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Abstract: The modal asymmetry between truth-telling and lying refers to the impossibility of a world
in which everyone lies, while on the contrary, a world in which everyone tells the truth is possible.
This ethical issue is relevant to modern concerns about epistemic security, or the safety of knowledge.
The breakdown of epistemic security leads to the erosion of trust and, hence, to an ‘impossible’ world
since a willingness to believe in others is essential for the functioning of society. Here, we examine the
threat of disinformation to epistemic security using an individual-based model in which individuals
are both senders and receivers of signals and are characterized by their credulity and deceptiveness,
which are targets of natural selection. The possible worlds are those favored by natural selection.
Lies that significantly harm believers lead to the Kantian scenario: trust is completely eroded and
the winners of the evolutionary race are incredulous. However, if the lies are not too harmful, our
game evolutionary model predicts a world in which the individuals are both credulous and mildly
untruthful. These two possible worlds are separated by a discontinuous phase transition in the limit
of infinite population size.

Keywords: social information; epistemic security; disinformation; stochastic models; phase transition

1. Introduction

In this time of ‘alternative facts’, it seems fitting to bring Kant’s modal asymmetry
between truth-telling and lying back into the limelight. Setting aside the evident moral
distinction between lying and truthfulness, Kant (in his celebrated discussion of promise-
keeping) claims that telling the truth is right and lying is wrong because lying cannot be
universalized, whereas for truthfulness [1]:

For the universality of a law which says that anyone who believes himself to
be in need could promise what he pleased with the intention of not fulfilling it
would make the promise itself and the end to be accomplished by it impossible;
no one would believe what was promised to him but would only laugh at any
such assertion as vain pretense.

In other words, a world in which everyone tells the truth is possible, whereas one
in which everyone lies is impossible [2]. This is perhaps the reason why the collapse of
reliable sources of information and, hence, one’s ability to distinguish between truth and
fiction (presented as truth) is considered a major problem today [3]. Without a common
ground, it will not be possible to efficiently address the issues that threaten our world
(e.g., global warming), which is likely to make our world literally ‘impossible’, not only in
a philosophical sense.

This curious topic of ethical theory is then closely related to the present-day epidemics
of disinformation, i.e., misinformation with the overt purpose of misleading [4,5], which
threatens epistemic security [3]. Here, we quantitatively address this problem using an
individual-based model in which the individuals are both senders and receivers of signals
and each individual exhibits a credulity trait and a deceptiveness trait. We assume that
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trustfulness and lying are behaviors that evolve by natural selection. Hence, the possibility
of a world in which individuals exhibit a certain combination of those traits is determined
by the chances of such combination ending up as the winner of a game evolutionary race
where all possible combinations are present at the onset of the competition. Of course,
there is a big caveat here since, at least in humans, social interactions are not uniquely
determined by genetic traits but are somehow conditioned by artifacts created by the social
players [6,7]. We overlook these complications in order to keep the model simple. To give
value to the signals, we assume that they represent the individual’s estimate of a property
of the environment that is key to survival. If an individual chooses to ignore the signals
exhibited by others, then it must find the truth by itself through the exploration of the
environment, which poses its own risk.

We find that the outcome of the game evolutionary race depends on how harmful
the lies are. On the one hand, lies that significantly reduce the chances of survival of the
believers lead to the scenario described by Kant: trust is completely eroded and the winning
combination of behavioral traits is total incredulity and any degree of deceptiveness. In
fact, since the signals are ignored, it does not matter whether they are true or false. From
the perspective of epistemic security, this result shows that disinformation can inhibit the
capability of individuals to exchange information with one another, which is a catastrophic
scenario for a social species. We stress that the impossibility of such a world is an exogenous
factor since, as expressed in Kant’s quotation, the never-trust behavior is likely to be
selected by natural selection. On the other hand, if the lies are not too harmful, our game
evolutionary model predicts a world in which the individuals are both credulous and
mildly untruthful. This is an interesting prediction, as a certain willingness to believe the
information provided by others is essential for the functioning of society. Using finite size
scaling, we show that these two possible worlds are separated by a discontinuous phase
transition in the limit of infinite population size.

