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Abstract: In this article, we examined the behavior of dark energy (DE) and the cosmic accelera-
tion in the framework of κ(R, T) gravity in the standard spherically symmetric coordinates (xi) =
t, r, θ, φ, a spatially homogeneous and isotropic FLRW space–time. We discovered some remark-
able cosmic characteristics in this investigation that are in line with both observations and the
accepted ΛCDM model. We made two assumptions in order to determine a deterministic solu-
tion of the modified field equations (MFEs): (i) p = γρ, where γ(1 ≥ γ ≥ 0) is a constant, and
(ii) Λ = βH2, where β is an arbitrary constant. We solved the MFEs and obtained the expression for
the Hubble parameter. The depicted model of κ(R, T) gravity was taken into consideration when
discussing the behavior of the accelerating Universe. In κ(R, T) gravity, the statefinder analysis was
utilized to distinguish our model from the ΛCDM model. The evolution of the cosmos was studied
using an effective equation of state (EoS). We investigated the thermodynamic quantities and the
generalized energy conditions in order to test the viability of our model. When dominant and weak
energy conditions are satisfied, this validates the model; when the strong energy condition is not
satisfied, this accelerates the expansion of the Universe.

Keywords: κ(R, T) gravity; accelerating Universe; statefinder analysis; generalized energy conditions;
thermodynamics

PACS: 98.80.Jk; 98.80.-k; 04.50.Kd

1. Introduction

The accelerated expansion of the Universe at late times is probably the most-important
unsolved problems in contemporary cosmology [1–3]. This means that around 70% of the
energy in the Universe must be in something called “dark energy”, which has a negative
pressure. This is fully responsible for the acceleration phase of the Universe. The source and
nature of DE would provide a significant aspect of a long-standing puzzle: the gravitational
influence of the zero-point energies of particles and fields [4]. The most-crucial aspect
of DE is that its energy content is either constant or significantly varies as the Universe
expands. However, we do not precisely comprehend the nature of DE [5]. Conventionally,
dark energy has been described by the equation of state (EoS) parameter γ = p

ρ , but
this parameter should not be taken as a constant. From observational findings derived
from SN-Ia data, we have −1.67 < γ < 0.62 [6]. In essence, γ should not be treated as
a constant. The EoS parameter has been considered as a constant in many theoretical
investigations with values of −1, 0, 1/3 and +1 for vacuum-, dust-, radiation-, and stiff-
fluid-dominated Universes, respectively. This is because there are not enough observational
data to estimate the time variation of γ. This parameter is not always constant. The
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idea of “modified gravity” is very important because it can explain how galaxies spin
and how galaxy clusters move in the Universe. Different types of modified gravity exist,
including f (R) [7,8], f (T) [9], f (R, T) [10–12], f (R, G) [13], f (G) [14,15], f (T, B) [16,17],
f (Q, T) [18,19], f (Q) [20,21], and f (T, TG) [22]. One “important class of these models
includes f (R) gravity models. The models with a nonminimal coupling between the scalar
field and the curvature” are defined by the fact that the conformal metric transformation
can be used to build mathematically equivalent general relativity (GR) models with a
scalar field.

Modified theories of gravity provide another method for addressing the DE problem.
The Einstein–Hilbert action in conventional GR may be extended to derive these modified
theories. This concept gives rise to several alternative theories of gravitation, such as
f(τ) gravity [23], f(R) gravity [24], and f (R, T) gravity [25] (where R is the curvature
scalar, τ is the torsion scalar, and T is the trace of the energy–momentum tensor). The
reviews [26] provide a detailed analysis of modified gravity. In light of this, Teruel [27]
proposed a new modified theory known as κ(R, T) gravity. Specifically, “κ(R, T) gravity
is based on a natural extension of GR, where the modified field equations are produced
by adding elements that contain just the scalar curvature R and the trace T of the stress-
energy tensor”. Recently, the authors [28] addressed the issue of demonstrating cosmic
acceleration in κ(R, T) gravity. Here, a brief discussion of κ(R, T) gravity, the accompanying
field equations, and the essential conditions is provided [29].

