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Abstract: A computer vision model known as a generative adversarial network (GAN) creates
all the visuals, including images, movies, and sounds. One of the most well-known subfields of
deep learning and machine learning is generative adversarial networks. It is employed for text-to-
image translations, as well as image-to-image and conceptual image-to-image translations. Different
techniques are used in the processing and generation of visual data, which can lead to confusion and
uncertainty. With this in mind, we define some solid mathematical concepts to model and solve the
aforementioned problem. Complex picture fuzzy soft relations are defined in this study by taking the
Cartesian product of two complex picture fuzzy soft sets. Furthermore, the types of complex picture
fuzzy soft relations are explained, and their results are also discussed. The complex picture fuzzy soft
relation has an extensive structure comprising membership, abstinence, and non-membership degrees
with multidimensional variables. Therefore, this paper provides modeling methodologies based
on complex picture fuzzy soft relations, which are used for the analysis of generative adversarial
networks. In the process, the score functions are also formulated. Finally, a comparative analysis of
existing techniques was performed to show the validity of the proposed work.

Keywords: generative adversarial networks; uncertainty; deep learning; complex picture fuzzy soft
set; complex picture fuzzy soft relations

1. Introduction

During the conceptual design phase, mechanical design methods are presented based
on the data and information that are currently available, which can occasionally be unclear,
imprecise, and unpredictable. The decision-making process in conceptual designs is one
of these frequent occurrences, which frequently relies on the strategy of dealing with
ambiguous facts and information. Based on their knowledge and experience, designers
often offer several primary design strategies in conceptual design. However, the subjective
qualities of the schemes are frequently unknown and must be assessed based on the
decision maker’s knowledge and judgments. When subjective judgments are used in
decision making, the nature of the confusion and ambiguity becomes fuzzy rather than
random. Zadeh’s [1] fuzzy theory provides a useful tool that deals with ambiguous and
unclear data and information, as well as the subjective features of human nature, in the
decision-making process. A fuzzy set enables the ambiguity of a set with a membership
degree between 0 and 1. Zadeh [2] expanded fuzzy sets and proposed the concept of
interval-valued fuzzy sets in 1975. The single value of the degree of membership in a
fuzzy set is replaced by an interval, the extremes of which are part of the [0, 1] interval,
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i.e., the degree of membership is a subinterval of [0, 1]. Mendel [3] coined the term
“fuzzy relations” to describe the concepts of relations for fuzzy sets. Maiers and Sherif [4]
introduced the application of fuzzy sets theory, which is applicable to a wide range of
problems and fuzzy control algorithms. Goguen [5] created a set of axioms for a relativity
simple kind of fuzzy set theory, which he used to investigate the accuracy of various fuzzy
set representations. Román et al. [6] proposed a note on Zadeh’s extensions. Ramot et al. [7]
proposed the concept of complex fuzzy set in which the membership degree is defined by
a complex number. The complex fuzzy sets discus both amplitude and phase terms. Li
and Tu [8] investigated complex fuzzy sets and their applications in multiclass prediction.
Zhang et al. [9] explored complex fuzzy sets in various operation features and δ-equalities.
Pekaslan et al. [10] proposed the concept of Adonis-adaptive online non-singleton fuzzy
logic systems. Hu et al. [11] established the application of orthogonality between complex
fuzzy sets, which was used to identify signals. Nasir et al. [12] defined the interval-valued
complex fuzzy relations and applied them to life expectancy and medical diagnosis. Chen
et al. [13] proposed the concept of a neuro-fuzzy architecture employing complex fuzzy
sets. Tamir et al. [14] proposed some applications of complex sets.

Later, Atanassov [15] developed the concept of an intuitionistic fuzzy set, which is
broader than fuzzy sets. A fuzzy set only discusses the membership degree, whereas
intuitionistic fuzzy sets discuss both the membership degree and non-membership degree.
Both of these degrees attain values between the unit interval of [0, 1], and their sum
also lies within this interval. De et al. [16] applied intuitionistic fuzzy sets to medical
diagnosis. Tang et al. [17] investigated the symmetric implicational algorithm derived from
intuitionistic fuzzy entropy. Alkouri and Saleh [18] expressed the notion of a complex
intuitionistic fuzzy set. Complex intuitionistic fuzzy sets determine both membership
and non-membership degrees with a complex number. They solve a multidimensional
problem. Cuong and Kreinovich [19] later proposed picture fuzzy sets by including a
degree of abstinence in the intuitionistic fuzzy set structure. The levels of membership,
abstinence, and non-membership in a picture fuzzy set all accept values from the unit
interval as long as their sum is between 0 and 1. The correlation coefficients for picture
fuzzy sets were first established by Singh [20]. New procedures for picture fuzzy relations
and fuzzy comprehensive assessment were presented by Bo and Zhang [21]. The idea of
a decision-making model under a complex picture fuzzy set was introduced by Akram
et al. [22].

Existing theories have limitations because of their inadequacy relative to parameteri-
zation tools. To overcome these drawbacks, Molodtsov [23] corroborated the soft set theory
in which rating values are expressed over certain parameters. Ali et al. [24] defined some
new soft set operations. Bozena Kostek [25] attempted to analyze sound quality using a
soft-set-based technique. Mushrif et al. [26] proposed a new soft-set-theory-based tech-
nique for classification of natural textures. Cagman et al. [27] constructed an application
of uni − int decision making in the structure of soft set theory. Ibrahim and Yusuf [28]
provided a crisp and critical overview of the evaluation of soft set theory. Maji et al. [29]
used a soft set theory to solve the problem of decision making. Babitha and Sunil [30] pro-
posed the idea of soft relations between the Cartesian product of soft sets. Mahmood [31]
attempted to analyze a novel approach to bipolar soft sets and their applications. Maji
et al. [32] proposed the idea of fuzzy soft sets by integrating soft sets and fuzzy sets. Fuzzy
soft set theory uses different parameters to select the best option by providing a value
of membership degree. Alcantud et al. [33] proposed a new generalization method for
fuzzy soft sets. Kong et al. [34] used fuzzy soft sets in decision-making problems. Gogoi
et al. [35] investigated the applications of fuzzy soft set theory to solve different problems.
Borah et al. [36] proposed the novel idea of fuzzy soft relations by studying the Cartesian
product of fuzzy soft sets. Sut [37] discussed the use of fuzzy soft relations in decision
making. Thirunavukarasu et al. [38] investigated the theory of complex fuzzy soft sets,
which also explains periodicity. Complex fuzzy soft sets discuss the membership degree
with a phase term. The concepts of hybrid integrated decision-making algorithms for
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clustering analysis based on a bipolar complex fuzzy and soft sets, soft representation of
soft groups, and comparison of the social justice leadership behaviors of school admin-
istrators according to teacher perceptions using classical and fuzzy logic were proposed
in [39–41]. Xu et al. [42] proposed an intuitionistic fuzzy soft set, which combines soft sets
and intuitionistic fuzzy soft sets. The intuitionistic fuzzy soft set is the generalization form
of fuzzy soft set. Agarwal et al. [43] introduced generalized intuitionistic fuzzy soft sets
with applications in decision making. Bashir et al. [44] investigated the applications of
intuitionistic fuzzy soft sets. Dinda and Samanta [45] introduced the intuitionistic fuzzy
soft relations. Kumar and Bajaj [46] proposed the concept of complex intuitionistic fuzzy
soft sets, which are parametric in nature. On the other hand, complex fuzzy set theory and
complex intuitionistic fuzzy set theory are independent of the parameterization technique.
Complex intuitionistic fuzzy soft sets are used to solve the multicriteria decision-making
problem with parameterization tools. Yang et al. [47] proposed the concept of a picture
fuzzy soft set. A picture fuzzy soft set is a hybrid model of a picture fuzzy set and a soft
set. Khan et al. [48] investigated the applications of generalized picture fuzzy soft sets. Jan
et al. [49] introduced the multivalued picture fuzzy soft sets and their applications in group
decision-making problems. Močkoř and Hurtik [50] introduced the concept of fuzzy soft
relations with image processing applications. Shanthi et al. [51] investigated the concept
of a complex picture fuzzy soft set. Complex picture fuzzy soft sets are used to solve the
multicriteria decision-making problem with parameterization tools.