The remainder of the paper is organized as follows. In Section 2, we introduce the
individual-based model and describe the interactions between the individuals and envi-
ronment, as well as the interactions between pairs of individuals (e.g., through credulous
and deceiving behaviors). Moreover, in this section, we describe the game evolutionary
framework that enforces competition between individuals and determines the composition
of future generations. In Section 3, we present the results of the individual-based simu-
lations, focusing on the characterization of the credulity, deceptiveness, and viability of
the winners of the evolutionary games. We summarize our findings by presenting scatter
plots of the winners’ behavioral traits for a large number of independent runs and apply
finite-size scaling [8,9] to show that there is a discontinuous phase transition separating the
worlds of credulous and incredulous individuals. Finally, in Section 4, we review our main
results and compare our approach with the active particle methods [10].

2. The Model

We consider a population of N individuals who are both senders and receivers of
signals. Each individual exhibits a pair of traits. One trait—the credulity γi—governs
the propensity of individual i to believe the information exhibited by its peers. The other
trait—the deceptiveness δi—determines the propensity of individual i to lie about (or
corrupt) the signals it exhibits [2]. In contrast to the economic [11] and evolutionary [12]
theoretical approaches that assign arbitrary values to the payoff of each individual’s actions,
here, we use an explicit model of the environment to determine the chances of survival
(viability fitness) of the individuals.

Accordingly, the individuals must evaluate some aspect or property of the envi-
ronment, which in some sense is key to their viability [13]. For instance, in the case of
animal behavior [14], this property of the environment could be the amount of a food
resource [15] or signals to migrate in seasonal migration [16]. In the case of epistemic
communities [17–19], which is more relevant to our study, the property could be the truth
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of an assertion, e.g., the effect of human activity on global warming, the efficacy of vaccines,
or the safety of electronic voting machines.

We assume that the individuals assess the key properties of the environment by
sampling a normal distribution of mean µ and variance σ2. The samples are the clues to the
true value of that property, which we define as the mean µ of the normal distribution [13].
The viability of individual i is determined by the proximity of its estimate ξi ∼ N(µ, σ)
to the true value µ. More pointedly, the probability Wi that individual i who sampled ξi
survives the environmental challenge is given by

Wi = exp
[
−1

2
(ξi − µ)2

]
. (1)

The random variable Wi is the viability or fitness of individual i, which is distributed by
the probability distribution

P(Wi) =
1√
πσ2

W1/σ2−1
i√
− ln W1/σ2

i

(2)

for Wi ∈ [0, 1]. The expected value of the survival probability is E(Wi) = (1 + σ2)−1/2 so
that increasing the hazardousness of the environment (i.e., the difficulty of the challenge)
makes it riskier for the individuals to find the answer themselves by directly exploring the
environment. This is a nice feature of the model since σ2 is not too small, the individuals
must resort to some sort of cooperation in order to survive the environmental challenge.
We can set µ = 0 without loss of generality, as P(Wi) does not depend on µ.

For individual i, the alternative to exploring the environment is to copy the estimate ξ j
from individual j (chosen randomly in the community). This happens with the probability
given by the credulity γi of individual i. Of course, exploration of the environment
happens with probability 1− γi and consists of producing a new sample ξi ∼ N(µ, σ) or,
equivalently, a new viability Wi using the probability distribution (2). It is implicit in our
model that the individuals’ estimates ξ j, j = 1, . . . , N are publicly displayed or exhibited
without cost upon request.

However, individual j—the sender—exhibits a distorted form of its estimate of the
true value µ with probability given by its deceptiveness δj. Copying this corrupted estimate
results in the drop of the viability of individual i—the receiver—by an amount 1/ε, where
ε ∼ Uniform(1− η, 1). Here, η ∈ [0, 1] is the cost of credulity. In sum, by believing a sender
of viability Wj, the receiver may end up with viability εWj with probability δj and viability
Wj with probability 1− δj. Hence, for η = 1, the viability of the receiver is cut by half on
average and for η = 0 the lies are harmless. In Table 1, we offer a summary of the model
parameters and their meanings.

Table 1. Parameters of the model.

