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Abstract: In medicals sciences and reliability engineering, the failure of individuals or units (I/Us)
occurs due to independent causes of failure. In general, the symmetry between dependent and
independent causes of failure is essential to the nature of the problem at hand. In this study, we
considered the accelerated dependent competing risks model when the lifetime of I/Us was modeled
using a generalized half-logistic distribution. The data were obtained with respect to constant
stress accelerated life tests (ALTs) with a type-II progressive censoring scheme. The dependence
structure was formulated using the copula approach (symmetric Archimedean copula). The model
parameters were estimated with the maximum likelihood method; only two dependent causes of
failure and bivariate Pareto copula functions were proposed. The approximate confidence intervals
were constructed using both the asymptotic normality distribution of MLEs and bootstrap techniques.
Additionally, an estimator of the reliability of the system under a normal stress level was constructed.
The results from the estimation methods were tested by performing a Monte Carlo simulation study.
Finally, an analysis of data sets from two stress levels was performed for illustrative purposes.

Keywords: accelerated life tests; bootstrap confidence intervals; competing risks model; copula func-
tion; generalized half-logistic distribution; maximum likelihood estimation; progressive censoring

1. Introduction

The life characteristics of I/Us can be understood by analyzing time-to-failure data.
However, the high survival of I/Us is achievable with modern technology. Hence, sufficient
data may not be available. The requirement for a rapid source of data regarding the lifetime
of I/Us in a short period of time has necessitated research and development in several
directions. The first direction can be carried out with ALTs. The experiment under ALTs
is exposed to higher stress levels than the normal stress level. Due to higher stress, I/Us
fail earlier than the expected time. Therefore, an experimenter has more failure time data
in a shorter period of time. Recently, ALTs have become an increasingly important source
of data; see Nelson [1] for a key reference on ALTs. In the literature, different types of
ALTs are presented, and the first type is called a constant-stress ALT. The experiment for
constant-stress ALTs is run under constant stress to the final point, as seen in the studies of
Bagdonavicius and Nikulin [2], Kim and Bai [3] and Ismail et al. [4]. The second type of
ALT is called step stress ALT, which corresponds to the situation when stress changes at
pre-specified times or after a pre-specified number of failures (see, Miller and Nelson [5],
Gouno et al. [6], Fan et al. [7], Tangi et al. [8] and Almarashi and Abd-Elmougod [9].
Progressive-stress ALTs are the third type of ALT that are used if the stress continually
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increases. For more details on progressive-stress ALTs, see Wang and Fei [10] and Abdel-
Hamid and Al-Hussaini [11]. The second direction involves the use of censoring schemes
for a rapid source of data, in which the data are recorded for some I/Us and not for all
I/Us under the test. In the statistical literature, the type-I and type-II censoring schemes
are common censoring schemes. When the experiment runs under a constant test time, and
the number of failures is obtained randomly, a type-I censoring scheme is used. However,
when the experiment is run under a constant number of failures and the test time is random,
a type-II censoring scheme is used. The last two types of censoring schemes do not allow
the removal of I/Us from the test other than the final point. In different applications
of engineering or clinical studies, I/Us may need to be removed at any step of the test.
Therefore, the concept of a progressive censoring scheme (PCS) emerged (see Balakrishnan
and Aggarwala [12]. The PCS with a type-II censoring scheme was called a type-II PCS,
and the mechanism of the type-II PCS can be described as follows. Suppose a sample of
size n is randomly selected from a life population for a test. The number of failures m
needed for statistical inference and censoring schemes R = {R1, R2, . . . , Rm} is proposed as
a fixed prior value. When the time of first failure T1;m,n is observed, R1 survival I/Us are
removed from the test. When we observe the second failure time, T2;m,n, R2 survival I/Us
are removed from the test. The experiment is continued until the failure Tm;m,n is observed;
then, the remaining Rm survival I/Us are removed from the test. Therefore, T = {T1;m,n,
T2;m,n, . . . , Tm;m,n} is a type-II PC sample that satisfies n = m + ∑m

i=1 Ri .
For convenience, the multiple variables in various fields of science, such as engineer-

ing, social science, medical trials, and biological science, are proposed to be independent.
A competing risks model in statistical modeling can be discussed with respect to two or
more independent variables see Cox [13], David and Moeschberger [14], Crowder [15], Bal-
akrishnan [16], Modhesh and Abd-Elmougod [17], Bakoban and Abd-Elmougod [18] and
Ganguly and Kundu [19]. This model was discussed recently by different authors, includ-
ing Algarni et al. [20], Tahani el al. [21], Alghamdi [22], Almarashi and Abd-Elmougod [9],
and Alghamdia et al. [23,24]. Most of the previous studies on competing for risk modeling
have assumed the failure modes are independent for mathematical simplicity. The proposal
of independent variables does not agree with the problem at hand. Hence, dependent
variables have been proposed. The multivariate distributions can be used to describe
the structures between dependent variables; for example, see Marshall and Olkin [25] for
the case of a multivariate exponential distribution. The problem of statistical inferences,
especially the estimation of the correlation structure between variables under multivariate
distributions, is more restricted in a simple multivariate distribution. Therefore, modeling
under a competing risks model with the assumption of a dependence variable with bivari-
ate or multivariate distributions appears. This problem was discussed using the copula
approach, in which the marginal distributions are described independently of each random
variable, and the copula function describes the dependence structure formed with marginal
distributions.

