‖ ≥ τ. (21)

Let T1, T2 be the sets of all indices that satisfy

T1 = {k|‖JT
k Fk‖ ≥ τ}

and

T2 = {k|‖JT
k Fk‖ ≥

τ

2
and xk+1 6= xk}.

Then, T1 is an infinite set. In the following, we will derive the contradictions regarding
whether T2 is finite or infinite.

Case (I) T2 is finite.
It follows from the definition of T2 that the set

T3 = {k|‖JT
k Fk‖ ≥ τ and xk+1 6= xk}

is also finite. Let k̃ be the largest index of T3. Then, we know that xk+1 = xk holds for all
k ∈ {k > k̃|k ∈ T1}. Define the indices set

T4 = {k > k̃|‖JT
k Fk‖ ≥ τ and xk+1 = xk}.

Suppose k ∈ T4. It is easy to see that ‖JT
k+1Fk+1‖ ≥ τ. Moreover, we have xk+2 = xk+1.

Otherwise, if xk+2 6= xk+1, then k + 1 ∈ T3, which contradicts the fact that k̃ is the largest
index of T3. Hence, we have k + 1 ∈ T4. By induction, we know that ‖JT

k Fk‖ ≥ τ and
xk+1 = xk hold for all k > k̃.

It now follows from Step 3 of the NAALM Algorithm that rk < p0 for all k > k̃,
which imply

µk → +∞ and λk → +∞, (22)

due to (12)–(14) and xk+1 = xk for all k > k̃. Hence, we have

lim
k→∞

dk = 0. (23)

Furthermore, it follows from (21), (23) and Lemma 1 that

|rk − 1| =

∣∣∣∣Aredk
Predk

− 1
∣∣∣∣

=

∣∣∣∣‖Fk + Jkdk‖2 − ‖F(xk + dk)‖2

Predk

∣∣∣∣
=
‖Fk + Jkdk‖O(‖dk‖2) + O(‖dk‖4)

Predk
(24)

≤ ‖Fk + Jkdk‖O(‖dk‖2) + O(‖dk‖4)

‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖
‖JT

k Jk‖

}
≤ O(‖dk‖2)

‖dk‖
→ 0,
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that is, rk → 1. In view of the updating rule of µk, we know that there exists a positive
constant m̃ > m such that µk < m̃ holds for all sufficiently large k, which is a contradiction
to (22). Hence, the supposition (21) cannot be true while T2 is finite.

Case (II) T2 is infinite.
It follows from Lemma 1 that

‖F1‖ ≥ ∑
k∈T2

(‖Fk‖2 − ‖Fk+1‖2)

≥ ∑
k∈T2

p0Predk

≥ ∑
k∈T2

p0‖JT
k Fk‖min

{
‖dk‖,

‖JT
k Fk‖
‖JT

k Jk‖

}
(25)

≥ ∑
k∈T2

p0τ

2
,

which gives
∑

k∈T2

‖dk‖ < +∞. (26)

The above inequality, together with the Lipschitz conditions (15) and (16), implies that

∑
k∈T2

∣∣∣‖JT
k Fk‖ − ‖JT

k+1Fk+1‖
∣∣∣ < +∞. (27)

Relation (27) and the fact that (21) holds for infinitely many k indicate that there exists
a k̂ with ‖JT

k̂
Fk̂‖ ≥ τ such that

∑
k∈T2,k≥k̂

∣∣∣‖JT
k Fk‖ − ‖JT

k+1Fk+1‖
∣∣∣ < τ

2
.

By induction, we obtain that ‖JT
k Fk‖ ≥ τ

2 for all k ≥ k̂. This result and (26) mean that

lim
k→∞
‖dk‖ = 0. (28)

It follows from (12) and (13) that µk → +∞. By the same analysis as (24), we know
that µk → 1. Hence, there exists a positive constant m̄ > m such that µk < m̄ holds for all
large k, which introduces a contradiction. Therefore, the supposition (21) cannot be true
when T2 is infinite. The proof is complete.

2.3. Local Convergence

In this section, we will study the local convergence properties of the NAALM algorithm
by using the singular value decomposition (SVD) technique. We assume that the sequence
{xk} generated by the NAALM algorithm converges to the nonempty solution set X∗ and
lies in some neighborhood of x∗ ∈ X∗. Firstly, we present some assumptions which the
local convergence theory required.