Parameter Meaning

N population size
µ = 0 value of the key property of the environment

σ2 ∈ [0, ∞] hazardousness of the environment
γi ∈ [0, 1] credulity of individual i
δi ∈ [0, 1] deceptiveness of individual i
η ∈ [0, 1] cost of credulity

Thus, γi and δi fully determine the behaviors of the individuals. Since our goal is to
find out if there is an optimal behavior strategy to deal with the environmental challenges
in a hazardous and socially unreliable scenario, we must allow individuals with different
strategies to compete among themselves. This is achieved by considering an evolutionary
game scenario [12], in which only the survivors have a chance to contribute offspring to the
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succeeding generation, who then face new environmental challenges themselves and so
on. As already mentioned, surviving the environmental challenge is determined by the
individual’s viability Wi, and the number of survivors is usually significantly less than N.
All survivors have the same probability to supply offspring to the succeeding generation in
a process of repopulation that brings the population size back to the fixed value N. In other
words, selection only works at the level of survival (viability selection) and not at the level
of the (genetic) differences in the reproduction of survivors. Individual i can adopt four
pure strategies, i.e., γi = 1 and δi = 1 (credulous and liar), γi = 1 and δi = 0 (credulous and
truth-telling), γi = 0 and δi = 1 (non-trusting and liar), and γi = 0 and δi = 0 (non-trusting
and truth-telling). In addition, it can infinitely adopt many mixed strategies characterized
by non-extreme values of the credulity and deceptiveness parameters [11].

Next, we describe the rules that govern the evolutionary game scenario. At the initial
generation t = 0, each individual i = 1, . . . , N is attributed a viability value Wi according
to the probability distribution (2), as well as uniformly distributed random values of the
credulity γi and deceptiveness δi. We assume that all of these individuals pass to generation
t = 1. Then we follow the steps:

• Each individual i = 1, . . . , N chooses independently whether to copy another individ-
ual, which happens with probability γi, or to explore the environment, which happens
with probability 1− γi. If individual i chooses to copy, then it selects at random one of
the N − 1 individuals in the population. For the sake of concreteness, let us assume
that individual j is selected. Individual j then exhibits its original estimate of µ with
probability 1− δj and a distorted version with probability δj. In the former case, the
viability of individual i becomes Wi = Wj, whereas in the latter case, it becomes
Wi = εWj with ε ∼ Uniform(1− η, 1). If individual i chooses to explore the environ-
ment, then it produces a fresh sample of the viability Wi using the distribution (2).
The viability types are updated simultaneously (parallel update).

• Each individual i = 1, . . . , N is put through the environmental challenge to decide
whether it survives or not. Take, for instance, individual i with viability Wi. We
generate a random number u ∼ Uniform(0, 1) and allow individual i to pass the
challenge provided that Wi > u. We recall that only the survivors have a chance to
supply offspring to the succeeding generation (t = 2, in this case). All individuals are
subjected to the environmental challenge simultaneously (parallel update).

• Generation t = 2 is formed by picking N individuals at random with replacement
among the survivors of the environmental challenge. These N individuals are the
offspring of the survivors and this step resets the population size to N.

The situation is now similar to our point of departure, as we have N individuals
that are uniquely identified by the viability Wi, credulity γi, and deceptiveness δi for
i = 1, . . . , N. Hence, we can repeat the above sequence of steps to obtain the population
makeup at the subsequent generations t = 3, 4 . . . until the fixation of a behavior strategy
occurs [20]. By fixation, we mean that all N individuals become ‘genetically’ identical
in the sense they are characterized by the same values of credulity and deceptiveness,
although the viability may differ. In other words, all individuals share the same ancestor at
generation t = 0, the winner of the evolutionary race [21]. Our goal is the characterization
of this winner in terms of the control parameters of the model, i.e., N, σ2, and η.