The half-logistic (HL) distribution was used by Balakrishnan [26] to model the absolute
standard logistic random variable. The HL distribution was applied in a reliability and
survival analysis with censoring data. Additionally, a generalized version of the HL
distribution was presented by Balakrishnan and Hossain [27] as a generalized half-logistic
(GHL) distribution. Analyzing the dependent competing risks model using the copula
approach for a system tested under type-II PCS with a constant-stress ALTs model is the
main objective of this study. This problem is discussed under considerations that: (i) two
stress levels and (ii) the time of failure with respect to two dependent causes of failure is
modeled by a generalized half-logistic distribution. The random variable T is called the
GHL random variable if it has the cumulative distribution function of CDF presented by

F(t)=1−
(

2e−
t
θ

1 + e−
t
θ

)β

, t > 0, β, θ > 0. (1)
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The GHL distribution was discussed by different authors, for example, Ramakrishnan [28],
Arora et al. [29] and Kim et al. [30], and Chaturvedi et al. [31] considered different statistical
inferential issues based on the GHL distribution. Other research results related to ALT can
be found in Almarashi [32].

The structure of the paper is as follows. The model and the methodology are presented
in Section 2. The result and discussion are presented in Section 3. Where in Section 3.1, the
copula function with its types and properties are discussed. ML Estimation of the model
parameters is presented in Section 3.2. The approximate confidence intervals based on
the asymptotic normality of the MLEs are presented in Section 3.3. The two bootstrap
confidence intervals are presented in Section 3.4. The reliability estimator of the system
under normal stress conditions is presented in Section 3.5. The simulation results under a
Monte Carlo simulation study are provided in Section 3.6. Data analysis is discussed in
Section 3.7. Finally, the model considerations and their uses in real-life phenomena are
discussed in Section 4.

2. Methodology

Suppose, without loss of generality, the test begins with two stress levels, and a
selected sample of size n is divided randomly into two independent sets of sizes n1 and
n2. The two sets are placed under two stress levels S1 and S2, respectively. Prior to the
experiment, the two integers m1 and m2 as well as two censoring schemes R1 = {R11, R12,
. . . , R1m1} and R2 = {R21, R22, . . . , R2m2} are proposed to satisfy nk = mk + ∑mk

i=1 Rki, k =1,
2. The failure of I/Us occurs with respect to one of two dependent failure causes δki = {1,
2}. The mechanism of the test under consideration is based on type-II PCS with two stress
levels and two dependent causes of failure, which are described as follows.

When the first failure Tk1;mk ,nk
and the corresponding cause of failure δk1 are observed,

Rk1 survival I/Us are randomly removed from the test. Also, when the second failure
Tk2;mk ,nk

is observed with a corresponding cause of failure δk2, Rk2 survival I/Us are ran-
domly removed from the test. The experiment is continued until the (Tkmk ;mk ,nk

, δkmk
) is

observed, and the remaining Rkmk
survival I/Us are removed from the test. Therefore, the

joint competing risks type-II PC sample can be defined by

tk|k=1,2 = {(Tk1;mk ,nk
, δk1), (Tk2;mk ,nk

, δk2), . . . , (Tkmk ;mk ,nk
, δkmk

)}.

The joint likelihood function under stress level sk with observed data tk is given by

Lk ∝ Sk(tkmk
)Rkmk

mk

∏
i=1

{[
∂C(u, v)

∂u
fk1(tki)

]I1(δki=1)[∂C(u, v)
∂v

fk2(tki)

]I2(δk2=2)

Sk(tki)
Rk1

}
(2)

where C(u, v) is appropriate copula function and Sk(.) is the joint survival function under
two dependent variable with stress level Sk and

Ij(δki) =

{
1, if δki = j
0, if δki 6= j

. (3)

The joint likelihood function can be defined by

L ∝
2

∏
k=1

Lk (4)

Model considerations

1. The number of I/Us which is failed with respect to stress level Sk and cause j is
denoted by

nkj =
mk

∑
i=1

Ij(δki), k, j = 1, 2.
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2. The number of I/Us which is failed with respect cause j is denoted by

Jj =
2

∑
k=1

mk

∑
i=1

Ij(δki), k, j = 1, 2.

3. For any stress levels Sk, k = 1, 2, only two dependence causes of failure are exist.
4. The time-to-failure Tkj respected to stress level Sk and the cause of failure j distribute

with GHL distribution with scale parameters θkj and shape parameter β j with CDFs
given by

Fkj(t|β j, θkj)=1−

 2e
− t

θkj

1 + e
− t

θkj

β j

, t > 0, β j, θkj > 0. (5)

The corresponding PDFs

fkj(t|β j, θkj)=
β j

θkj(1 + e
− t

θkj )

 2e
− t

θkj

1 + e
− t

θkj

β j

, (6)

Skj(t|β j, θkj) =

 2e
− t

θkj

1 + e
− t

θkj

β j

, (7)

and

Hkj(t|β j, θkj) =
β j

θkj(1 + e
− t

θkj )

. (8)

5. The shape parameters is common for stress levels Sk, k = 1, 2 and different for causes
of failure.

6. The joint survival function under BPC is given by

Sk(t) =


 2e

− t
θk1

1 + e
− t

θk1


−β1

γ

+

 2e
− t

θk2

1 + e
− t

θk2


−β2

γ

− 1


−γ

. (9)

7. The scale parameters θk1 is log-linear function of the stress function φ(Sk) of the j-th
competing failure mode

logθkj = aj + bjφ(Sk), k; j = 1, 2, (10)

where, aj, bj > 0 are the unknown parameters.

3. Result and Discussion

In this section, we discuss the copula function utilized in terms of its types and
properties. Then, the MLEs, approximate confidence intervals based on the asymptotic
normality of the MLEs, and the two bootstrap confidence intervals of the model parameters
are derived. We present the ML estimation of the system’s reliability under normal stress
conditions. Additionally, a Monte Carlo simulation study and data analysis are introduced.
Finally, we provide the conclusion and remarks.