In fuzzy soft set theory, the concept of a complex picture fuzzy soft set is a powerful
tool for dealing with ambiguity and uncertainty. For complex picture fuzzy soft sets, how-
ever, the concept of relations has yet to be determined. The concept of complex picture
fuzzy soft relations is introduced in this paper. Complex picture fuzzy soft relations are
defined using a novel definition of the Cartesian product of two complex picture fuzzy
soft sets. In addition, the types of complex picture fuzzy soft relations are explained,
including complex picture fuzzy soft reflexive relations, complex picture fuzzy soft irreflex-
ive relations, complex picture fuzzy soft symmetric relations, complex picture fuzzy soft
antisymmetric relations, complex picture fuzzy soft asymmetric relations, complex picture
fuzzy soft complete relations, complex picture fuzzy soft transitive relations, complex
picture fuzzy soft equivalence relations, complex picture fuzzy soft partial-order relations,
complex picture fuzzy soft strict-order relations, complex picture fuzzy soft preorder re-
lations, and complex picture fuzzy soft equivalence classes. Each definition of complex
picture fuzzy soft relations is defined with examples. Furthermore, several outcomes are
proven for the types of complex picture fuzzy soft relations. The introduced complex
picture fuzzy soft relations are preferable to predefined structures of soft sets, fuzzy soft
sets, complex fuzzy soft sets, intuitionistic fuzzy soft sets, complex intuitionistic fuzzy
soft sets, and picture fuzzy soft sets. Complex picture fuzzy soft sets discuss membership,
abstinence, and non-membership degrees. The real term of each of the complex-valued
functions is called the amplitude, and the imaginary term is called the phase term. This
structure has the ability to solve the multidimensional problems of uncertain natures. Since
the importance of generative adversarial networks and modern graphics is well known, as
argued earlier, the primary goal of this article is to use complex picture fuzzy soft relations
to select the best generative adversarial networks. Experts have suggested a number of
parameters, and in this study, we use those suggestions and parameters to select the best
generative adversarial networks.

The remainder of this paper is organized as follows. Section 1 consists of an Intro-
duction. Section 2 discusses some previously defined structures. Section 3 introduces the
novel concepts of complex picture fuzzy soft relations, the Cartesian product between two
complex picture fuzzy soft sets, the types of complex picture fuzzy soft relations, and some
related results. Section 4 proposes an application of complex picture fuzzy soft relations for
the study and review of generative adversarial networks. Section 5 presents a comparative
analysis of the proposed structure with existing frameworks. In Section 6, the article is
finished with concluding remarks.
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2. Preliminaries

In this section, we explain some predefined concepts of fuzzy algebra such as complex
fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intuitionistic
fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, picture
fuzzy soft set, and complex picture fuzzy soft set.

Definition 1 ([7]). Let
.

X be a universal set; then, a complex fuzzy set (A on
.

X) with mappings
(

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 23 

comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

m, sm :
.

X → [0, 1] ) is expressed as:

A =
{(

k
¯
,
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Definition 2 ([14]). Let
.

X be a universal set and `̄E be a set of parameters. Let P(
.
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.
X and A ⊆ `̄E. Then, a soft set (F , `̄E) with a mapping (F : A → P(

.
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F =
{
(k
¯
,F (k

¯
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¯
∈ `̄E,F (k

¯
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.
X)
}

Example 1. Assume that
.

X = {b1, b2, b3, b4, b5} is a universal set consisting of a set of five bags
under consideration, and `̄E = {k

¯1, k
¯2, k

¯3, k
¯4, k

¯5} is a set of parameters for
.

X, where each parameter
(k
¯i, i = 1, 2, 3, 4, 5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose
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F (k
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Then, the soft set (F , `̄E) is a parameterized family for {k
¯ i, i = 1, 2, 3, 4, 5}.

Definition 3 ([21]). Let (F ,A) and (G,B) be two soft sets on
.

X and A,B ⊆ `̄E. Let (F ,A)×
(G,B) = (H, C) with a mapping (H : C → P(

.
X) ); then, the Cartesian product of the soft set is

denoted and defined as

H(
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◦
w3 = Orient, and

◦
w4 = Dawlance. `̄E = {k

¯1, k
¯2, k

¯3}, i.e., k
¯1 = design, k

¯2 = beautiful, and
k
¯3 = digital.
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¯
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Example 3. From Example 2, assume an intuitionistic fuzzy soft set
(
F , `̄E
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describing the

characteristics of the refrigerator with respect to some parameter and each membership and non-
membership degree assigned by experts.
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n are amplitude terms of membership, abstinence, and non-membership degree,
respectively, and sm, sἄ, sn are the phase terms of membership, abstinence, and non-membership
degree, respectively.

3. Main Results

In this section, we explain the ideas of the Cartesian product of two complex picture
fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations.
Moreover, several examples and useful results are also described.
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Definition 12. Suppose that (F ,A) and (G,B) are two complex picture fuzzy soft sets on
.

X and A,B ⊆ `̄E. Let (F ,A) × (G,B) = (H, C) with a mapping (H : C → C(PF
.

X) ) and
H(

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 23 

comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇ꬺ and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-
tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ. Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈  ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

,

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 23 

comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇ꬺ and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-
tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ. Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈  ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

) = F (

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 23 

comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇ꬺ and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-
tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ. Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈  ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

)× G(

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 23 

comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇ꬺ and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-
tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ. Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈  ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

). Then, the Cartesian product of complex picture fuzzy soft sets is denoted by

A =
{(

k
¯
,

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 23 

comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

A
m(k¯

)es
A
m(k

¯
)2(2πi),

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 23 

comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

A
ἄ
(k
¯
)es
A
ἄ
(k
¯
)2(2πi),

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 23 

comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

A
n (k¯

)es
A
n (k

¯
)2(2πi)

)
: k

¯
∈ `̄E

}
and

B =
{(

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23 

Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
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3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 
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Moreover, several examples and useful results are also described. 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
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Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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)2(2πi)
)
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∈ `̄E
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and defined as,

(H, C) = A×B =
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¯
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 
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ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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,
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the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

A×B
ἄ

(k
¯
,

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23 

Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
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Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
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Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
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power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
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ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

∈ B
}

Where
{
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) = min
{
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

)
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

A×B
ἄ

(k
¯
,

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23 

Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) = min
{
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

)
}

,
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) = max
{
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  
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Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
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Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
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) = min
{
sA
ἄ
(k
¯
), sB
ἄ
(
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)
}

,
and sA×Bn (k

¯
,
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) = max
{
sAn (k¯

), sBn (
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)
} }

.

Example 5. Suppose the universal set
.

X = {}1,}2,}3} consists of three laptop companies, i.e.,
}1 = Dell, }2 = Toshiba, and }3 = Lenovo, and there are three parameters (`̄E = {k

¯1, k
¯2, k

¯3}), i.e.,
k
¯1 = expensive, k

¯2 = fast, and k
¯3 = cheap. Let (F ,A) and (G,B) be two complex picture fuzzy

soft sets on
.