Regarding the agent or individual-based modeling used in this study—this approach
is the most natural for modeling and simulating a system of ’behavioral’ units and has been
employed in a wide range of domains [22–24]. Its defining characteristic is microscopic
modeling, as opposed to macroscopic modeling, which involves some coarse-graining of
the microscopic variables and the possibility of describing the system using differential
equations. Although agent-based modeling is straightforward to implement and could be
considered more of a mindset than a technology [25], there are many toolkits and platforms
available to assist with its implementation [26–28].
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3. Results

In this section, we present and discuss the results of the simulations of the evolutionary
game dynamics. We focus on the mean credulity of the population

γ =
1
N

N

∑
i=1

γi, (3)

the mean deceptiveness of the population

δ =
1
N

N

∑
i=1

δi, (4)

and the mean fitness of the population (or viability)

W =
1
N

N

∑
i=1

Wi. (5)

These quantities are measured before the environmental challenge and after the individ-
uals have decided to copy others or explore the environment. At the point of measure-
ment, the population consists of N individuals. For large N, we have γ = δ = 1/2 and
W = (1 + σ2)−1/2 for t = 0. In this paper, we typically set N = 2000. (The exception
is in the analysis of the threshold phenomenon that requires an even larger N.) This
relatively large population size is necessary to produce a representative sample of the
two-dimensional space of the traits γi and δi when assembling the initial population.

Figure 1 shows four independent runs for the case where the lies are harmless, i.e., for
η = 0. More precisely, this is the case where even if the sender intends to lie, it ends
up sending the correct signal. The winner in all runs is the extremely credulous strategy
(γ ≈ 1), which guarantees almost certain survival (W ≈ 1). Since the deceptiveness
trait does not influence the fitness of the individuals, it drifts randomly until fixation is
reached. After fixation, the population is homogeneous with respect to the traits γi and δi:
all individuals are clones of the winner of the evolutionary race. Despite the population
homogeneity, the mean fitness still fluctuates since some individuals choose to explore
the environment and, hence, change their fitness. The fluctuations in the mean fitness
disappear only if γ = 1.
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Figure 1. Four independent runs for harmless lies. (Left) Mean credulity of population γ against
generation t. (Middle) Mean deceptiveness of population δ against generation t. (Right) Mean fitness
of population W against generation t. The parameters are η = 0, σ2 = 1 and N = 2000.
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The reason it is advantageous to be credulous when the signals are always true is that
believing unadulterated information is a safe wager; this is because the receiver obtains
a viability that allows the sender lineage to survive at least one environmental challenge.
The alternative is to gamble and generate viability ’afresh’ according to distribution (2),
which has not yet been tested in an environmental challenge. This observation leads to the
prediction that the uncertainty of the environment favors credulity.

Figure 2 shows the results for the other extreme situation, for example, when the
lies are the most harmful, i.e., η = 1. In this case, the receiver ends up with a viability
that is half the viability of the sender on average. As expected, the winners are the most
non-trusting individuals, who are very unlikely to copy their peers. Hence, it does not
matter much whether the individuals are lying or not because nobody is listening anyway.
This explains the random drift of the deceptiveness trait. Since the individuals are mostly
sampling the environment, the mean population fitness is close to the expected value of
distribution (2), which is E(Wi) = 1/

√
2 ≈ 0.71 for σ2 = 1.
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Figure 2. Four independent runs for the most harmful lies. (Left) Mean credulity of population γ

against generation t. (Middle) Mean deceptiveness of population δ against generation t. (Right)
Mean fitness of population W against generation t. The parameters are η = 1, σ2 = 1 and N = 2000.

In the remainder of the paper, we will focus on the fixation (or equilibrium) regime
only. As already pointed out, in this regime the population is characterized by the credulity
and deceptiveness of the winner of the evolutionary game. However, unless γ = 1 the
mean fitness of the population will continue to change even after fixation, as shown in
Figures 1 and 2. Therefore, to measure the mean fitness at equilibrium, we wait until
fixation occurs and then average the mean fitness of the population over 100 generations.

An instructive way to summarize the equilibrium properties of the population and
visualize the variability between independent runs of the evolutionary dynamics is through
scatter plots. Accordingly, in Figure 3 we present the scatter plots for the case of harmless
lies (η = 0). Each symbol in the figure represents the equilibrium properties of the
population for a particular run and the figure shows the results for 104 independent
runs. The results confirm that the four runs exhibited in Figure 1 are representative of
the ensemble of runs. Since the deceptiveness trait does not influence the fitness of the
individuals, the equilibrium value of δ is uniformly distributed in the unit interval (0, 1).
There is, however, a strong positive correlation between the credulity trait and the mean
fitness of the population.
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Figure 3. Scatter plots of equilibrium properties of the population for harmless lies. (Left) Mean
credulity of the population and mean deceptiveness of the population. (Middle) Mean credulity of
the population and mean fitness of the population. (Right) Mean deceptiveness of the population
and mean fitness of the population. The parameters are η = 0, σ2 = 1, and N = 2000.