The field equations derived from the aforementioned modified theories are far more
difficult than GR. Additionally, during the modification process, some of the original
theory’s subtlety is lost. In this context, Teruel [27] suggested that “the κ(R, T) gravity
theory, which is a non-Lagrangian modified gravity theory”. The least-action principle is
a useful tool for creating physical theories, even though the gravitational theory put out
in [29] is unrelated to it. The Einstein gravitational constant has a modification in κ(R, T)
that permits a moving gravitational constant. This strategy would require non-covariant
conservation of the energy–momentum tensor, more like in previous modified gravity
theories, such as Rastall gravity [30] and f (R, T) gravity [10]. One of the most-effective
methods for creating a physical theory and its potential generalizations is the least-action
principle. We mention the direct application of symmetries and the development of general
conservation laws among the many benefits of the Lagrangian formalism. However, there
is no reason to assume that, in a final theory of Nature, common symmetries and/or
normal conservation rules will always hold. In this regard, it is interesting to consider that
Einstein did not initially derive general relativity (GR) using a variational principle [31,32].
Instead, he used a very different strategy to get to the right field equations, one that
eventually worked by adding a trace term right in the field equations. The Einstein–Hilbert
action (EHA), which is a variational principle, was discovered and added to the theory
after the correct field equations had already been determined [33]. It is true that the
equivalence principle and general covariance were the system’s founding notions. In a
similar manner, Maxwell’s electrodynamics (ME), the other classical field theory, was not
originally conceived of from any variational principle and was only established with the
addition of a source term (the Maxwell displacement current) [34]. Both the GR and ME
field equations were discovered without the use of a variational principle, which suggests
that, perhaps, a new strategy might be considered. There is no justification to dismiss the
quest for an alternate strategy that is distinct from the Lagrangian formalism in light of
these historical events. This fact presents another significant justification for investigating a
non-Lagrangian modified gravitational theory in this context. For a detailed discussion,
the readers are advised to see [27].

According to [27], the κ(R, T) modified gravity field equations are created by explicitly
substituting new source terms in the GR-field equations.

Rij −
1
2

Rgij = Λgij + κ(R, T)Tij (1)
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where “gij is the metric potential”, Rij is the Ricci tensor, Λ is the “cosmological constant, Tij
is the energy–momentum tensor and κ(R, T) related to the Einstein gravitational constant”.
It is considered as a function of the traces T = gijTij and Ricci scalar R = gijRij. It is
obvious that κ depends on the scalars, so we must investigate the possibility of a variable
gravitational constant. The field equation given by Equation (1) has no divergence on the
left side.

5j(κ(R, T)Tij) = 0 (2)

The non-covariant conservation of Tij is the foundation for these field equations, which
may be defined as

5jTij =

(
−5j κ(R, T)

κ(R, T)

)
Tij (3)

Two distinct options were examined together with their cosmological significance in [27].
The symbol for a matter–matter coupling is κ(T) = −λT + 8π G, and a matter–curvature
coupling is represented by κ(R) = αR + 8πG. In this context, it was assumed that the
coupling constants λ and α are modest and consistent with a small violation of the energy–
momentum tensor. Investigating a flat κ(R, T) gravity model and obtaining certain cosmo-
logical parameters were the aim of this article.

The paper is organized as follows: The introduction of κ(R, T) is covered in Section 1.
The formulation of κ(R, T) gravity is discussed in Section 2. We discuss the various energy
conditions in Section 3. Then, we check the evolutionary trajectory statefinder diagnostics
in Section 4. The thermodynamics aspects are discussed in Section 5. We discuss the
parametrization method to reconstruct the cosmological models under observational con-
straints in Section 6. Observational Hubble data and statistical methods used to constrain
the model parameters are provided in Section 6.1. We analyze the Pantheon data with 1048
data points and the χ2 function in Section 6.2. Graphical representations are used to de-
scribe the many cosmological parameters, such as the DP, effective energy density, effective
pressure, and EoS parameters. We also cover the energy conditions and statefinders under
observational restrictions in this section. We outline our findings in the final Section 8.