X, as shown below;

(F ,A) =



(
k
¯1,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

k
¯2,

(
0.3e0.3(2πi),

0.3e0.2(2πi), 0.4e0.1(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.5e0.1(2πi),

0.3e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

k
¯3,

(
0.4e0.2(2πi),

0.4e0.6(2πi), 0.1e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))


and

(G,B) =



(
k
¯1,

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.6e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.2(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

k
¯2,

(
0.4e0.3(2πi),

0.3e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.1(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.5e0.1(2πi),

0.3e0.2(2πi), 0.1e0.5(2πi)

))
,(

k
¯3,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.1(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.4e0.6(2πi), 0.1e0.2(2πi)

))


In the above observations, the first three values of each parameter show the member-

ship, abstinence, and non-membership degree of each company, and the fourth value shows
the general value, which is known as the degree of belongingness. Each row represents the
parametric observations.

Then, their Cartesian product of (F ,A) and (G,B) is defined as
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(H, C) =



(
(k
¯1, k

¯1),

(
0.3e0.1(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.2(2πi),

0.2e0.4(2πi), 0.4e0.3(2πi)

)
,

(
0.2e0.2(2πi),

0.2e0.2(2πi), 0.3e0.2(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯1, k

¯2),

(
0.4e0.2(2πi),

0.3e0.2(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.2(2πi),

0.3e0.3(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.2(2πi),

0.3e0.2(2πi), 0.3e0.4(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.5(2πi)

))
,(

(k
¯1, k

¯3),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.2(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯1),

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.4e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,((

k
¯2,k¯2

)
,

(
0.3e0.3(2πi),

0.3e0.2(2πi), 0.4e0.1(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.4(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.5(2πi)

))
,(

(k
¯2, k

¯3),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.1(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.2(2πi)

))
,(

(k
¯3, k

¯1),

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.3e0.1(2πi),

0.2e0.4(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯2),

(
0.4e0.2(2πi),

0.3e0.2(2πi), 0.2e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.3(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.5(2πi)

))
,(

(k
¯3, k

¯3),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.2(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.4(2πi), 0.4e0.3(2πi)

)
,

(
0.3e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))


Definition 13. The complex picture fuzzy soft relations (R

¯
) and complex picture fuzzy soft relations

are a subset of any Cartesian product of two complex picture fuzzy soft sets.

Example 6. Consider two complex picture fuzzy soft sets in Example 5 ((F ,A) and (G,B)) in the
same universe (

.
X). Their Cartesian product is (H, C), as calculated in the previous example. Then,

the subset (R
¯

) of (F ,A)× (G,B) is a complex picture fuzzy soft relation expressed as

R
¯
=



(
(k
¯1, k

¯1),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯1, k

¯3),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.4(2πi), 0.4e0.3(2πi)

)
,

(
0.2e0.2(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯2, k

¯1),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯3, k

¯2),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯3),

(
0.4e0.2(2πi),

0.4e0.6(2πi), 0.1e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))


Definition 14. Suppose that (F ,A) is a complex picture fuzzy soft set on

.
X, and

R
¯
=
((

(k
¯
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

)[
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 

m(k¯
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 
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the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
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gree, respectively. 

3. Main Results
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Moreover, several examples and useful results are also described. 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  
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Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
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Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
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ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑
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Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
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is a complex picture fuzzy soft relation on (F ,A). Then the inverse of the complex picture fuzzy
soft relation is denoted by R

¯
−1 and defined as

R
¯
−1 =

((
(
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
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Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
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Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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, k
¯
)]esn(
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, k
¯
) ∈ R

¯
−1
)

Example 7. Consider the complex picture fuzzy soft relation (R
¯

) in Example 6. Then, its inverse is
calculated as
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R
¯
−1 =



(
(k
¯1, k

¯1),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯3, k

¯1),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.4(2πi), 0.4e0.3(2πi)

)
,

(
0.2e0.2(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯1, k

¯2),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.1(2πi)

0.3e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi)

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯3),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯3),

(
0.4e0.2(2πi),

0.4e0.6(2πi), 0.1e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))


NOTE: For convenience, throughout this article, k

¯
and (k

¯
,
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set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) are used to denote,(
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

),
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
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where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 

Definition 1 ([7]). Let Ẋ be a universal set; then, a complex fuzzy set (𝒜 on Ẋ) with mappings 
(𝓇ꬺ, 𝔰ꬺ: Ẋ → [0,1]) is expressed as: 𝒜 = ḵ, 𝓇ꬺ(ḵ)𝑒(𝔰ꬺ(ḵ)) ( ) : ḵ ∈ Ẋ  

where 𝓇  and 𝔰ꬺ are the amplitude term and phase term of the degree of membership, respec-tively. 

Definition 2 ([14]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let Ƥ(Ẋ) denote the 
power set of Ẋ and 𝒜 ⊆  Ḕ.  Then, a soft set (ℱ, Ḕ) with a mapping (ℱ: 𝒜 → Ƥ(Ẋ)) represented 
by a set of ordered pairs is expressed as: 

ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
under consideration, and Ḕ = {ḵ , ḵ , ḵ , ḵ , ḵ } is a set of parameters for Ẋ, where each parameter 
(ḵ , 𝑖 = 1,2,3,4,5) for beautiful, modern, expensive, very beautiful, or cheap, respectively. Suppose 
a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
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)
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comparative analysis of the proposed structure with existing frameworks. In Section 6, 
the article is finished with concluding remarks. 

2. Preliminaries
In this section, we explain some predefined concepts of fuzzy algebra such as com-

plex fuzzy set, soft set, soft relation, fuzzy soft set, complex fuzzy soft set, complex intui-
tionistic fuzzy soft set, intuitionistic fuzzy soft set, complex intuitionistic fuzzy soft set, 
picture fuzzy soft set, and complex picture fuzzy soft set. 
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ℱ = ḵ, ℱ(ḵ) : ḵ ∈ Ḕ, ℱ(ḵ) ∈ Ƥ(Ẋ) . 

Example 1. Assume that Ẋ ={𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 } is a universal set consisting of a set of five bags 
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a soft set (ℱ, Ḕ) that describes the attractiveness of the bags, such that ℱ(ḵ ) = {𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 } ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 }  ℱ(ḵ ) = {𝑏 , 𝑏 , 𝑏 } 

Then, the soft set (ℱ, Ḕ) is a parameterized family for {ḵ , 𝑖 = 1,2,3,4,5}. 
Definition 3 ([21]). Let (ℱ, 𝒜)  and ( 𝒢, ℬ)  be two soft sets on Ẋ  and 𝒜, ℬ ⊆ Ḕ.  Let (ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞) with a mapping (ℋ: 𝒞 → Ƥ(Ẋ)); then, the Cartesian product of the soft 
set is denoted and defined as ℋ(ȕ, ѷ) = {(ḵȕ, ṫѷ): ḵȕ(ℱ, 𝒜), ∈ ṫѷ ∈ (𝒢, ℬ)}. 
Definition 4 ([21]). Let (ℱ, 𝒜) and (𝒢, ℬ) be two soft sets on Ẋ and 𝒜, ℬ ⊆ Ḕ. Then, a soft 
relation (Ṟ) is any subset of the Cartesian product of (ℱ, 𝒜) × (𝒢, ℬ). It is denoted and defined 
as Ṟ = {(ḵȕ, ṫѷ): (ḵȕ, ṫѷ) ∈ (ℱ, 𝒜) × (𝒢, ℬ)}. 
Definition 5 ([23]). Let Ẋ be a universal set and Ḕ be a set of parameters. Let 𝑃Ẋ denote the set 
of all fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a fuzzy soft set ℱ, Ḕ  with a mapping (ℱ: 𝒜 →𝑃Ẋ ) is represented by the set of ordered pair as ℱ = ḵ,ꬺ(ḵ) : ḵ ∈ Ḕ,ꬺ(ḵ) ∈ 𝑃Ẋ  . 
where ꬺ(ḵ) is the degree of membership. 