Definition 1. Let N ⊂ Rn such that N ∩ X∗ 6= φ, we say that ‖F(x)‖ provides a local error
bound on N for (1) if there exists a positive constant c > 0 such that

cdist(x, X∗) ≤ ‖Fk‖, x ∈ N, (29)

where dist(x, X∗) is the distance from x to X∗.
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Assumption 2. (i) F(x) is continuously differentiable, and J(x) is Lipschitz continuous on
N(x∗, b1) with b1 < 1, i.e., there exists a positive constant L1 such that

‖J(y)− J(x)‖ ≤ L1‖y− x‖, ∀x, y ∈ N(x∗, b1) = {x|‖x− x∗‖ ≤ b1}. (30)

(ii) F(x) provides a local error bound on some neighborhood of x∗ ∈ X∗, i.e., there exists a positive
constant c1 > 0 such that

‖F(x)‖ ≥ c1dist(x, X∗), ∀x ∈ N(x∗, b1). (31)

By the Lipschitzness of the Jacobian matrix proposed by (30), we have

‖F(y)− F(x)− J(x)(y− x)‖ =

∥∥∥∥∫ 1

0
J(x + t(y− x))(y− x)dt− J(x)(y− x)

∥∥∥∥
≤ ‖y− x‖

∫ 1

0
‖J(x + t(y− x))− J(x)‖dt

≤ L1‖y− x‖2, (32)

and
‖F(y)− F(x)‖ ≤ L2‖y− x‖, ∀x, y ∈ N(x∗, b1), (33)

where L2 is a positive constant.
In the following, we use x̄k to denote the vector in X∗ that satisfies

‖x̄k − xk‖ = dist(xk, X∗), ∀x, y ∈ N(x∗, b1). (34)

To obtain the local convergence rate of xk, we present some lemmas.

Lemma 2. Under the conditions of Assumption 2, for all sufficiently large k, there exists a constant
c2 > 0 such that

‖dk‖ ≤ c2‖x̄k − xk‖. (35)

Proof. According to (34), we have

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖+ ‖xk − x∗‖ ≤ 2‖xk − x∗‖ ≤ b1, (36)

which means that x̄ ∈ N(x∗, b1). Following from (13),

λk =
µk‖Fk‖

1 + ‖Fk‖
= µk

(
1− 1

1 + ‖Fk‖

)
≥ m

(
1− 1

1 + c1‖x̄k − xk‖

)
=

mc1‖x̄k − xk‖
1 + c1‖x̄k − xk‖

, (37)

and we have from (32) that

‖Fk + Jk(x̄k − xk)‖2 = ‖F(x̄k)− Fk − Jk(x̄k − xk)‖2 ≤ L2
1‖x̄k − xk‖4. (38)
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As dk is a minimizer of ψk(d), we have

‖dk‖2 ≤ 1
λk

ϕk(dk)

≤ 1
λk

ϕk(x̄k − xk)

=
1

λk
(‖Fk + Jk(x̄k − xk)‖2 + λk‖x̄k − xk‖2)

≤ 1 + c1‖x̄k − xk‖
mc1‖x̄k − xk‖

(L2
1‖x̄k − xk‖4) + ‖x̄k − xk‖2

= O(‖x̄k − xk‖2),

then there exists a constant c2 > 0 such that ‖dk‖ ≤ c2‖x̄k − xk‖. The proof is completed.

Lemma 3. Under the conditions of Assumption 2, for all sufficiently large k, there exists a positive
constant M > m such that

µk ≤ M. (39)

Proof. First, we show that for sufficiently large k, the following inequality holds

Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2 ≥ min
{

c1

2c2
,

c1

2

}
‖Fk‖‖dk‖. (40)

We consider two cases. In one case, if ‖x̄k − xk‖ ≤ ‖dk‖, then the definition of dk and
Assumption 2 imply that

‖Fk‖ − ‖Fk + Jkdk‖ ≥ ‖Fk‖ − ‖Fk + Jk(x̄k − xk)‖
≥ c1‖x̄k − xk‖ − L1‖x̄k − xk‖2 (41)

≥ c1

2c2
‖dk‖.