3.1. Copula Function

The problem of modeling dependence structure between variable under dependent
competing failure causes with the copula function is more convenient. The type of depen-
dence structure is determined by the selected copula see Sklar [33]. Suppose that, Fi and
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Si = F̄i = 1− Fi are the marginal distribution and the corresponding survival functions of
the random variables Ti, i = 1, 2, . . . , J, respectively. Then, a unique J-dimensional copula
C is used to define the joint distribution function H(t1, . . . , tJ) by

H(t1, . . . , tJ) = C(F1(t1), . . . , FJ(tJ)). (11)

The joint distribution function H of the dependence structure depends on the choice of
marginal functions Fi, i = 1, 2, . . . , J and the corresponding copula function C. The copula
function of the continuos marginal functions Fi, i = 1, 2, . . . , J is constructed using the
corollary of Sklar’s theorem. Additionally, from the marginal m-dimensional invariance
distribution functions F−1

i (ui), i = 1, 2, . . . , J, the copula function is defined by,

C(u1, . . . , uJ) = H(F−1
1 (u1), . . . , F−1

J (uJ)). (12)

The multivariate survival function S(t1, . . . , tJ) under transformation Ti → Fi(Ti) = 1−
Si(Ti) with Sklar’s theorem via an appropriate copula C̄ called the survival copula of
(T1, . . . , TJ) and can be expressed by

S(t1, . . . , tJ) = C̄(S1(t1), . . . , SJ(tJ)), (13)

where C̄ is the appropriate survival copula of Ti, i = 1, 2, . . . , J.. Then, we can say that copula
functions C and C̄ are related, with marginal distribution functions Fi and marginal survival
functions Si, i = 1, 2, . . . , J, and the multivariate distribution and survival functions,
respectively. Several types of copula functions are available, such as the Gumbel copula,
Clayton copula, Frank copula, Student’s t-copula, Gaussian copula, and so on. Then, the
problem of the choice of an appropriate copula is an important sub-class, as discussed
by Nelsen [34]. The marginal distribution is used to determine the right copula function.
For example, the Gaussian copula is applied when the marginal distributions are normal
distributions. The characteristics of the dependence between information are an appropriate
way to choose the right copula function see Zhang et al. [35]. Archimedean copulas present
important one and two-parameter families, such as the Gumbel family, Gumbel–Hougaard
family, Gumbel–Barnett family, Clayton family, Frank family, and so on. In our problem,
we consider the Gumbel copula as a sub-class of Archimedean copulas, as follows.

Archimedean copula
Under a two-dimensional copula, the function Ω, which is defined to satisfy

Ω(C(u, v)) = Ω(u) + Ω(v), (14)

is called Archimedean copula. Furthermore, the inverse transformation of the function Ω
provides the solution of the copula function C to satisfy

C(u, v) = Ω[−1](Ω(u) + Ω(v)). (15)

The Archimedean copula Ω(t) = t−1/γ − 1, γ ≥ 1, define the bivariate Pareto copula
(BPC) by

Cγ(u, v) = (u−1/γ + v−1/γ − 1)−γ (16)

Measure of association
In the literature, there are several types of copulas with different parameter values.

Hence, there is no comparable function; the comparable case under Kendall’s tau is also
defined from the copula function by

τ = 4
1∫

0

1∫
0

C(u, v)c(u, v)dudv = 4E[C(U, V)]− 1.
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In which, under BPC τ is reduced to

τ = 4
1∫

0

Ω(t)
Ω′(t)

dt + 1 = 1/(2γ + 1). (17)

3.2. The Point ML Estimate

When considering two stress levels Sk, k = 1, 2, the joint likelihood function (2) after
using the density function (6), survival function (9), and bivariate Pareto copula function,
which is defined by (16), is reduced to

Lk = β
nk1
1 β

nk2
2 θ

−nk1
k1 θ

−nk2
k2


 2e

−
tmk
θk1

1 + e
−

tmk
θk1


−β1

γ

+

 2e
−

tmk
θk2

1 + e
−

tmk
θk2


−β2

γ

− 1


−γRkmk

×
mk

∏
i=1



 1

(1 + e
− tki

θk1 )

 2e
− tki

θk1

1 + e
− tki

θk1


− β1

γ


I(δki=1) 1

(1 + e
− tki

θk2 )

 2e
− tki

θk2

1 + e
− tki

θk2


− β2

γ


I(δki=2)

(18)

×


 2e

− tki
θk1

1 + e
− tki

θk1


−β1

γ

+

 2e
− tki

θk2

1 + e
− tki

θk2


−β2

γ

− 1


−γ(Rki+1)−1


The natural log-likelihood function of (18), under joint likelihood function (11) is

reduced to

` =
2

∑
k=1

log L = J1 log β1 + J2 log β2 + n11 log θ11 + n12 log θ12 + n21 log θ21

+ n22 log θ22 −
2

∑
k=1

{
mk

∑
i=1

I(δki = 1)
[

β1

γ
log[Z1ki] + log[Y1ki]

]
+

mk

∑
i=1

I(δki = 2) (19)

×
[

β2

γ
log[Z2ki] + log[Y2ki]

]
+

mk

∑
i=1

(γ(Rki + 1) + 1) log

[
Z
− β1

γ

1ki + Z
− β2

γ

2ki − 1

]

+ γRkmk
log

[
Z
− β1

γ

1mk
+ Z

− β2
γ

2mk
− 1

]}
,

where

Zlki =
2e
− tki

θkl

1 + e
− tki

θkl

, l = 1, 2, (20)

and

Ylki = 1 + e
− tki

θkl . (21)

The likelihood Equations are obtained from (19) by zero-value of the first partially derivative
of ` with respect to parameters vector Ω = {β1, β2, θ11, θ12, θ21, θ22} as follows.
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∂`

∂β j
=

Jj

β j
− 1

γ

2

∑
k=1


mk

∑
i=1

I(δki = j) log
[

Zjki

]
−

mk

∑
i=1

(γ(Rki + 1) + 1)
Z
−

βj
γ

jki log Zjki

Z
− β1

γ

1ki + Z
− β2

γ

2ki − 1
(22)