Example 2. Let Ẋ be a set of refrigerator companies and Ḕ be a set of parameters. Assume that a 
fuzzy soft set ℱ, Ḕ  depicts the refrigerator characteristics in relation to some parameter and 
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3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 
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Moreover, several examples and useful results are also described. 
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Moreover, several examples and useful results are also described. 
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respectively, unless otherwise specified.

Definition 15. For an initial universal set (
.

X), a set (F ,A) is a complex picture fuzzy soft set,
and R

¯ 1 is a complex picture fuzzy soft relation on (F ,A); then,

v R
¯ 1 is said to be complex picture fuzzy soft reflexive relation on (F ,A) if (k

¯
, k
¯
) ∈ R

¯ 1 f or all
k
¯
∈ (F ,A);

v R
¯ 1 is said to be complex picture fuzzy soft irreflexive relation on (F ,A) if (k

¯
, k
¯
) /∈ R

¯ 1 f or all
k
¯
∈ (F ,A);

v R
¯ 1 is said to be complex picture fuzzy soft symmetric relation on (F ,A) if f or all
k
¯
,
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Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑
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Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
∈ (F ,A), (k

¯
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) ∈ R
¯ 1, and (
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Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
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⎪⎪⎫
) ∈ R

¯ 1; then, (k
¯
,
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⎪⎪⎫
) ∈ R

¯ 1;
v R

¯ 1 is said to be a complex picture fuzzy soft equivalence relation on (F ,A) if R
¯ 1 is a complex

picture fuzzy soft reflexive relation, complex picture fuzzy soft symmetric relation, or complex
picture fuzzy soft transitive relation on (F ,A);

v R
¯ 1 is said to be a complex picture fuzzy soft preorder relation on (F ,A) if R

¯ 1 is a complex
picture fuzzy soft reflexive relation and complex picture fuzzy soft transitive relation on
(F ,A);

v R
¯ 1 is said to be a complex picture fuzzy soft strict-order relation on (F ,A) if R

¯ 1 is a complex
picture fuzzy soft irreflexive relation and complex picture fuzzy soft transitive relation on
(F ,A);

v R
¯ 1 is said to be a complex picture fuzzy soft partial-order relation on (F ,A) if R

¯ 1 is a complex
picture fuzzy soft preorder relation and a complex picture fuzzy soft antisymmetric relation on
(F ,A);
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v R
¯ 1 is said to be a complex picture fuzzy soft linear-order relation on (F ,A) if R

¯ 1 is a complex
picture fuzzy soft partial-order relation and complex picture fuzzy soft complete relation on
(F ,A).

Example 8. Assume that (F ,A) is a complex picture fuzzy soft set on
.

X defined as

(F ,A) =



(
k
¯1,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

k
¯2,

(
0.3e0.3(2πi),

0.3e0.2(2πi), 0.4e0.1(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.5e0.1(2πi),

0.3e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

k
¯3,

(
0.4e0.2(2πi),

0.4e0.6(2πi), 0.1e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))


Then, the Cartesian product of (F ,A)× (F ,A) is defined as

(F ,A)× (F ,A) =



(
(k
¯1, k

¯1),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.4(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.3e0.1(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯1, k

¯2),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.1(2πi)

0.3e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi)

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯1, k

¯3),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.4(2πi), 0.4e0.3(2πi)

)
,
(

0.2e0.2(2πi),
0.2e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯2, k

¯1),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯2),
(

0.3e0.3(2πi),
0.3e0.2(2πi), 0.4e0.1(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.2(2πi), 0.2e0.1(2πi)

)
,
(

0.5e0.1(2πi),
0.3e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯2, k

¯3),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.2e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯1),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.4(2πi), 0.4e0.3(2πi)

)
,
(

0.2e0.2(2πi),
0.2e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯2),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.2e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯3),
(

0.4e0.2(2πi),
0.4e0.6(2πi), 0.1e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.4e0.5(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.2e0.4(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))


i. The complex picture fuzzy soft reflexive relation (R

¯ 1) is

R
¯ 1 =



(
(k
¯1, k

¯1),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯1, k

¯3),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.4(2πi), 0.4e0.3(2πi)

)
,

(
0.2e0.2(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯2, k

¯2),

(
0.3e0.3(2πi),

0.3e0.2(2πi), 0.4e0.1(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.5e0.1(2πi),

0.3e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯3),

(
0.4e0.2(2πi),

0.4e0.6(2πi), 0.1e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯2),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))


ii. The complex picture fuzzy soft irreflexive relation (R

¯ 2) is

R
¯ 2 =



(
(k
¯1, k

¯2),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.1(2πi)

0.3e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi)

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯3),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯2),

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
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Example 9. Suppose the universal set
.

X = {}1,}2,}3} consists of three mobile companies, i.e.,
}1 = Samsung, }2 = Apple, and }3 = Nokia, and there are three parameters (`̄E = {
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3 = cheap. Let (G,B) be a complex picture fuzzy soft set on
.

X, and let their corresponding membership, abstinence, and non-membership be defined as follows:

(G,B) =



(
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by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

1,

(
0.2e0.3(2πi),

0.4e0.1(2πi), 0.3e0.4(2πi)

)
,

(
0.3e0.2(2πi),

0.4e0.2(2πi), 0.1e0.1(2πi)

)
,

(
0.3e0.2(2πi),

0.4e0.1(2πi), 0.3e0.4(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

))
,(
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

2,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.3e0.2(2πi)

)
,

(
0.2e0.2(2πi),

0.3e0.3(2πi), 0.1e0.2(2πi)

)
,

(
0.3e0.3(2πi),

0.2e0.1(2πi), 0.2e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.2(2πi)

))
,(
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

3,

(
0.3e0.2(2πi),

0.4e0.3(2πi), 0.2e0.1(2πi)

)
,

(
0.1e0.1(2πi),

0.3e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.3e0.2(2πi),

0.3e0.1(2πi), 0.2e0.3(2πi)

)
,

(
0.3e0.1(2πi),

0.2e0.2(2πi), 0.1e0.2(2πi)

))


In the above observations, the first three values of each parameter show the member-

ship, abstinence, and non-membership of each company, and the fourth value shows the
general value, which is known as the degree of belongingness. Each row represents the
parametric observations.