In the other case, if ‖x̄k − xk‖ > ‖dk‖, then we have

‖Fk‖ − ‖Fk + Jkdk‖ ≥ ‖Fk‖ −
∥∥∥∥Fk +

‖dk‖
‖x̄k − xk‖

Jk(x̄k − xk)

∥∥∥∥
≥ ‖dk‖
‖x̄k − xk‖

(‖Fk‖ − ‖Fk + Jk(x̄k − xk)‖) (42)

≥ ‖dk‖
‖x̄k − xk‖

(
c1‖x̄k − xk‖ − L1‖x̄k − xk‖2

)
≥ c1

2
‖dk‖.

Inequalities (41) and (42), together with Lemma 2 show that

Predk = (‖Fk‖+ ‖Fk + Jkdk‖)(‖Fk‖ − ‖Fk + Jkdk‖)
≥ ‖Fk‖(‖Fk‖ − ‖Fk + Jkdk‖) (43)

≥ min
{

c1

2c2
,

c1

2

}
‖Fk‖‖dk‖,



Symmetry 2023, 15, 588 10 of 17

which gives (40). Hence, it follows from (40), Assumption 2 and Lemma 2 that

|rk − 1| =

∣∣∣∣Aredk
Predk

− 1
∣∣∣∣

=
‖Fk + Jkdk‖O(‖dk‖2) + O(‖dk‖4)

Predk

≤ ‖Fk‖O(‖dk‖2) + O(‖dk‖4)

O(‖Fk‖‖dk‖)
= O(‖dk‖)→ 0.

Therefore, we have rk → 1, thus, there exists a constant M > m such that µk ≤ M for
all large k. The proof is completed.

Without generality, we assume rank(J(x∗)) = r for all x̄ ∈ N(x∗, b1) ∩ X∗. Suppose
the SVD of J(x̄) is

J(x̄) = [Ū1, Ū2]

[
Σ̄1 0
0 0

][
V̄T

1
V̄T

2

]
= Ū1Σ̄1V̄T

1 , (44)

where Σ̄1 = diag(σ̄1, σ̄2, . . . , σ̄r) with σ̄1 ≥ σ̄2 ≥ · · · ≥ σ̄r > 0 and Ū = [Ū1, Ū2], V̄ = [V̄1, V̄2]
are orthogonal matrices. Correspondingly, we consider SVD of J(xk) by

J(xk) = [U1, U2, U3]

 Σ1 0 0
0 Σ2 0
0 0 0

 VT
1

VT
2

VT
3

 = U1Σ1VT
1 + U2Σ2VT

2 , (45)

where U = [U1, U2, U3], V = [V1, V2, V3] are orthogonal matrixes, Σ1 = diag(σ1, σ2, . . . , σr)
with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and Σ2 = diag(σr+1, σr+2, · · · , σr+q) with σr+1 ≥ σr+2 ≥
· · · ≥ σr+q > 0.

Lemma 4. Under the conditions of Assumption 2, for all sufficiently large k, we have

(a)‖U1UT
1 Fk‖ ≤ O(‖x̄k − xk‖);

(b)‖U2UT
2 Fk‖ ≤ O(‖x̄k − xk‖2);

(c)‖U3UT
3 Fk‖ ≤ O(‖x̄k − xk‖2);

(d)‖Fk + Jkdk‖ ≤ O(‖x̄k − xk‖2).

Proof. The result (a) follows immediately from (16). By (15) and the theory of matrix
perturbation [26], we have

‖diag(Σ1 − Σ̄1, Σ2, 0)‖ ≤ ‖Jk − J(x̄k)‖ ≤ L1‖x̄k − xk‖,

which implies that

‖Σ1 − Σ̄1‖ ≤ L1‖x̄k − xk‖ and ‖Σ2‖ ≤ L1‖x̄k − xk‖. (46)

Let sk = −J+k Fk, where J+k is the pseudo-inverse of Jk. It is easy to see that sk is the
least-squares solution of min ‖Fk + Jks‖, so we obtain from (32) that

‖U3UT
3 Fk‖ = ‖Fk + Jksk‖ ≤ ‖Fk + Jk(x̄k − xk)‖ ≤ O(‖x̄k − xk‖2).
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Let J̄k = U1Σ1VT
1 and s̄k = − J̄+k Fk. Since s̄k is the least-squares solution of min ‖Fk +

J̄ks‖, it follows from (32) that

‖(U2UT
2 + U3UT

3 )Fk‖ = ‖Fk + J̄k s̄k‖
≤ ‖Fk + J̄k(x̄k − xk)‖
≤ ‖Fk + Jk(x̄k − xk)‖+ ‖( J̄k − Jk)(x̄k − xk)‖
≤ L1‖x̄k − xk‖2 + ‖U2Σ2VT

2 (x̄k − xk)‖
≤ L1‖x̄k − xk‖2 + L1‖x̄k − xk‖‖x̄k − xk‖
≤ O(‖x̄k − xk‖2).