Figure 4 shows the scatter plots for the case η = 1. The winning strategies in most
runs are characterized by low values of the credulity trait, which are expected in a situation
where believing a corrupted signal may be very costly to the receiver. Although the mean
deceptiveness of the population spans the entire unit interval, it is not uniformly distributed:
there is a slight preference for low values of the deceptiveness trait. It is interesting that
for δ > 0.3, approximately, the strategy with the highest fitness is γ = 0 (never trust)
which yields W = 1/

√
2 ≈ 0.71: all other strategies have lower fitness (see right panel of

Figure 4).
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Figure 4. Scatter plots of equilibrium properties of the population for the most harmful lies. (Left)
Mean credulity of the population and mean deceptiveness of the population. (Middle) Mean credulity
of the population and mean fitness of the population. (Right) Mean deceptiveness of the population
and mean fitness of the population. The parameters are η = 1, σ2 = 1, and N = 2000.
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In terms of maximizing the fitness of the population, the optimal scenario is a homo-
geneous population of credulous (γi = 1) and truth-telling (γi = 0) individuals, regardless
of the values of the parameters η and σ2 > 0. However, despite their presence in the
initial population, these altruistic individuals are quickly eliminated from the population
by the liars and suspicious, resulting in a much lower mean fitness and, consequently, in
the culling of a considerable fraction of the population at each generation (about 30% of
the data shown in Figure 4). Of course, this is an instance of the so-called Tragedy of the
Commons [29,30], where the greedy determine the fate of the community.

Before embarking on a more quantitative analysis of the winning strategies of the
evolutionary game, we present in Figure 5 the scatter plots for an intermediate value of
the credulity cost, i.e., η = 0.5. The results indicate the existence of two large clusters of
winning strategies: low γ and medium to high δ, which has fitness less than E(Wi), and
high γ and low δ, which has fitness greater than E(Wi). As expected, there are very few
runs where the winners have high credulity and high deceptiveness. In fact, as a potentially
winning strategy increases its frequency in the population, the individuals using the same
strategy interact with each other more frequently leading to the extinction of the strategy
in case of incompatible traits [31]. The two competing strategies identified by clusters
in the scatter plots may be evidence of a discontinuous threshold phenomenon or phase
transition [32], which is in fact the case, as we will show in the sequel.
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Figure 5. Scatter plots of equilibrium properties of the population for moderate lies. (Left) Mean
credulity of the population and mean deceptiveness of the population. (Middle) Mean credulity of
the population and mean fitness of the population. (Right) Mean deceptiveness of the population
and mean fitness of the population. The parameters are η = 0.5, σ2 = 1, and N = 2000.

In Figure 6, we present the mean credulity and deceptiveness of the population
averaged over 5000 independent runs, as well as the correlation between them. Henceforth,
we will use the bracket notation to indicate the average over runs. The results indicate
that increasing the cost η of copying distorted information disfavors credulity, as expected.
In addition, they indicate that an increase in the environment’s hazardousness σ2 favors
credulity: if the risk of finding the answer by themselves is too high, the individuals
are better off copying others, regardless of the cost involved in that decision. The mean
deceptiveness of the population averaged over runs is much less informative because it
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does not vary significantly with η or σ2. In fact, the scatter plots of Figures 3–5 indicate that
the average over runs yields a value of < δ > close to 0.5 despite the extreme variation of
η. The scale of the y-axis of the middle panel of Figure 6 is one-tenth of the scale of the
left panel, hence the large fluctuations, but the intriguing oscillations are probably real.
The correlation between γ and δ is always negative and its absolute value decreases in
both extremes, η → 0 and η → 1. In the former case, the lies are harmless, whereas in the
latter case, most individuals are suspicious, so in both cases, it does not matter whether the
individual is a liar or not (see Figures 3 and 4). The minimum (or maximum in absolute
value) of the correlation indicates a sharp separation between the two possible outcomes
of the runs, i.e., winner i with high γi and low δi or winner i with low γi and medium to
high δi.
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Figure 6. Effect of the credulity cost η for environment hazardousness σ2 = 0.5 (inverted triangles), 1
(circles) and 2 (triangles). (Left) Mean credulity of the population averaged over runs. (Middle) Mean
deceptiveness of the population averaged over runs. (Right) Correlation between mean credulity
and mean deceptiveness. The population size is N = 2000. The lines connecting the symbols are
guides to the eye.