Then, their Cartesian product is (G,B)× (G,B) = (H, C), defined as

(H, C) =



((

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23 

Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

1,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
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i. The complex picture fuzzy soft symmetric relation (R

¯ 1) on (G,B) is

R
¯ 1 =



((
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3. Main Results
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(

0.1e0.1(2πi),
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)
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(
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))


iii. The complex picture fuzzy soft asymmetric relation (R

¯ 3) on (G,B) is

R
¯ 3 =



((
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iv. The complex picture fuzzy soft transitive relation (R

¯ 1) on (G,B) is

R
¯ 1 =



((
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0.4e0.1(2πi), 0.3e0.4(2πi)

)
,
(

0.1e0.1(2πi),
0.3e0.2(2πi), 0.2e0.1(2πi)

)
,
(

0.3e0.2(2πi),
0.3e0.1(2πi), 0.3e0.4(2πi)

)
,
(

0.3e0.1(2πi),
0.2e0.2(2πi), 0.3e0.3(2πi)

))


v. The complex picture fuzzy soft equivalence relation (R

¯ 2) on (G,B) is

R
¯ 2 =



((
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spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
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and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
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1

)
,
(

0.2e0.3(2πi),
0.4e0.1(2πi), 0.3e0.4(2πi)

)
,
(

0.3e0.2(2πi),
0.4e0.2(2πi), 0.1e0.1(2πi)

)
,
(

0.3e0.2(2πi),
0.4e0.1(2πi), 0.3e0.4(2πi)

)
,
(

0.4e0.1(2πi),
0.2e0.2(2πi), 0.3e0.3(2πi)

))
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vi. The complex picture fuzzy soft complete relation (R

¯ 3) on (G,B) is

R
¯ 3 =


((
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0.3e0.3(2πi),
0.3e0.2(2πi), 0.4e0.1(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.2(2πi), 0.2e0.1(2πi)

)
,
(

0.5e0.1(2πi),
0.3e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯3),
(

0.4e0.2(2πi),
0.4e0.6(2πi), 0.1e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.4e0.5(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.2e0.4(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
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ii. The complex picture fuzzy soft strict-order relation (R
¯ 2) on (F ,A)is expressed as

R
¯ 2 =



(
(k
¯2, k

¯1),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯3, k

¯1),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.4(2πi), 0.4e0.3(2πi)

)
,
(

0.2e0.2(2πi),
0.2e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯2),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.2e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))


iii. The complex picture fuzzy soft partial-order relation (R

¯ 3) on (F ,A) is expressed as

R
¯ 3 =



(
(k
¯1, k

¯1),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.4(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.3e0.1(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯1),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯2),
(

0.3e0.3(2πi),
0.3e0.2(2πi), 0.4e0.1(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.2(2πi), 0.2e0.1(2πi)

)
,
(

0.5e0.1(2πi),
0.3e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯1),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.4(2πi), 0.4e0.3(2πi)

)
,
(

0.2e0.2(2πi),
0.2e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯3),
(

0.4e0.2(2πi),
0.4e0.6(2πi), 0.1e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.4e0.5(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.2e0.4(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))


iv. The complex picture fuzzy soft linear-order relation (R

¯ 3) on (F ,A) is expressed as

R
¯ 4 =



(
(k
¯1, k

¯1),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.4(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.3e0.1(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯1),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯2),
(

0.3e0.3(2πi),
0.3e0.2(2πi), 0.4e0.1(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.2(2πi), 0.2e0.1(2πi)

)
,
(

0.5e0.1(2πi),
0.3e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯1),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.1(2πi),
0.3e0.4(2πi), 0.4e0.3(2πi)

)
,
(

0.2e0.2(2πi),
0.2e0.2(2πi), 0.3e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯2),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.2e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯3),
(

0.4e0.2(2πi),
0.4e0.6(2πi), 0.1e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.4e0.5(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.2e0.4(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))


Definition 16. Suppose that R

¯
is a complex picture fuzzy soft relation; then, the Cartesian product

of fuzzy soft equivalence class k
¯

is defined as R
¯
k
¯ = {
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, k
¯
) ∈ R

¯
}.

Example 11. If

R
¯
=



(
(k
¯1, k

¯1),
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.4(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.3e0.1(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

(k
¯2, k

¯3),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.2e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯2, k

¯2),
(

0.3e0.3(2πi),
0.3e0.2(2πi), 0.4e0.1(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.2(2πi), 0.2e0.1(2πi)

)
,
(

0.5e0.1(2πi),
0.3e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯2),
(

0.3e0.2(2πi),
0.3e0.2(2πi), 0.4e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.1(2πi),
0.2e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(k
¯3, k

¯3),
(

0.4e0.2(2πi),
0.4e0.6(2πi), 0.1e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.4e0.5(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.2e0.4(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))


is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (F ,A),

(F ,A) =



(
k
¯1,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.4(2πi), 0.4e0.2(2πi)

)
,
(

0.2e0.3(2πi),
0.3e0.2(2πi), 0.3e0.1(2πi)

)
,
(

0.4e0.1(2πi),
0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

k
¯2,
(

0.3e0.3(2πi),
0.3e0.2(2πi), 0.4e0.1(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.2(2πi), 0.2e0.1(2πi)

)
,
(

0.5e0.1(2πi),
0.3e0.2(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

k
¯3,
(

0.4e0.2(2πi),
0.4e0.6(2πi), 0.1e0.2(2πi)

)
,
(

0.3e0.1(2πi),
0.4e0.5(2πi), 0.2e0.3(2πi)

)
,
(

0.4e0.2(2πi),
0.2e0.4(2πi), 0.1e0.3(2πi)

)
,
(

0.4e0.3(2πi),
0.3e0.3(2πi), 0.2e0.4(2πi)

))


;
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then, the complex picture fuzzy soft equivalence class of:

i. k
¯1 modulo R

¯
is expressed as

R
¯

k
¯ =

{(
k
¯1,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))}

ii. k
¯2 modulo R

¯
is expressed as

R
¯

k
¯2 =



(
k
¯3,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

k
¯2,

(
0.3e0.3(2πi),

0.3e0.2(2πi), 0.4e0.1(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.5e0.1(2πi),

0.3e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))


iii.
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⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
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(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
modulo R

¯
is expressed as

R
¯

k
¯3 =



(
k
¯2,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

k
¯3,

(
0.4e0.2(2πi),

0.4e0.6(2πi), 0.1e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))


Definition 17. Assume a complex picture fuzzy soft relation (R
¯ 1) on a complex picture fuzzy soft

set; then, the complex picture fuzzy soft composite relation is denoted by R. 1
◦ R. 1

and defined as: for

each (k
¯
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) ∈ R. 1
and (
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where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
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(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
) ∈ R. 1

⇒ (k
¯
,
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is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
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⎪⎪⎫
) ∈ R. 1

◦ R. 1
,∀k
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
∈

.
X.

Example 12. Assume complex picture fuzzy soft relations:

R
¯ 1 =



((
k
¯
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

)
,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.1(2πi)

0.3e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi)

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,((
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

, k
¯

)
,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,((
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

)
,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))



R
¯ 2 =



(
(k
¯
,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.4(2πi), 0.4e0.3(2πi)

)
,

(
0.2e0.2(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.4(2πi)

))
,((
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

, k
¯

)
,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,((
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

)
,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
,(

(
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
,
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⎪⎪⎫
),

(
0.4e0.2(2πi),

0.4e0.6(2πi), 0.1e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.4e0.5(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.2e0.4(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.3(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))



;

then, the complex picture fuzzy soft composite relation is expressed as

R. 1
◦ R. 2

=



(
(k
¯
, k
¯
),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.4(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.3(2πi),

0.3e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,((
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
)
,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.4e0.2(2πi)

)
,

(
0.3e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.2e0.2(2πi), 0.1e0.3(2πi)

)
,

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

))
(
(
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iii. ᶃ modulo Ṟ is expressed as
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Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
, k
¯
),

(
0.4e0.2(2πi),

0.3e0.3(2πi), 0.2e0.4(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.4(2πi), 0.4e0.3(2πi)

)
,

(
0.2e0.2(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.4(2πi)

)) ,
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Theorem 1. A complex picture fuzzy soft relation (R. ) is a complex picture fuzzy soft symmetric

relation on a complex picture fuzzy soft set (F ) iff R. = R.
c.

Proof. Suppose that R. = R.
c; then, ( (k

¯
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

), (m c(k¯
,
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Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
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Thus, R. is a complex picture fuzzy soft symmetric relation on a complex picture fuzzy
soft set (F ). �

Conversely, assume that R. is a complex picture fuzzy soft symmetric relation on a
complex picture fuzzy soft set (F ); then
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,
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, k
¯
))) ∈ R.

c

=⇒ R. = R.
c.