− γRkmk

Z
−

βj
γ

jmk
log Zjmk

Z
− β1

γ

1mk
+ Z

− β2
γ

2mk
− 1

=0, j = 1, 2,

and

∂`

∂θkj
=

nk1
θkj
−

2

∑
k=1

{
mk

∑
i=1

I(δki = j)
tki

θ2
kj

[
2β j

γYjki
+

1
2

Zjki

]
−

β j

γθ2
kj

mk

∑
i=1

(γ(Rki + 1) + 1)

×
tkiZ

−
βj
γ

jki

Yjki

(
Z
− β1

γ

1ki + Z
− β2

γ

2ki − 1

) − Rkmk

β jtkmk
Z
−

βj
γ

1mk

θ2
kjY1mk

(
Z
− β1

γ

1mk
+ Z

− β2
γ

2mk
− 1

)
=0, (23)

, k, j = 1, 2

∂`

∂γ
=

2

∑
k=1

{
β1

γ2

mk

∑
i=1

I(δki = 1)[log[Z1ki]] +
β2

γ2

mk

∑
i=1

I(δki = 2)[log[Z2ki]]

× +
mk

∑
i=1

(γ(Rki + 1) + 1) log

[
Z
− β1

γ

1ki + Z
− β2

γ

2ki − 1

]
(24)

+ γRkmk
log

[
Z
− β1

γ

1mk
+ Z

− β2
γ

2mk
− 1

]}
,

The likelihood Equations (22)–(24) cannot be solved analytically. The Newton Raphson
method can be applied to obtain the parameter estimate Ω̂ = {β1, β̂2, θ̂11, θ̂12, θ̂21, θ̂22}.

3.3. Approximate Confidence Intervals (ACIs)

In this section, we consider the ACIs based on the asymptotic normality of MLEs. We
first obtain the asymptotic variance–covariance matrix of the MLEs by inverting the Fisher
information matrix. The Fisher information matrix is defined as the mines expectation of
the second-order mixed partial derivatives of the log-likelihood function defined by

IF(Ω) = −E
(

∂2`

∂Ωi∂Ωl

)
, i, l = 1, 2, . . . , 6, (25)

where Ω = {β1, β2, θ11, θ12, θ21, θ22}. In this case, the expectation of the second mixed
partial derivative of the log-likelihood function under the copula approach is complicated
to calculate. Instead, we use the observed Fisher information matrix, defined by

I(Ω) = −
(

∂2`

∂Ωi∂Ωl

)
, i, l = 1, 2, . . . , 6. (26)

Based on the property of the asymptotic distribution of the MLE Ω̂ = {β1, β̂2, θ̂11, θ̂12, θ̂21,
θ̂22} and for some regularity conditions, the MLEs are approximated to bivariate normal
distribution, as follows: (Ω̂−Ω) −→ N2(0, I−1

0 (Ω)), where the value of inverse observed
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information matrix I−1
0 (ϕ) is computed with the ML estimates of the parameters and is

defined as

I−1
0 (ϕ) = −

(
∂2`

∂Ωi∂Ωl

)−1

|Ω̂={β1,β̂2,θ̂11,θ̂12,θ̂21,θ̂22}, i, l = 1, 2, . . . , 6. (27)

Hence, 100(1 − 2α)% approximate two-side confidence intervals for theparameters Ω = {β1,
β2, θ11, θ12, θ21, θ22}, are given by

β̂ j ∓ Zα

√
var(β̂ j)

θ̂1j ∓ Zα

√
var(θ̂1j)

θ̂2j ∓ Zα

√
var(θ̂2j)

, j = 1, 2, (28)

where, the value Zα is calculated from standard normal distribution, with α right-tail
probability. The model parameters have a positive range, which may contradict the lower
bounded of the intervals defined by Equation (28). Hence, to avoid this contradiction delta
method with log-transformation are used as follows.

As described by Meeker and Escobar [36], the log-transformation of the estimte Ω̂

(log Ω̂) is approximated with normal distribution. Hence, the pivotal Φi =
log Ω̂i−log Ωi

Var( log Ω̂i)
,

i = 1, 2, . . . , 6 is approximated with standard normal distribution. Then, the 100(1− 2α)%
approximate confidence interval of the model parameters Ω = {β1, β2, θ11, θ12, θ21, θ22}
can be formulated by

Ω̂i

(
1, exp

(
2Zα

√
Var( log Ω̂i)

))
exp

(
Zα

√
Var( log Ω̂i)

) , (29)

where Var(log Ω̂)= Var(Ω̂)

Ω̂
and i =1, 2, . . . , 6.For more details, see: [37].

3.4. Bootstrap Confidence Intervals (BCIs)

The bootstrap techniques are used to formulate not only parameter estimations but
also to estimate the bias and variance between estimators as well as calibrate the hypothesis
testing. As presented by Davison and Hinkley [38] and Efron and Tibshirani [39], the
bootstrap technique has been presented as a parametric and non-parametric technique.
In this subsection, we construct the BCIs for the unknown parameters using a parametric
bootstrap method (bootstrap-p and bootstrap-t approaches). The following algorithm is
implemented to generate the bootstrap samples using ML estimates; for more details, see
Hall [40] and Efron [41].

Algorithms 1 (Generate bootstrap sample of estimates)

Step 1: For given n1, n2, m1, m2, stress levels S1 and S2 and two censoring schemes R1 =
{R11, R12, . . . , R1m1} and R2 = {R21, R22, . . . , R2m2} with the original competing
risks type-II PCS tk|k=1,2 = {(Tk1;mk ,nk

, δk1), (Tk2;mk ,nk
, δk2), . . . , (Tkmk ;mk ,nk

, δkmk
)}

compute J1, J2, n11, n12, n11 and n12. Then, the estimate values of the model parameters
Ω̂ = {β1, β̂2, θ̂11, θ̂12, θ̂21, θ̂22} are computed.

Step 2: Based on n1, m1 and R1 using the algorithms given by Balakrishnan and Sandhu [42],
we generate two type-II PC samples of size m1 from GHL distributions with param-
eters (β1, θ̂11) and (β2, θ̂12), respectively. The competing risks type-II PC sample is
difened by (T1i, δ1i) = min(T11i, T12i), i =1, 2, . . . , m1.