2. Formulation of κ(R, T) Gravity

In this part of the article, we examine a Universe that is homogeneous and isotropic,
and as a matter source, it is filled with a perfect fluid. The energy–momentum tensor can
be written as follows:

Tij = (p + ρ)uiuj − pgij, (4)

where p, ρ, and ui are the density, pressure, and four-velocity. In the standard spheri-
cally symmetric coordinates (xi) = t, r, θ, φ, a spatially homogeneous, isotropic, and flat
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric has the form:

ds2 = dt2 −
[
dr2 + r2dθ2 + r2sin2θdφ2

]
a2, (5)

In this equation, a(t) is the scale factor and r, θ, and φ are comoving spatial coordinates.
Flat FLRW models have been remarkably successful in describing the observed nature of
the Universe. These components allow two distinct modified Friedmann equations (MFEs)
to be derived for κ(R, T) [27]:

H2 =
8πG

3
ρ +

Λ
3
− λρ

3
(ρ− 3p) (6)

Ḣ + H2 = −4πG
3

(ρ + 3p) +
Λ
3
+

λ

6
(ρ2 − 9p2). (7)

Here, the Hubble parameter is defined as H = ȧ
a . We considered only the flat case suggested

by observations [35], and we chose the function κ(R, T) as κ(T) = −λT + 8πG, where
(8πG = k1 = 1).
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For the complete indeterminacy of the system, we considered a perfect gas equation
of state:

p = γρ, (8)

where 0 ≤ γ ≤ 1 is an arbitrary constant.
The proportional importance of gravitational matter, which is defined by density ρ,

decreases as the Universe expands, followed by Λ ' 3H2. We are already in a dark-energy-
dominated Universe, so the relationship is already (nearly) true. Therefore, we considered
the cosmological constant as

Λ = βH2, (9)

where β is the constant of proportionality. Beck [36] determined the explicit form of the
cosmological constant, Λ = G2

h̄4

(me
α

)6, where α is the fine structure constant, G is the gravita-
tional constant, h̄ is the reduced Planck constant, and me is the electron mass. Accordingly,
the (observable) vacuum energy density is given by [36] ρΛ = c4

8πG Λ= G
4π

c4

h̄
(me

α

)6, where c is
the speed of light. This formula produces the numerical value ρΛ ' 4.0961 GeV/m3, which
easily satisfies the present observational limitations [37]. For in-depth derivations, see [36].
In the literature (e.g., [38–41]), there exist some Λ(t) models already. However, most of
them are written by hand, e.g., Λ ∝ H2, Λ ∝ ä

a , Λ ∝ R, Λ ∝ ρm, and Λ ∝ α6. Therefore, in
this study, we considered a time-dependent Λ.

Solving Equations (6) and (7) with the help of Equations (8) and (9), we obtain the
Hubble parameter as (See Appendix A):

H = − 2
2c1 + (β− 3)(1 + γ)t

. (10)

and the energy density as:

ρ =

√
16π2G2 − 4(β−3)(3γ−1)λ

(2c1+(β−3)(γ+1)t)2 − 4πG

(3γ− 1)λ
. (11)

The Hubble parameter H(t) is large at early times. From Equation (10), we notice that
H(t) is decreasing as time is increasing. For γ = 0, 1/3 and 1, H(t) converges to finite
values. Only the Hubble parameter, which is the inverse of time, has a dimension among
the several cosmographic parameters.