Theorem 2. A complex picture fuzzy soft relation (R. ) is a complex picture fuzzy soft transitive

relation on a complex picture fuzzy soft set (F ) iff R. ◦ R. ⊆ R.
c.

Proof. Suppose that R. is a complex picture fuzzy soft transitive relation on a complex
picture fuzzy soft set (F ).

Let ( (k
¯
,
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Then, according to the definition of a complex picture fuzzy soft transitive relation,
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¯
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where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
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)), (nc(k¯
,
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Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
), (m c(
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
)), (ἄc(
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 
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⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
)), (nc(
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
))) ∈ R.

( (k
¯
,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
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(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
))) ∈ R.

=⇒ R. ◦ R. ⊆ R. .

Conversely, assume that R. ◦ R. ⊆ R. ; then,

for ( (k
¯
,
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spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
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)), (nc(k¯
,
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
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⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
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⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
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⎪⎪⎫
), (m c(

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23 

Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
)), (ἄc(
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
)), (nc(

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23 

Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
))) ∈ R. ,

( (k
¯
,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
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(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎪⎫
)), (nc(k¯

,
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then, the complex picture fuzzy soft equivalence class of: 
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Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 
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⎩⎪⎪⎨
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⎪⎪⎫
))) ∈ R. .

Thus, R. is a complex picture fuzzy soft transitive relation on a complex picture fuzzy
soft set (F ). �

Theorem 3. If R. 1
is a complex picture fuzzy soft equivalence relation on a complex picture fuzzy

soft set (F), then (x, y) ∈ R. 1
, i f f R. 1

[
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

] = R. 1
[
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⎬⎪
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⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
].

Proof. Suppose that (
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3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 
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Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
) ∈ R. 1

and k
¯
∈ R. 1

[
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

], R. 1
(k
¯
,

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23 

Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) ∈ R. 1
.

Given that a complex picture fuzzy soft equivalence relation is also a complex picture
fuzzy soft transitive relation, (k

¯
,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
) ∈ R. 1

=⇒ k
¯
∈ R. 1

[
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⎪⎪⎪
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⎪⎪⎪⎪
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
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⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
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⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
].

Thus,
R. 1

[
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

] ⊆ R. 1
[
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⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
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⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
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⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
] (1)
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
) ∈ R. 1

, given that a complex picture fuzzy soft equivalence relation is also a

complex picture fuzzy soft symmetric relation,

(
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then, the complex picture fuzzy soft equivalence class of: 
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Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
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⎪⎪⎫
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) ∈ R. 1
.

Additionally, assume that k
¯
∈ R. 1

[
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is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =
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then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as
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ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
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⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
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⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
] =⇒ (k

¯
,
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(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
) ∈ R. 1

.

Now, given that a complex picture fuzzy soft equivalence relation is also a complex
picture fuzzy soft transitive relation,

(k
¯
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) ∈ R. 1
=⇒ k

¯
∈ R. 1

[
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where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
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Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

].

Thus,
R. 1

[
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
] = R. 1

[
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

] (2)

Therefore, (1) and (2) afford R. 1
[
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ (ḵ , ḵ ), 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
] = R. 1

[
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 
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Conversely, assume that R. 1
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⎩⎪⎪⎨
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⎪⎪⎫
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where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 
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Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
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], k
¯
∈ R. 1
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(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
] =⇒ (k
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,
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⎪⎪⎪
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⎪⎪⎪⎪
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
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⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
) ∈ R. 1

, and
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

) ∈ R. 1
.

Again, given that a complex picture fuzzy soft equivalence relation is also a complex
picture fuzzy soft symmetric relation, (k

¯
,
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Definition 10 ([41]). Let Ẋ be a universal set and Ḕ be the set of parameters. 𝑃ℱẊ  denotes the 
set of all picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a picture fuzzy soft set (ℱ, Ḕ) with a map-
ping (ℱ: 𝒜 → 𝑃ℱẊ ) represented by the set of ordered pairs is expressed as ℱ = ḵ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ) ∈ 𝑃ℱẊ  

where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
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) ∈ R. 1
=⇒ (
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, k
¯
) ∈ R. 1

.

According to the definition of a complex picture fuzzy soft transitive relation,

(
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, k
¯
) ∈ R. 1

and (k
¯
,
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⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
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(ḵ , ḵ ), 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪

⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
) ∈ R. 1

=⇒ (
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where ꬺ(ḵ), ꬻ(ḵ), ἄ(ḵ)  are the membership, abstinence, and non-membership degree, respec-
tively. 

Example 4. From example 2, assume a picture fuzzy soft set ℱ, Ḕ  that describes the character-
istics of a refrigerator with respect to some parameter, and each membership, abstinence, and non-
membership degree assigned by experts. ℱ(ḵ ) = {ẘ = (0.1,0.3,0.5), ẘ = (0.2,0.3,0.4), ẘ = (0.3,0.2,0.5), ẘ = (0.2,0.4,0.1)} ℱ(ḵ ) = {ẘ = (0.2,0.3,0.2), ẘ = (0.1,0.3,0.4), ẘ = (0.3,0.4,0.3), ẘ = (0.1,0.3,0.4)} ℱ(ḵ ) = {ẘ = (0.1,0.3,0.2), ẘ = (0.2,0.4,0.1), ẘ = (0.2,0.1.0.4), ẘ = (0.3,0.1,0.5)} 

Then, the picture fuzzy soft set ℱ, Ḕ  is a parameterized family, i.e., {ℱ(ḵ ), 𝑖 = 1,2,3}. 

Definition 11 ([45]). Let Ẋ be a universal set and Ḕ be a set of parameters. 𝐶(𝑃ℱẊ) denotes 
the set of all complex picture fuzzy subsets of Ẋ and 𝒜 ⊆ Ḕ. Then, a complex picture fuzzy soft 
set ℱ, Ḕ  with a mapping (ℱ: Ḕ → 𝐶(𝑃ℱẊ )) represented by the set of order pairs is expressed as ℱ = ḵ,ꬺ (ḵ), ἄ(ḵ), ꬻ (ḵ) : ḵ ∈ Ḕ ,ꬺ(ḵ), ἄ(ḵ), ꬻ(ḵ) ∈ 𝐶(𝑃ℱẊ )= ḵ, , 𝓇ꬺ(ḵ)𝑒𝔰ꬺ(ḵ) ( ), 𝓇ἄ(ḵ)𝑒𝔰ἄ(ḵ) ( ), 𝓇ꬻ(ḵ)𝑒𝔰ꬻ(ḵ) ( ) : ḵ ∈ Ḕ  

where 𝓇ꬺ, 𝓇ἄ, 𝓇ꬻ are amplitude terms of membership, abstinence, and non-membership degree, re-
spectively, and 𝔰ꬺ, 𝔰ἄ, 𝔰ꬻ are the phase terms of membership, abstinence, and non-membership de-
gree, respectively. 

3. Main Results
In this section, we explain the ideas of the Cartesian product of two complex picture 

fuzzy soft sets, complex picture fuzzy soft relations, and different types of these relations. 
Moreover, several examples and useful results are also described. 