Step 3: Based on n2, m2 and R2 generate two type-II PC samples of size m2 from GHL
distributions with parameters (β1, θ̂21) and (β2, θ̂22), respectively. The competing
risks type-II PC sample is difened by (T2i, δ2i) = min(T21i, T22i), i =1, 2, . . . , m2.
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Step 4: From two Step 2 and 3 the joint sample t∗k |k=1,2 = {(T∗k1;mk ,nk
, δ∗k1), (T

∗
k2;mk ,nk

, δ∗k2),
. . . , (T∗kmk ;mk ,nk

, δ∗kmk
)} is formulated.

Step 5: Based on t∗k |k=1,2 = {(T∗k1;mk ,nk
, δ∗k1), (T

∗
k2;mk ,nk

, δ∗k2), . . . , (T∗kmk ;mk ,nk
, δ∗kmk

)} compute

the MLE estimate Ω̂∗ = {β̂∗1, β̂∗2, θ̂∗11, θ̂12, θ̂∗21, θ̂∗22}.

Repeat steps from 2 to 5 M time s and put the estimate in ascending order, we obtain
the bootstrap sample as 

β̂
∗[1]
j , β̂

∗[2]
j , . . . , β̂

∗[M]
j

θ̂
∗[1]
1j , θ̂

∗[2]
1j , . . . , θ̂

∗[M]
1j

θ̂
∗[1]
2j , θ̂

∗[2]
2j , . . . , θ̂

∗[M]
2j

, j = 1, 2 (30)

Bootstrap-p confidence interval (Boot-P CIs)
From the bootstrap samples estimate (29), the 100(1− 2α)% approximate bootstrap-p

confidence intervals of the model parameters Ω = {β1, β2, θ11, θ12, θ21, θ22}, respectively
given by 

(β̂
∗[Mα]
j , β̂

∗[M(1−α)]
j )

(θ̂
∗[Mα]
1j , θ̂

∗[M(1−α)]
1j )

(θ̂
∗[Mα]
2j , θ̂

∗[M(1−α)]
2j )

, j = 1, 2. (31)

Bootstrap-t confidence intervals (Boot-t CIs)
For each the order samples (29) of the estimte Ω̂∗ = {β̂∗1, β̂∗2, θ̂∗11, θ̂12, θ̂∗21, θ̂∗22}, we built

the order statistics values Π∗(1)l < Π∗(2)l < . . . < Π∗(M)
l , where

Π∗[i]l =
Ω̂∗[i]l − Ω̂l√
var
(

Ω̂∗[i]l

) , i = 1, 2, . . . , M, l = 1, 2, 3, 4, 5, 6. (32)

There the 100(1− 2α)% Boot-t CIs is given by(
Ω̃∗lboot-t(α), Ω̃∗lboot-t(1-α)

)
, (33)

where the value Ω̃∗lboot-t is given by

Ω̃∗lboot-t = Ω̂l +
√

Var(Ω̂l)z−1(x), (34)

and z−1(x) = P(Π∗l 6 x) be the cumulative distribution function of Π∗l .

3.5. Reliability Estimation

In this section, we provide the estimated value of the reliability function of I/Us at
any mission time t under normal stress level. The reliability function is defined by

S0(t) =


 2e−

t
θ01

1 + e−
t

θ01


−β1

γ

+

 2e−
t

θ02

1 + e−
t

θ02


−β2

γ

− 1


−γ

. (35)
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The estimate value of S0(t) is denoted by Ŝ0(t) = S0(t)|θ̂0j ,β̂
. From (17), the estimate

values of θ̂0j under normal stress level are obtained from: logθ̂0j = âj + b̂jφ(s0). Using the
least-square method, the estimate values âj, b̂j of aj, bj are obtained as:

âj =

2
∑

k=1
ln θ̂kj − b̂j

2
∑

k=1
φ(sl)

2
, (36)

and

b̂j =

2
2
∑

k=1
ln θ̂kjφ(sk)−

2
∑

k=1
ln θ̂kj

2
∑

k=1
φ(sk)

2
2
∑

k=1
φ2(sk)−

(
2
∑

2=1
φ(sk)

)2 . (37)

3.6. Simulation Study

In this section, we describe a simulation study conducted to assess and compare the
proposed methods of estimation and to test the effect of the selection censoring schemes. In
our study, without loss of generality, only two stress levels were considered for the present
constant-stress ALTs. Additionally, two dependent causes of failure present a competing
risks model under type-II PCS. The samples were generated by using the algorithms
presented by Balakrishnan and Sandhu [42]. Suppose that, under a normal stress level with
S0 = 5 ◦C = 278 K, the two stress levels S1 = 30 ◦C = 303 K, S2 = 60 ◦C = 333 K are applied.
Different values of sample sizes n1 and n2 and affect sample sizes m1 and m2 are used with
proposing stress level Sk, i = 1, 2 shown in Tables 1–4. The shape parameters are taken to
be β1 = 0.2, β2 = 0.5, and the scale parameters θkj are computed from

log θkj = aj + bjφ(Sk) = aj +
bj

Sk
, k = 1, 2, j = 1, 2,

where a1 = −5, a2 = −8, b1 = 1600, and b2 = 2700. The value of θkj, i = 1, 2; j = 1, 2 is given
by: (θ11, θ12, θ21, θ22) = (1.3238, 2.4865, 0.82267, 1.114168). Generate 1000 samples, and for
each sample, compute the point MLE, the corresponding asymptotic confidence interval,
and two bootstrap confidence intervals (bootstrap-p and bootstrap-t). The parameter of the
copula function describes the dependence structure, which is considered to be γ = 1, 2 or
equivalently, Kendall’s τ association τ = 1/3, 1/5. The results of the mean squared error
(MSEs) are shown in Tables 1 and 3. The value of the coverage percentage (CP) of the ACIs
and Boot-P and Boot-t CIs are reported in Tables 2 and 4.