In all of Figures 1–6, in our derived model, we used the assumptions β = 1.5 and
c1 = 0.5. We determined that our model is stable for these values and that all cosmological
parameters produce accurate results. As we can see from Equation (10), there are three
possible values for the variable β: β < 3, β > 3, and β = 3. We obtained H = constant for
all time for β = 3, which is inconsistent. If we used β > 3, the model was unstable, and we
did not achieve satisfactory results. The model was stable, and we obtain pretty good result
when we took β < 3 into account. c1 being an arbitrary constant, we randomly selected
a small value of c1 = 0.5. In order to constrain the model parameter using OHD+ SN Ia
(Pantheon) data, we additionally included Sections 6 and 7 in the text. Here, β = 2.28 was
found, which is also less than three. The current cosmological observations are compatible
with the situation of β < 3. In this instance, we assessed every geometrical and physical
parameter for eras where dust, radiation, and stiff matter predominated.

Integrating Equation (10), we obtain the scale factor as:

a(t) = c2

(
2c1 + (β− 3)(γ + 1)t

)− 2
(β−3)(γ+1) . (12)

where c1 and c2 are integrating constants.
One of the geometrical parameters, the deceleration parameter (DP), demonstrates the

key to analyzing the dynamics of the Universe. The definition of the DP q(t) is

q(t) = − aä
ȧ2 = −1− Ḣ

H2 . (13)
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Now, we find the the value of q by using Equation (12), ȧ(t) = da(t)
dt , and we obtain the

deceleration parameter q(t) as

q =
1
2

t(2c1 + (β− 3)(γ + 1)t). (14)

γ=0

γ=1/3

γ=1

0 2 4 6 8 10
-150

-100

-50

0

t (Gyr)

q
(t
)

.

.
Figure 1. The plot of deceleration parameter q(t) versus time t for γ = 0, 1/3 and 1. Here, β = 1.5,
c1 = 0.5.

q plays a significant role in defining the essence of the models obtained in Figure 1. The
deceleration parameter defines the difference between the actual age of the Universe and
the Hubble time. The age of the Universe will be less than the Hubble time in a decelerating
Universe with q > 0 because it expanded more quickly in the past. In contrast, a Universe
that has always expanded more quickly will have an age greater than the Hubble time.
The Hubble time is the age of a Universe with q = 0, which is a constant rate of expansion.
Recently, Dixit et al. [42] discussed the behavior of q for different numerical values of k
and m. The model decelerates in a conventional manner when q > 0. The model expands
with acceleration when −1 < q ≤ 0. The cosmos enlarges exponentially when q = −1
and super-exponentially when q < −1. For different values of 0 ≤ γ ≤ 1, the deceleration
parameter in our derived model shows an accelerating phase. The background fluid was
assumed to be the ideal fluid specified by Equation (4). Furthermore, we considered the
scalar field to be solely a function of time. In terms of the effective energy density and
pressure, the Friedmann equations for the generalized scalar–tensor theory are: 3H2 = ρe f f ,
3H2 + 2Ḣ = pe f f , where ρe f f = κ(T)ρ + Λ and pe f f = −κ(T)p + Λ [27]. Moreover,
ρe f f , and pe f f are the effective density and effective pressure, respectively. By utilizing
Equation (10) and the above condition, we derived the expressions for the effective energy
density (ρe f f ) and effective pressure (pe f f ), which are obtained as:

ρe f f =

(
4πG−

√
16π2G2 − 4(β−3)(3γ−1)λ

(2c1+(β−3)(γ+1)t)2

)
2

(1− 3γ)λ2 +
4β

(2c1 + (β− 3)(γ + 1)t)2 (15)

pe f f =

(
4πG−

√
16π2G2 − 4(β−3)(3γ−1)λ

(2c1+(β−3)(γ+1)t)2

)
2

(1− 3γ)λ2 − 4β

(2c1 + (β− 3)(γ + 1)t)2 (16)

We observed that the effective energy density (ρe f f ) is decreasing as t is increasing
For γ = 0, 1/3, and 1, and the effective energy density (ρe f f ) is positive throughout
the evolution and approaches small positive values (see Figure 2a). In Figure 2b, we
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illustrate the behavior of the effective pressure pe f f . The effective pressure pe f f is negative
throughout the evolution for (γ = 1, 1/3, 0) and asymptotically approaches zero.