Definition 12. Suppose that (ℱ, 𝒜) and (𝒢, ℬ) are two complex picture fuzzy soft sets on Ẋ 
and  𝒜, ℬ ⊆ Ḕ.  Let ( ℱ, 𝒜) × (𝒢, ℬ) = (ℋ, 𝒞)  with a mapping ( ℋ: 𝒞 → 𝒞(𝑃ℱẊ ) ) and ℋ(ȕ, ѷ) = ℱ(ȕ) × 𝒢(ѷ). Then, the Cartesian product of complex picture fuzzy soft sets is denoted 
by 𝒜 = ḵ, 𝓇ꬺ𝒜(ḵ)𝑒𝔰ꬺ𝒜(ḵ) ( ), 𝓇ἄ𝒜(ḵ)𝑒𝔰ἄ𝒜(ḵ) ( ), 𝓇ꬻ𝒜(ḵ)𝑒𝔰ꬻ𝒜(ḵ) ( ) : ḵ ∈ Ḕ 𝑎𝑛𝑑

ℬ = ᶂ, 𝓇ꬺℬ(ᶂ)𝑒𝔰ꬺℬ(ᶂ) ( ), 𝓇ἄℬ(ᶂ)𝑒𝔰ἄℬ(ᶂ) ( ), 𝓇ꬻℬ(ᶂ)𝑒𝔰ꬻℬ(ᶂ) ( ) : ᶂ ∈ Ḕ
and defined as, (ℋ, 𝒞) =  𝒜 × ℬ = (ḵ, ᶂ ), 𝓇ꬺ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬺ𝒜×ℬ(ḵ,ᶂ) ( ), 𝓇ἄ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ἄ𝒜×ℬ(ḵ,ᶂ) ( ),𝓇ꬻ𝒜×ℬ(ḵ, ᶂ)𝑒𝔰ꬻ𝒜×ℬ(ḵ,ᶂ) ( ) : ḵ ∈ 𝒜, ᶂ ∈ ℬ  

Where
𝓇ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝓇ꬺ𝒜(ḵ), 𝓇ꬺℬ(ᶂ)}, 𝓇ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝓇ἄ𝒜(ḵ), 𝓇ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝓇ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝓇ꬻ𝒜(ḵ), 𝓇ꬻℬ(ᶂ)}, , 

𝔰ꬺ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛{𝔰ꬺ𝒜(ḵ), 𝔰ꬺℬ(ᶂ)}, 𝔰ἄ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑖𝑛 𝔰ἄ𝒜(ḵ), 𝔰ἄℬ(ᶂ) ,𝑎𝑛𝑑 𝔰ꬻ𝒜×ℬ(ḵ, ᶂ) = 𝑚𝑎𝑥{𝔰ꬻ𝒜(ḵ), 𝔰ꬻℬ(ᶂ)} . 

,
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Example 11. If 

Ṟ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
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⎪⎪⎪
⎬⎪
⎪⎪⎪⎪
⎫

is a complex picture fuzzy soft relation on a complex picture fuzzy soft set (ℱ, 𝒜), 
(ℱ, 𝒜) =

⎩⎪⎪⎨
⎪⎪⎧ ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
; 

then, the complex picture fuzzy soft equivalence class of: 
i. ḵ  modulo Ṟ is expressed as

Ṟḵ = ḵ , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( )  

ii. ḵ  modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.5𝑒 . ( ),0.3𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

iii. ᶃ modulo Ṟ is expressed as

Ṟḵ = ⎩⎪⎨
⎪⎧ ḵ , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

ḵ , 0.4𝑒 . ( ),0.4𝑒 . ( ), 0.1𝑒 . ( ) , 0.3𝑒 . ( ),0.4𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎬
⎪⎫

Definition 17. Assume a complex picture fuzzy soft relation (Ṟ) on a complex picture fuzzy soft 
set; then, the complex picture fuzzy soft composite relation is denoted by Ṝ  ∘ Ṝ  and defined as: 
for each (ḵ, ᶂ) ∈ Ṝ  and (ᶂ, ᶃ )  ∈ Ṝ  ⇒ (ḵ, ᶃ) ∈ Ṝ  ∘ Ṝ , ∀ḵ, ᶂ, ᶃ ∈ Ẋ. 
Example 12. Assume complex picture fuzzy soft relations: 

Ṟ =
⎩⎪⎪⎨
⎪⎪⎧ (ḵ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ), 0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ), 0.3𝑒 . ( ), 0.2𝑒 . ( ) ,

(ᶂ, ḵ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.2𝑒 . ( ),0.3𝑒 . ( ), 0.3𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ,
(ᶃ, ᶂ), 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.4𝑒 . ( ) , 0.3𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) , 0.4𝑒 . ( ),0.2𝑒 . ( ), 0.1𝑒 . ( ) , 0.4𝑒 . ( ),0.3𝑒 . ( ), 0.2𝑒 . ( ) ⎭⎪⎪⎬

⎪⎪⎫
) ∈ R. 1

,

which completes the proof. �

4. Applications

In this section, an application of the proposed ideas is discussed with the aim of
selecting the best generative adversarial networks.

Generative Adversarial Networks

In June 2014, a family of machine learning frameworks called generative adversarial
networks was developed. Given a training set, this strategy learns to produce fresh data
with the same characteristics as the training set. Generative adversarial networks represent
a new method and concepts for computer vision that have appeared recently. The concepts
of generative adversarial networks using the competition training method are superior
to those of traditional machine learning methods based on feature learning and image
generation. In this section, we use the proposed conceptions to study and analyze this
novel deep-learning-based image processing technique. The procedure of this application
is explained in Figure 1.
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 Vanilla Generative Adversarial Networks 
These the most basic version of generative adversarial networks. Simple multilayer 

artificial neurons are used as the generator and discriminator in this experiment. The al-
gorithm of vanilla generative adversarial networks is really simple; it uses stochastic gra-
dient descent to try to optimize mathematical equations. 
 Super-Resolution Generative Adversarial Networks 

Super-resolution generative adversarial networks represent a method of creating a 
generative adversarial network in which a deep neural network is combined with an ad-
versarial network to produce higher-resolution images, as the title suggests. This sort of 
generative adversarial network is particularly good for upscaling native low-resolution 
photos to improve their details while minimizing mistakes. 
 Conditional Generative Adversarial Networks 

Universal Set

Set of Parameters

Assign Degrees

Cartesian Product
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Generative 
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Conditional 
GAN
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resolution 

GAN 

Figure 1. Generative adversarial network application procedure.

First of all, we define a universal set, which includes some fundamental generative
adversarial networks. The universal set

.
X = {}1,}2,}3} consists of three types of gen-

erative adversarial networks, i.e., }1 = Vanilla GAN, }2 = Super Resolution GAN, and
}3 = Conditional GAN. The types of generative adversarial networks are discussed in
Figure 2.
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v Vanilla Generative Adversarial Networks

These the most basic version of generative adversarial networks. Simple multilayer
artificial neurons are used as the generator and discriminator in this experiment. The
algorithm of vanilla generative adversarial networks is really simple; it uses stochastic
gradient descent to try to optimize mathematical equations.

v Super-Resolution Generative Adversarial Networks

Super-resolution generative adversarial networks represent a method of creating a
generative adversarial network in which a deep neural network is combined with an
adversarial network to produce higher-resolution images, as the title suggests. This sort of
generative adversarial network is particularly good for upscaling native low-resolution
photos to improve their details while minimizing mistakes.

v Conditional Generative Adversarial Networks

Conditional generative adversarial networks represent a version of generative ad-
versarial networks in which the generator and discriminator are dependent on ancillary
data such as a classifier during training. The conditional generative adversarial networks
approach can be described as a deep learning model with conditional parameters.
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The parameters of a generative adversarial network are defined as `̄E = {k
¯1, k

¯2, k
¯3, k

¯4, k
¯5},

i.e., k
¯1 = popular, k

¯2 = success f ul, k
¯3 = e f f icient, k

¯4 = reliable, and k
¯5 = simple. A sum-

mary of generative adversarial network parameters is shown in Figure 3.
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An expert examines the generative adversarial networks in which all parameters
are considered. Let (F ,A) represent observations by an expert, who assigns values of
membership, abstinence, and non-membership in the base of parameters.