Discussion: The results of the numerical computation for the Monte Carlo simulation
study have revealed the following points:

1. The proposed model and the proposed methods of estimation serve well for all of the
parameter values and censoring schemes.

2. The values of MSEs decrease when the sample size and affected sample size increase.
3. The results show that the value of the copula parameter γ = 2 has a small MSEs than

value γ = 1. Hence, a stronger dependent serves better than a weaker dependent.
4. Finally, the coverage percentages of ACIs are always less than the nominal level when

the sample size is less or equivalent to 60. For a sample size as large as 70, the coverage
percentages of ACIs improve, which can maintain the pre-fixed nominal level.

5. Bootstrap-t serve well than Bootstarp-p and MLE.
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Table 1. Estimated MESs when γ = 1 and Ω = (0.2, 0.5, 1.3238, 2.4865, 0.8227, 1.1142).

(n1, m1) (n2, m2) Scheme β1 β2 θ11 θ12 θ21 θ22

(25,10) (25,10) R1 = (6, 1, . . . , 1) 0.0873 0.1242 0.3214 0.5621 0.2741 0.2987
R2 = (6, 1, . . . , 1)

(25,20) (25,20) R1 = (2, 2, 1, 0, . . . , 0) 0.0745 0.1115 0.3098 0.5428 0.2622 0.2777
R2 = (2, 2, 1, 0, . . . , 0)

(50,20) (50,20) R1 = (2, 1, 2, 1, . . . , 2, 1) 0.0768 0.1103 0.3111 0.5414 0.2611 0.2792
R2 = (2, 1, 2, 1, . . . , 2, 1)

(50,20) (50,20) R1 = (30, 0, 0, . . . , 0) 0.0722 0.1089 0.3102 0.5399 0.2601 0.2774
R2 = (30, 0, 0, . . . , 0)

(50,20) (50,35) R1 = (0, 0, . . . , 0, 30) 0.0715 0.1045 0.3111 0.5389 0.2541 0.2730
R2 = (0, 0, . . . , 0, 15)

(50,35) (50,20) R1 = (0, 0, . . . , 0, 15) 0.0692 0.1093 0.3045 0.5352 0.2613 0.2771
R2 = (0, 0, . . . , 0, 30)

(80,40) (80,40) R1 = (140) 0.0601 0.0875 0.3003 0.5211 0.2492 0.2665
R2 = (140)

(80,40) (80,40) R1 = (020, 220) 0.0614 0.0879 0.3012 0.5209 0.2489 0.2671
R2 = (020, 220)

(80,60) (80,40) R1 = (120, 040) 0.0541 0.0869 0.2985 0.5154 0.2494 0.2653
R2 = (140)

(80,40) (80,60) R1 = (140) 0.0608 0.0833 0.3007 0.5207 0.2448 0.2618
R2 = (120, 040)

(80,60) (80,60) R1 = (040, 120) 0.0518 0.0782 0.2945 0.5105 0.2399 0.2559
R2 = (040, 120)

Table 2. 95% CPs when γ = 1 and Ω = (0.2, 0.5, 1.3238, 2.4865, 0.8227, 1.1142).

(n1, m1) (n2, m2) Scheme Method β1 β2 θ11 θ12 θ21 θ22

(25,10) (25,10) R1 = (6, 1, . . . , 1) MLE 0.87 0.89 0.86 0.88 0.88 0.89
R2 = (6, 1, . . . , 1) Boot-p 0.87 0.88 0.89 0.89 0.86 0.89

Boot-t 0.89 0.89 0.90 0.90 0.89 0.90

(25,20) (25,20) R1 = (2, 2, 1, 0, . . . , 0) MLE 0.89 0.91 0.88 0.89 0.91 0.91
R2 = (2, 2, 1, 0, . . . , 0) Boot-p 0.89 0.88 0.91 0.89 0.79 0.94

Boot-t 0.93 0.92 0.92 0.92 0.93 0.94

(50,20) (50,20) R1 = (2, 1, 2, 1, . . . , 2, 1) MLE 0.91 0.90 0.89 0.88 0.92 0.90
R2 = (2, 1, 2, 1, . . . , 2, 1) Boot-p 0.91 0.88 0.89 0.90 0.91 0.92

Boot-t 0.94 0.93 0.92 0.92 0.91 0.93

(50,20) (50,20) R1 = (30, 0, 0, . . . , 0) MLE 0.91 0.91 0.89 0.91 0.91 0.91
R2 = (30, 0, 0, . . . , 0) Boot-p 0.89 0.89 0.90 0.92 0.92 0.92

Boot-t 0.93 0.93 0.95 0.92 0.92 0.92

(50,20) (50,35) R1 = (0, 0, . . . , 0, 30) MLE 0.91 0.90 0.92 0.90 0.93 0.92
R2 = (0, 0, . . . , 0, 15) Boot-p 0.91 0.91 0.89 0.92 0.90 0.91

Boot-t 0.93 0.93 0.94 0.94 0.91 0.92

(50,35) (50,20) R1 = (0, 0, . . . , 0, 15) MLE 0.90 0.91 0.89 0.90 0.91 0.91
R2 = (0, 0, . . . , 0, 30) Boot-p 0.90 0.91 0.88 0.91 0.92 0.91

Boot-t 0.94 0.93 0.93 0.92 0.92 0.93

(80,40) (80,40) R1 = (140) MLE 0.91 0.92 0.90 0.92 0.91 0.92
R2 = (140) Boot-p 0.91 0.90 0.92 0.96 0.90 0.92

Boot-t 0.94 0.93 0.92 0.94 0.92 0.93

(80,40) (80,40) R1 = (020, 220) MLE 0.92 0.92 0.91 0.91 0.94 0.92
R2 = (020, 220) Boot-p 0.91 0.92 0.93 0.91 0.92 0.91