Due to the orthogonality of U2 and U3, we obtain the result (b).
Using (12) and (45), we obtain

dk = −V1(Σ2
1 + λk I)−1Σ1UT

1 Fk −V2(Σ2
2 + λk I)−1Σ2UT

2 Fk,

and

Fk + Jkdk = Fk −U1Σ1(Σ2
1 + λk I)−1Σ1UT

1 Fk −U2Σ2(Σ2
2 + λk I)−1Σ2UT

2 Fk

= λkU1(Σ2
1 + λk I)−1UT

1 Fk + λkU2(Σ2
2 + λk I)−1UT

2 Fk + U3UT
3 Fk.

Following from (13) and (33), the LM parameter satisfies

λk =
µk‖Fk‖

1 + ‖Fk‖
≤ µk‖Fk‖ ≤ ML2‖x̄k − xk‖.

Since {xk} converges to the solution set X∗, we assume that L1‖x̄k − xk‖ ≤ σ̄r
2 holds

for all sufficiently large k. Then, it follows from (46) that

‖Σ−1
1 ‖ ≤

1
σ̄r − L1‖x̄k − xk‖

≤ 2
σ̄r

.

It then follows from Lemmas 3 and 4 that

‖Fk + Jkdk‖ ≤ λk‖Σ−2
1 ‖‖U

T
1 Fk‖+ ‖UT

2 Fk‖+ ‖U3UT
3 Fk‖

≤ 4L2M‖x̄k − xk‖2

σ̄2
r

+ O(‖x̄k − xk‖2) + O(‖x̄k − xk‖2) (47)

= O(‖x̄k − xk‖2).

The proof is completed.

We can state the quadratic convergence result of the NAALM algorithm.

Theorem 2. Let the sequence {xk} be generated by the NAALM algorithm, under Assumption 2,
the sequence {xk} converges quadratically to a solution of nonlinear Equation (1).

Proof. It follows from Assumption 2, Lemma 2 and (47) that

c1‖x̄k+1 − xk+1‖ ≤ ‖F(xk+1)‖
= ‖F(xk + dk)‖
≤ ‖Fk + Jkdk‖+ O(‖dk‖2) (48)

= O(‖x̄k − xk‖2).

On the other hand, it is clear that

‖x̄k − xk‖ = dist(xk, X∗) ≤ ‖x̄k+1 − xk‖ ≤ ‖x̄k+1 − xk+1‖+ ‖dk‖.
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It follows from Lemma 2 that, for any sufficiently large k, we have

‖x̄k − xk‖ ≤ 2‖dk‖ ≤ O(‖x̄k − xk‖).

Therefore, ‖dk‖ = O(‖x̄k − xk‖). This, along with (48), indicates that

‖dk+1‖ ≤ O(‖dk‖2),

which implies that {xk} is quadratically convergent to a solution of set X∗. The proof
is completed.

3. Numerical Results

In this section, the numerical performance of NAALM algorithm will be listed. All
codes were written in MATLAB R2016b on a PC with 1.19 GHz, 8.00 GB RAM, using
Windows 11 operation system. In this section, we will expand on the following two aspects.
On the one hand, the effectiveness of the NAALM algorithm is illustrated by comparing
it with other algorithms on some test questions. On the other hand, it shows that the
NAALM algorithm has good development prospects by applying the algorithm to a fresh
agricultural products supply chain problem.

3.1. Some Singular Nonlinear Equations Problems

The test problems are constructed by modifying the nonsingular problems given by
Moré et al. [27], which have the following form as [28]:

F̂(x) = F(x)− J(x∗)A(AT A)−1 AT(x− x∗),

where F(x) is the standard test function, A ∈ Rn×k has full column rank with 0 ≤ k ≤ n
and x is a solution of the equation F(x) = 0. According to the definition of F̂(x), we obtain

Ĵ(x∗) = J(x∗)(I − A(AT A)−1 AT),

where Ĵ(x∗) is Jacobian matrix of F(x) at x∗ with rank n− k and F̂(x∗) = 0. In our test
problems, some of Ĵ(x∗) are symmetric matrices and some are non-symmetric matrices.
Note that some roots of F̂(x) may not be roots of F(x). Similar to [28], we construct two
sets of singular problems while Ĵ(x∗) have rank n− 1 or n− 2, by choosing

A = [1, 1, ..., 1]T ∈ Rn×1,

and

A =

[
1 1 1 1 ... 1
1 −1 1 −1 ... ±1

]T

∈ Rn×2.