Since a threshold phenomenon can happen only in systems of infinite size, N → ∞,
we have to resort to a finite size scaling analysis to determine whether our finite population
results are indicative of such a phenomenon [8,9]. Figure 7 summarizes this analysis for
σ2 = 1.

It is clear that for η, with less than some critical value ηc, the mean credulity of the
population tends to a nonzero (and non-unit) value as the population size N increases.
In fact, the results for N = 2000 and N = 4000 are practically indistinguishable in the
left panel of Figure 7. However, for η > ηc, the mean credulity of the population tends
to zero with increasing N. So there is a discontinuous transition at η = ηc, at which the
mean credulity of the population jumps to zero, signaling the onset of a regime of complete
incredulity on the truthfulness of the signals the individuals exhibit. We estimate ηc ≈ 0.4
by locating the values of η at which the curves for different N intercept each other [8]. To
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quantify the sharpness of the transition for η > ηc and finite but large N we use the scaling
assumption [9]

< γ >= f
[
(η − ηc)N1/ν

]
(6)

where ν > 0 is a critical exponent and the scaling function is such that f (0) =< γ >c> 0
and limx→∞ f (x) = 0. This means that < γ >→ 0 for η > ηc in the limit N → ∞. At
η = ηc, Equation (6) implies that < γ > is invariant to changes in N; hence, the procedure
to determine ηc as the intersection of the curves < γ > vs. η for different values of N. Of
course, the validity of our scaling assumption (6) depends on whether we can determine
the threshold ηc and the critical exponent ν, such that the curves for different values of N
‘collapse’ into a unique curve, i.e., the scaling function f (x) [8,9]. In fact, the right panel of
Figure 7 shows that the data collapse with ηc = 0.4 and ν = 5 is very good, especially for
the three largest population sizes.
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Figure 7. Finite-size scaling analysis of the threshold phenomenon for population sizes N = 250, 500,
1000, 2000, and 4000 as indicated. (Left) Mean credulity of the population averaged over runs against
the credulity cost η. The vertical dashed line indicates our estimate ηc = 0.4. (Right) Mean credulity
of the population averaged over runs against the scaled credulity cost (η − ηc)N1/ν for ν = 5. The
environment hazardousness is σ2 = 1.

Figure 8 shows the two behavioral traits of the winning strategies in 104 independent
runs for several values of the credulity cost η. We note that < γ > and < δ > are of little
value to characterize the winning strategies, but the large negative values of the correlation
between γ and δ signal the presence of two opposite attractors of the evolutionary dynamics
at the discontinuous transition For instance, for η = ηc = 0.4 we find < γ > = 0.53,
< δ > = 0.49 and corr(γ, δ) = −0.79. As η increases from η = 0.1 to η = 0.9 (the extremes
η = 0 and η = 1 are shown in Figures 3 and 4), we observe an increase in the number
of runs for which the winners are highly untruthful but not too harmful because η is
small. As η increases further, the individuals deal with untruthful and harmful signals
by ignoring them, hence the increase in the number of runs for which the winners are
highly incredulous.
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Figure 8. Scatter plots of the mean credulity of population γ (x axis) and mean deceptiveness of
population δ (y axis) for (left-to-right, top-to-bottom) η = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The
other parameters are N = 4000 and σ2 = 1.

4. Discussion

The conflict between lying and truth-telling is a well-established research topic both in
biology and philosophy. For instance, the evolution of signals that are indicative of fitness
and their selection for ‘honesty’ is a major issue in biology [33]. Regarding philosophy,
Kant’s famous discussion of promise-keeping [1] leads to the view that a world in which
everyone lies is unthinkable, not because it would be morally bad, but because such a
world simply cannot exist. On the other hand, a world in which everyone tells the truth is
possible [2]. Hence, the modal asymmetry between truth-telling and lying.