Boot-t 0.91 0.92 0.92 0.92 0.94 0.90

(80,60) (80,40) R1 = (120, 040) MLE 0.92 0.92 0.92 0.94 0.91 0.94
R2 = (140) Boot-p 0.92 0.92 0.92 0.92 0.92 0.93

Boot-t 0.92 0.92 0.95 0.91 0.92 0.94

(80,40) (80,60) R1 = (140) MLE 0.90 0.90 0.92 0.91 0.95 0.92
R2 = (120, 040) Boot-p 0.91 0.93 0.91 0.90 0.94 0.90

Boot-t 0.94 0.95 0.92 0.92 0.92 0.93

(80,60) (80,60) R1 = (040, 120) MLE 0.91 0.97 0.91 0.93 0.91 0.92
R2 = (040, 120) Boot-p 0.92 0.90 0.92 0.94 0.92 0.91

Boot-t 0.94 0.92 0.95 0.93 0.95 0.94
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Table 3. Estimated MESs when γ = 2 and Ω = (0.2, 0.5, 1.3238, 2.4865, 0.8227, 1.1142).

(n1, m1) (n2, m2) Scheme β1 β2 θ11 θ12 θ21 θ22

(25,10) (25,10) R1 = (6, 1, . . . , 1) 0.0825 0.1200 0.3162 0.5572 0.2741 0.2987
R2 = (6, 1, . . . , 1)

(25,20) (25,20) R1 = (2, 2, 1, 0, . . . , 0) 0.0701 0.1072 0.3045 0.5401 0.2584 0.2719
R2 = (2, 2, 1, 0, . . . , 0)

(50,20) (50,20) R1 = (2, 1, 2, 1, . . . , 2, 1) 0.0725 0.1055 0.3061 0.5382 0.2562 0.2701
R2 = (2, 1, 2, 1, . . . , 2, 1)

(50,20) (50,20) R1 = (30, 0, 0, . . . , 0) 0.0682 0.1051 0.349 0.5354 0.2571 0.2748
R2 = (30, 0, 0, . . . , 0)

(50,20) (50,35) R1 = (0, 0, . . . , 0, 30) 0.0677 0.1002 0.349 0.5341 0.2500 0.2701
R2 = (0, 0, . . . , 0, 15)

(50,35) (50,20) R1 = (0, 0, . . . , 0, 15) 0.0651 0.1048 0.3007 0.5313 0.2582 0.2729
R2 = (0, 0, . . . , 0, 30)

(80,40) (80,40) R1 = (140) 0.0571 0.0824 0.2890 0.5142 0.2433 0.2619
R2 = (140)

(80,40) (80,40) R1 = (020, 220) 0.0572 0.0841 0.2975 0.5162 0.2417 0.2614
R2 = (020, 220)

(80,60) (80,40) R1 = (120, 040) 0.0508 0.0821 0.2929 0.5118 0.2451 0.2614
R2 = (140)

(80,40) (80,60) R1 = (140) 0.0555 0.0800 0.2952 0.5144 0.2403 0.2581
R2 = (120, 040)

(80,60) (80,60) R1 = (040, 120) 0.0488 0.0728 0.2901 0.5044 0.2362 0.2511
R2 = (040, 120)

Table 4. 95% CPs when γ = 2 and Ω = (0.2, 0.5, 1.3238, 2.4865, 0.8227, 1.1142).

(n1, m1) (n2, m2) Scheme Method β1 β2 θ11 θ12 θ21 θ22

(25,10) (25,10) R1 = (6, 1, . . . , 1) MLE 0.88 0.89 0.87 0.88 0.86 0.90
R2 = (6, 1, . . . , 1) Boot-p 0.87 0.89 0.88 0.88 0.86 0.89

Boot-t 0.90 0.89 0.90 0.91 0.89 0.90

(25,20) (25,20) R1 = (2, 2, 1, 0, . . . , 0) MLE 0.89 0.90 0.90 0.89 0.91 0.90
R2 = (2, 2, 1, 0, . . . , 0) Boot-p 0.89 0.88 0.90 0.89 0.90 0.90

Boot-t 0.91 0.92 0.90 0.91 0.91 0.93

(50,20) (50,20) R1 = (2, 1, 2, 1, . . . , 2, 1) MLE 0.90 0.90 0.89 0.90 0.91 0.91
R2 = (2, 1, 2, 1, . . . , 2, 1) Boot-p 0.91 0.90 0.89 0.90 0.90 0.92

Boot-t 0.92 0.93 0.96 0.92 0.91 0.94

(50,20) (50,20) R1 = (30, 0, 0, . . . , 0) MLE 0.90 0.90 0.89 0.90 0.91 0.91
R2 = (30, 0, 0, . . . , 0) Boot-p 0.89 0.90 0.91 0.92 0.91 0.90

Boot-t 0.92 0.91 0.89 0.96 0.93 0.92

(50,20) (50,35) R1 = (0, 0, . . . , 0, 30) MLE 0.90 0.90 0.89 0.90 0.91 0.91
R2 = (0, 0, . . . , 0, 15) Boot-p 0.91 0.90 0.89 0.92 0.91 0.90

Boot-t 0.93 0.92 0.94 0.92 0.91 0.95

(50,35) (50,20) R1 = (0, 0, . . . , 0, 15) MLE 0.88 0.90 0.89 0.89 0.91 0.90
R2 = (0, 0, . . . , 0, 30) Boot-p 0.90 0.91 0.90 0.91 0.91 0.90

Boot-t 0.94 0.92 0.93 0.94 0.92 0.91

(80,40) (80,40) R1 = (140) MLE 0.92 0.93 0.90 0.96 0.92 0.92
R2 = (140) Boot-p 0.91 0.90 0.90 0.96 0.92 0.93

Boot-t 0.96 0.93 0.92 0.96 0.92 0.93

(80,40) (80,40) R1 = (020, 220) MLE 0.93 0.92 0.92 0.90 0.94 0.93
R2 = (020, 220) Boot-p 0.90 0.92 0.91 0.90 0.92 0.91

Boot-t 0.92 0.92 0.93 0.92 0.94 0.92

(80,60) (80,40) R1 = (120, 040) MLE 0.95 0.90 0.92 0.94 0.91 0.90
R2 = (140) Boot-p 0.91 0.92 0.92 0.91 0.91 0.93

Boot-t 0.93 0.92 0.94 0.91 0.92 0.94



Symmetry 2023, 15, 564 13 of 16

Table 4. Cont.