Suppose that the corresponding membership, abstinence, and non-membership matri-
ces are as follows:

(F ,A) =



(
k
¯1,
(

0.3e0.2,
0.3e0.3(2πi), 0.2e0.1(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.3(2πi), 0.1e0.3(2πi)

)
,

(
0.3e0.2(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

k
¯2,

(
0.2e0.2(2πi),

0.3e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.3e0.1(2πi),

0.2e0.2(2πi), 0.3e0.3(2πi)

)
,

(
0.3e0.2(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

k
¯3,

(
0.3e0.2(2πi),

0.2e0.3(2πi), 0.4e0.2(2πi)

)
,

(
0.2e0.1(2πi),

0.2e0.3(2πi), 0.3e0.2(2πi)

)
,

(
0.3e0.2(2πi),

0.2e0.3(2πi), 0.3e0.3(2πi)

)
,

(
0.3e0.3(2πi),

0.4e0.3(2πi), 0.2e0.2(2πi)

))
,(

k
¯4,

(
0.3e0.2(2πi),

0.2e0.3(2πi), 0.2e0.1(2πi)

)
,

(
0.2e0.3(2πi),

0.4e0.2(2πi), 0.2e0.2(2πi)

)
,

(
0.2e0.3(2πi),

0.1e0.2(2πi), 0.3e0.1(2πi)

)
,

(
0.2e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

))
,(

k
¯5,

(
0.3e0.3(2πi),

0.3e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.3e0.2(2πi),

0.2e0.2(2πi), 0.2e0.1(2πi)

)
,

(
0.4e0.1(2πi),

0.3e0.2(2πi), 0.2e0.3(2πi)

)
,

(
0.3e0.2(2πi),

0.3e0.3(2πi), 0.2e0.2(2πi)

))


Suppose that the first three values of matrices
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3 of each parameter corre-
spond to the values of membership, abstinence, and non-membership assigned by an expert.
The value (λ) of each parameter corresponds to the value of membership, abstinence, and
non-membership assigned by an expert, and the fourth indicates the general belongingness
value in the generative adversarial network. Then, the self-Cartesian product of (F ,A) is
expressed as shown in Table 1.
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Table 1. Cartesian product of generative adversarial networks.

Ordered Pair
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The Cartesian product of two complex picture fuzzy soft sets is shown in the table
above. The complex values are converted to real numbers to compute the score values.
First of all, to convert all exponential values to the form of a + ib. i.e., a + ib = re(2πi)θ ,
as r =

√
a2 + b2 and e(2πi)θ = cos π(θ) + i sin π(θ). Then a = rcos π(θ), b = sin π(θ). π

represents a circular cycle. Take the modulus after converting the polar form to a standard
form. These procedures apply to the membership, abstinence, and non-membership values.
Then, this process is applied to membership, abstinence, and non-membership scores
according to the formula m2 + ἄ2 − n2, as shown in Table 2.

Table 2. Score values of generative adversarial networks.
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To find the best generative adversarial network, we must first determine the highest
numerical degree in each row while ignoring the last column. The final column represents
each generative adversarial network parameter’s general belongingness. Each generative
adversarial network score is computed by multiplying the product of these numerical
degrees by the desired value of λ. The highest-scoring generative adversarial network is
the best. We do not examine the numerical degree of the identical parametric ordered pair’s
generative adversarial network because it is not a unique effort to compare.

The score functions are calculated in Table 3.
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Thus, the vanilla generative adversarial network is the best generative adversarial
network.
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soft relations, complex fuzzy soft relations, intuitionistic fuzzy soft relations, and complex
intuitionistic fuzzy soft relations. A soft relation is a mapping from a parameterized family
to a crisp subset. The crisp relation can only be defined as 1 or 0 rather than yes or no.
Thus, a crisp relation indicates restricted knowledge. A fuzzy soft set is a set defined by
a degree of membership, which is a fuzzy number. The related relations are called fuzzy
soft relations. Fuzzy soft relations discuss only the membership degree. In an ordered
pair, fuzzy soft relations indicate only the effectiveness of the first parameter relative to the
that of the second parameter. Fuzzy soft relations are single-dimension parameters and
provide limited information. Complex fuzzy soft sets are described by a complex fuzzy
number, and corresponding relations are called complex fuzzy soft relations. Complex
fuzzy soft relations discuss only the membership degree with complex number. Complex
fuzzy soft relations comprise two main parts, i.e., an amplitude term and a phase term. An
amplitude term characterizes the strength of different generative adversarial networks, and
the phase term is used to describe the time period under given conditions. Intuitionistic
fuzzy soft sets are characterized the membership and non-membership degrees. The
corresponding relations are known as intuitionistic fuzzy soft relations. In an ordered
pair, intuitionistic fuzzy soft relations show the effectiveness and ineffectiveness of the first
parameter relative to that of the second parameter. Intuitionistic fuzzy soft relations lack the
ability to represent problems that include time and provide incomplete information. Picture
fuzzy soft sets are characterized by the membership, abstinence, and non-membership
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degrees. The corresponding relations are known as picture fuzzy soft relations. Picture
fuzzy soft relations show the effectiveness, ineffectiveness, and lack of effects of each
parameter. Complex picture fuzzy soft relations discuss the membership, abstinence, and
non-membership with a complex number. They discuss both the amplitude term and phase
term, providing complete information for any problem. Table 4 shows a summary of the
comparative study of complex picture fuzzy soft relations and a predefined structure.

Table 4. Comparative analysis on the basis of structure.

Structure Membership Abstinence Non-Membership Multidimension

Soft relation No No No No
Fuzzy soft relation Yes No No No
Complex fuzzy soft relation Yes No No Yes
Intuitionistic fuzzy soft relation Yes No Yes No
Complex intuitionistic fuzzy soft relation Yes No Yes Yes
Picture fuzzy soft relation Yes Yes Yes No
Complex picture fuzzy soft relation Yes Yes Yes Yes

6. Conclusions

In this paper, the Cartesian product of two complex picture fuzzy soft sets is de-
fined. Moreover, new notions of complex picture fuzzy soft relations and their types are
introduced, such as complex picture fuzzy soft converse relation, complex picture fuzzy
soft reflexive relation, complex picture fuzzy soft irreflexive relation, complex picture
fuzzy soft symmetric relation, complex picture fuzzy soft antisymmetric relation, complex
picture fuzzy soft asymmetric relation, complex picture fuzzy soft complete relation, com-
plex picture fuzzy soft transitive relation, complex picture fuzzy soft equivalence relation,
complex picture fuzzy soft partial-order relation, complex picture fuzzy soft strict-order
relation, complex picture fuzzy soft preorder relation, and complex picture fuzzy soft
equivalence classes. Furthermore, these novel ideas of complex picture fuzzy soft relations
are utilized in an application to study generative adversarial networks in which the best
generative adversarial networks are chosen based on various parameters and character-
istics. Experts’ comments cloud these parameters by assigning membership, abstinence,
and non-membership values. The score function for the novel structures was also defined
during the decision-making process. Finally, complex picture fuzzy soft relations were
proven to be superior to the predefined structures. The most noticeable advantage of
complex picture fuzzy soft relations is that they are capable of solving periodicity. In the
future, these notions can be extended to the further generalization of fuzzy soft sets, which
will create innovative structures that may be used in a variety of fields.
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