We test our NAALM algorithm on some singular nonlinear equations, and compare it
with the self-adaptive Levenberg–Marquardt algorithm (SLM) proposed in [18]. The main
differences between these two algorithms are in the updating rule of µk.

We set p0 = 10−4, p1 = 1
4 , p2 = 3

4 , β1 = 5
4 , β2 = 1

3 , β3 = 6
5 , m = 10−8, µ0 = 10−2,

for all the tests. All test methods are terminated when ‖JT
k Fk‖ ≤ 10−5. The algorithm

is considered to fail when the number of iterations exceeds 500. Considering the global
convergence of the algorithms, we run each test problem for five starting points, −10x0,
−x0, x0, 10x0 and 100x0, where x0 is given by [28]. For n as a variable, we take n = 500,
n = 1000, respectively.

The performance profile of two algorithms. including the number of iterations (NI),
function evaluations (NF), gradient evaluations (NG) and CPU time (CPU), is analyzed
using the profiles of Dolan and Moré [29]. Let Y and W be the set of methods and test prob-
lems, ny, nw be the number of methods and test problems, respectively. The performance
profile ψ : R→ [0, 1] is for each y ∈ Y and w ∈W defined that aw,y > 0 is NI or NF or NG
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or CPU required to solve problems w by method y. Furthermore, the performance profile is
obtained by

ψy(τ) =
1

nw
size{w ∈W : log2rw,y ≤ τ},

where τ > 0, size{·} is the number of the elements in a set, and rw,y is the performance
ratio defined as

rw,y =
aw,y

min{aw,y : w ∈W and y ∈ Y} .

Generally, the method whose performance profile plot is on the top right will represent
the best method.

As can be seen from Figure 1, the NAALM algorithm is better than the SLM algorithm
in terms of the number of iterations, especially when τ > 2, the curve of NAALM algorithm
becomes stable, which indicates that NAALM algorithm can solve the problem only with
fewer iterations. In terms of function evaluations, as shown in Figure 2, the NAALM
algorithm curve in τ > 1.75, it has reached a stable state, while SLM algorithm can reach
a stable state only when the curve coincides with that of NAALM algorithm at τ > 2.75;
Figure 3 shows the performance diagram of the SLM algorithm and the NAALM algorithm
in the Jacobian matrix. It can be seen that the NAALM algorithm can successfully solve
test problems up to 98%, while SLM can only reach 94%, which shows that the NAALM
algorithm can reduce the calculation times of the Jacobian matrix and save the calculation
amount. Figure 4 shows the CPU time performance of the NAALM algorithm and the
SLM algorithm. It can be seen from the figure that when τ < 4.5, the curves of the
NAALM algorithm and the SLM algorithm are similar, but when τ > 4.5, both the NAALM
algorithm and the SLM algorithm tend to be stable and coincide. Therefore, Figures 1–4
show that the accelerated version of the LM algorithm proposed in this paper can not
only converge to the solution quickly, but also reduce the computation amount of the
Jacobian matrix.

Figure 1. Performance profiles for the iterations.
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Figure 2. Performance profiles for the function evaluations.

Figure 3. Performance profiles for the gradient evaluations.

Figure 4. Performance profiles for the CPU time.
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3.2. Supply Chain Optimization Problems

The security and stability of the supply chain has a great impact on promoting high-
quality and sustainable development of the economy. Therefore, supply chain has been
applied to many fields, such as low-carbon supply chain, manufacturing green supply
chain, food trade supply chain. In recent years, with the improvement of living standards,
the quality of fresh agricultural products has attracted widespread attention from con-
sumers. In order to meet the demand of consumers for high quality and low price of
fresh agricultural products, we use the NAALM algorithm to study how suppliers and
retailers make decisions to maximize both their own profits and the total profit of the fresh
agricultural products supply chain under the decentralized policy.