(n1, m1) (n2, m2) Scheme Method β1 β2 θ11 θ12 θ21 θ22

(80,40) (80,60) R1 = (140) MLE 0.93 0.92 0.92 0.94 0.95 0.93
R2 = (120, 040) Boot-p 0.91 0.92 0.91 0.90 0.92 0.90

Boot-t 0.94 0.92 0.93 0.92 0.92 0.91

(80,60) (80,60) R1 = (040, 120) MLE 0.94 0.97 0.92 0.93 0.92 0.94
R2 = (040, 120) Boot-p 0.91 0.90 0.92 0.92 0.92 0.92

Boot-t 0.93 0.92 0.92 0.93 0.95 0.94

3.7. Data Analysis

In this section, we describe the application of the results developed in this study
to a set of data generated from the proposed model for illustration purposes. The data
were generated under the consideration β1 = 0.2, β2 = 0.3, log θk1 = −5 + 1500

Sk
and

log θk2 = −3+ 1000
Sk

. The values of the stress levels are considered as given in the simulation
section, S1 = 30 ◦C = 303 K, S2 = 60 ◦C = 333 K and normal stress under S0 = 5 ◦C = 278 K.
Hence, the value of the parameter vector Ω = (β1, β2, θ11, θ12, θ21, θ22) = (0.2, 0.3, 0.9517,
1.3503, 0.6093, 1.003). For the censoring scheme, we consider n1 = n2 = 50, m1 = m2 = 30
and R1 ≡ R2 = {2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 2}. The
generated data are reported in Table 5 and the corresponding point and interval estimate
are reported in Table 6. Under normal stress conditions with S0 = 5◦C = 278 K; the results
of the reliability estimates are reported in Table 7.

Table 5. The set of generated data.

0.0512 0.3533 0.5253 0.5297 0.7615 0.7737 0.7941 1.2752 1.3143 1.8658
1 2 1 1 1 1 1 1 1 1

S1 2.0817 2.6984 2.7525 2.8935 2.9355 3.0838 3.9839 4.3776 4.4603 4.9003
1 1 1 1 1 1 1 2 2 2
5.0907 5.1854 5.2346 5.2654 5.4079 5.8034 5.9266 5.9658 6.7407 7.1575
2 2 2 2 2 2 2 2 2 2
0.0793 0.1826 0.2967 0.3620 0.5833 0.7460 0.8963 1.0052 1.0378 1.1951
2 2 2 2 1 1 1 1 1 1

S2 1.1955 1.3332 1.4629 1.5213 1.5498 1.7281 1.8321 1.9088 2.0058 2.2701
1 1 1 1 1 1 1 1 1 1
2.3247 2.3734 2.4229 2.8080 3.5315 3.7945 3.9892 4.1753 4.1884 7.7951
1 1 1 1 1 1 1 1 1 2

Table 6. The point MLEs and the coresponding 95% Aproximate, boot-p and boot-t CIs.

Exact MLE 95% ACI 95% Boot-p 95%Boot-t
β1 0.2000 0.0792 (0.0094, 0.6644) (0.0478, 1.4254) (0.0113, 0.5478)
β2 0.3000 0.4475 (0.1034, 1.9365) (0.1220, 2.8412) (0.0047, 0.8745)
θ11 0.9517 0.6328 (0.0878, 4.5614) (0.2345, 4.9994) (0.2473, 2.9982)
θ12 1.3503 2.8562 (0.8957, 9.1080) (0.7845, 13.1457) (0.7412, 5.6547)
θ21 0.6093 0.2959 (0.0421, 2.0789) (0.1240, 4.2145) (0.2314, 1.9879)
θ22 1.0030 4.8317 (0.9872, 20.3486) (0.4521, 22.3874) (0.5462, 10.8754)

Table 7. The relability of the system under normal stress conditions for given time t.

t S(t) t S(t)
0.5 0.916947 3.0 0.515836
1.0 0.831423 3.5 0.451519
1.5 0.746312 4.0 0.394082
2.0 0.664164 4.5 0.343289
2.5 0.586922 5.0 0.298688
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4. Conclusions

The lifetime distribution of highly reliable materials and components was assessed
using accelerated life tests (ALTs). A life test under accelerated environmental conditions
may be fully accelerated or partially accelerated. Additionally, the products can fail due
to one of several possible causes of failure, which need not be independent. Therefore, in
this paper, we focused on the problem of the statistical inference of dependent competing
risks for generalized half-logistic distributions under constant-stress ALTs with type-II
PCS. The dependence structure between lifetimes was measured under a bivariate Pareto
copula function. The model parameters were estimated using the ML method, and the
corresponding approximate confidence intervals were constructed using the asymptotic
properties of the MLEs. Additionally, parametric bootstrap confidence intervals were
obtained. The developed methods were explained using a Monte Carlo simulation study
and a numerical example. The results show that the dependence structure is very important
in competing risk models. The estimated values of the model parameters become closer to
the true values when the effective sample size increases. We found that the MLEs of the
parameters become closer to the true values when the dependence on competing failure
modes becomes stronger. Overall, the Boot-t confidence intervals have good stability
with satisfactory coverage percentages and, hence, can be used when the exact confidence
intervals cannot be obtained. Based on our knowledge, this study is the first to introduce the
dependent competing risks for generalized half-logistic distributions under constant-stress
ALTs with type-II PCS.
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