Our individual-based simulations offer some intriguing provisos to Kant’s conclusion.
However, we must first interpret the existence of a world composed of individuals with a
combination of credulity and deceptiveness, i.e., the possibility that such a combination
ends up as the winner of a game’s evolutionary race where all possible combinations are
present at the onset of the competition. Kant is correct in saying that if individuals only send
untruthful signals, then no one would believe them and, hence, the very purpose of sending
signals is lost. This is exactly the scenario we find when the cost η of believing untruthful
signals is higher than a threshold ηc: trust is corroded and the winning strategy is extreme
suspicion. From the perspective of epistemic security, this result shows that disinformation
can erode trust and inhibit the capacity of the individuals to exchange information [3].
However, if η ≤ ηc (i.e., the lies are not too harmful) our game evolutionary model predicts
a world in which the individuals are both very credulous and mildly untruthful.

An interesting feature of our model is that, as pointed out above, the winning strategies
depend on the cost of believing corrupted information (or, on how harmful the lies are).
Of course, the cost must be compared with the cost of ignoring the signals exhibited
by others and finding the truth by oneself. Our model takes explicitly into account the
risk of exploring the environment through the hazardousness σ2 and for too uncertain
environments we find that it is always advantageous to be mildly credulous, regardless of
the harmfulness of the lies (see data for σ2 = 2 in Figure 6). Thus, our model predicts that
the more severe the environment is, the greater the credulity of the individuals.

The latest wave of authoritarianism, which is intimately related to disinformation,
is perhaps a result of social disconnection and loneliness that were exacerbated by the
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COVID-19 pandemic [34–36]. In fact, in addition to being a major public health challenge [37],
loneliness is a major social threat as shown by Hannah Arendt [38]:

The chief characteristic of the mass man is not brutality and backwardness, but
his isolation and lack of normal social relationships.

It is tempting to relate this phenomenon to the predicted positive correlation between
the hazardousness of the environment and the credulity of the individuals.

Our model builds on a previous, analytically solvable model that considers an infinite,
homogeneous population with respect to credulity and deceptiveness, so there is no
competition between distinct behavioral strategies [19]. In this case, the so-called winning
strategy is chosen using a population-centered approach [39], where the optimal values of
the parameters that determine the behavior of the individuals are chosen by maximizing
the mean fitness of the population. As a result, the model predicts an artifactual regime (of
extremely credulous (γ = 1) but deceptive (δ > 0) individuals) that does not appear in the
present individual-based approach, where the individuals pursue their own interests.

To conclude, we will discuss the available mathematical approaches to modeling
interacting living entities. Game theory has been the framework of choice to model
decision-making problems in the economy and political sciences since von Neumann
and Morgenstern’s landmark work [11]. A few decades later, Maynard Smith and Price
showed how to use game theory to explain the logic of animal conflict [40] and since then
this approach has been central to the mathematical modeling of the conflicting interactions
between organisms, from humans to self-replicating molecules [41]. More recently, how-
ever, a novel mathematical framework has been developed to study the collective dynamics
of large systems of interacting living entities—the active particle methods [10,42–44]. In this
framework, at each interaction, individuals, viewed as active particles, play a game whose
outcome is influenced by their strategies, which are usually associated with surviving and
adaptive capabilities. The interactions between individuals, as well as between individuals
and the environment, are described by theoretical tools of stochastic game theory. The
strategies used by the individuals are heterogeneously distributed over the micro-states of
players that encompass activity and mechanical variables. Individuals are represented by
stochastic variables governed by a distribution function over the micro-state and the game
payoff is heterogeneously distributed over individuals. The active particle methods have
been applied to modeling a variety of systems, from economic and social problems [45] to
the spreading of infectious diseases [46]. However, in contrast to the evolutionary game
approach, the active particles methods are not easily grasped and implemented by non-
mathematicians, hence our choice of the more conventional method to analyze a problem of
interest to philosophy and social sciences, i.e., the modal asymmetry between truth-telling
and lying.
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