In this supply chain, as the leader of Stackelberg game, fresh agricultural product sup-
pliers supply the same variety of ordinary fresh agricultural products (ofp) and green fresh
agricultural products (gfp) to retailers as followers, while retailers sell them to consumers.
Suppliers need to choose the optimal wholesale price strategy of two fresh agricultural
products, and retailers need to choose the optimal retail price strategy of two fresh agri-
cultural products and determine the order quantity of two fresh agricultural products by
market demand.

Without considering the impact of emergencies, the market demand for fresh agricul-
tural products is relatively stable, and it is only related to price and freshness. Due to the
substitution of the same varieties of ofp and gfp, there is a competitive relationship in the
demand market. Based on the demand function theory of alternative price competition, it
is assumed that the demand function of two fresh agricultural products is as follows

qi = a− b
pi
θ
+ r

pj

θ
, i = 1, 2, j = 3− i, (49)

where q1, q2 represent the market demand of gfp and ofp, respectively, a represents the
total potential market capacity of fresh agricultural products, p1, p2 represent the retail
price of gfp and ofp, respectively, b is the price sensitivity coefficient, r is the competitive
substitution coefficient of the two products, and it satisfies b > r > 0, θ(0 ≤ θ ≤ 1)is the
freshness of fresh produce when it arrives at the retailer’s store.

Under the decentralized policy, we regard suppliers and retailers as independent
entities, and both with the goal of maximizing their respective interests. Now, the profit
function of fresh agricultural products retailer is as follows

max
p1,p2

πs = (p1 − w1)(a− b
p1

θ
+ r

p2

θ
) + (p2 − w2)(a− b

p2

θ
+ r

p1

θ
), (50)

where w1, w2 represent the supply price of gfp and ofp, respectively, and the profit function
of fresh agricultural products suppliers is as follows

max
w1,w2

πR = (w1 −
c1

1− β
)(a− b

p1

θ
+ r

p2

θ
+ (w2 −

c2

1− β
)(a− b

p2

θ
+ r

p1

θ
), (51)

where β (0 < β < 1) represents the quantity loss of fresh produce when it reaches the
retailer’s store, c1, c2 represents the unit production cost of gfp and ofp, respectively.
Obviously, p1 > p1 > 0 and c1 > c2 > 0. We record the total profit of fresh agricultural
products supply chain as follows:

πT = πs + πR. (52)

With reference to the setting of the parameters in the relevant literature [30], we set:
a = 50, b = 2, c1 = 4, c2 = 2, r = 1.5, β = 0.2, θ = 0.85. These values satisfy the
theoretical proof in [30] and can guarantee that the optimal value has practical significance.
Now, we transform the unconstrained optimization problem (51) into a nonlinear equation
problem, and then choose different initial points and use the NAALM algorithm to solve
the nonlinear equation problem.
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As can be seen from Table 1, with certain parameters, the NAALM algorithm can be
used to solve the optimization problem, so as to obtain the optimal pricing strategy with
maximum profit in the supply chain led by suppliers under the decentralized policy. In
addition, the global convergence and robustness of the NAALM algorithm are verified
according to different initial values and the number of iterations.

Table 1. The optimal solution corresponding to different initial points by NAALM.

Initial Point p1 p2 w1 w2 q1 q2 πT

(1;1;1;1) 45.0266 43.7205 65.065 64.329 10.5818 13.2479 1.4587× 103

(10;10;10;10) 44.9648 43.7460 64.991 64.358 10.5163 13.2607 1.4587× 103

(30;30;30;30) 44.9920 43.7496 64.956 64.376 10.5825 13.3037 1.4587× 103

(50;50;50;50) 45.0158 43.7525 65.062 64.372 10.5125 13.3036 1.4587× 103

(100;100;100;100) 44.9751 43.7553 65.955 64.269 10.5222 13.2679 1.4587× 103

4. Conclusions

We constructed a new function that makes full use of the ratio information to update
LM parameters adaptively. Based on this new LM parameter, we presented an adaptive
accelerated Levenberg–Marquardt method for solving nonlinear equations. Furthermore,
we showed the global convergence analysis of the proposed algorithm. Furthermore, the
quadratic convergence is also obtained under the local error bound condition. Numerical
experiments demonstrated that our method has good numerical performance. In addition,
the application of the NAALM algorithm to a supply chain problem showed that the new
algorithm has a good application prospect. We further highlight that the proposed NAALM
algorithm can be used in other fields, such as the symmetric system of nonlinear equations.
It is vital to note that the method’s convergence analysis in Hölderian local error bound
condition will be taken into account in our future work.
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