(a)

γ=0

γ=1/3

γ=1

0 20 40 60 80 100

0.000

0.002

0.004

0.006

0.008

0.010

0.012

t (Gyr)

ρ
e
ff

.

.

(b)

γ=0

γ=1/3

γ=1

0 20 40 60 80 100

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

t (Gyr)

p
e
ff

.

.

Figure 2. (a) The plot of effective energy density ρe f f versus time t for γ = 0, 1/3 and 1. (b) The plot
of effective pressure pe f f versus time t for γ = 0, 1/3 and 1. Here, β = 1.5, c1 = 0.5, and k1 = 1.

Equation of State Parameter

It was found that the EoS parameter depends on time. The EoS parameter can transit
from ω > −1 to ω < −1 due to its time dependence [43]. If the EoS parameter is found
to be ω < −1, the phantom fluid dominates the Universe, and if the EoS parameter
is found to be −1 < ω < −1/3, matter dominates the Universe. This suggests that a
significant crunch could occur in the far future. The constraints of the EoS parameter of the
DE model are provided by the Planck Collaboration [44] and WMAP group [45], which
provide the ranges for the EoS parameter as 0.921 ≤ ω ≤ −1.26 (Planck + WP + Union 2.1),
−0.89 ≤ ω ≤ −1.38 (Planck + WP + BAO), and −0.983 ≤ ω ≤ −1.162 (WMAP + eCMB
+ BAO + H0). Additionally, it can be seen that the behavior of the model developed here
is in good accordance with recent observational data [46]. The model lies in the phantom
region, which is a DE-driven accelerated phase ω < −1, and is in good agreement with
the current observational data of the Universe [47]. By using Equations (15) and (16), we
obtained the effective equation of state parameter as: ωe f f =

ρe f f
pe f f

.

ωe f f =

(
4πG−

√
16π2G2− 4(β−3)(3γ−1)λ

(2c1+(β−3)(γ+1)t)2

)
2

(1−3γ)λ2 + 4β

(2c1+(β−3)(γ+1)t)2(
4πG−

√
(16π2G2− 4(β−3)(3γ−1)λ

(2c1+(β−3)(γ+1)t)2

)
2

(1−3γ)λ2 − 4β

(2c1+(β−3)(γ+1)t)2

(17)

Reference [48] discussed the behavior of the equation of state parameter. The dust
phase with γ = 0 is one of the most-common phases seen with the EoS parameter. Then, γ
= 1/3 shows the phase where radiation is most important, while γ = −1 shows the vacuum
energy ΛCDM model. Furthermore, the accelerating phase of the Universe, which is in
recent discussion, is shown when γ < − 1

3 , which includes quintessence (−1 < γ ≤ 0)
and the phantom regime (γ < −1). In our derived model, the EoS parameter lies in the
quintessence region for γ = 1; for γ = 0, the EoS parameter lies in phantom region; for
γ = 1/3, this EoS approaches the ΛCDM point (see Figure 3).



Symmetry 2023, 15, 549 7 of 19

γ=0

γ=1/3

γ=1

0 20 40 60 80 100
-1.0015

-1.0010

-1.0005

-1.0000

-0.9995

-0.9990

-0.9985

t (Gyr)

ω
e
ff

.

.

Figure 3. The plot of EoS parameter versus time t for γ = 0, 1/3 and 1. Here, β = 1.5, c1 = 0.5,
k1 = 1.

(a) (b)

(c) (d)

Figure 4. The plots of energy conditions (a) WECs, (b) NECs, (c) DECs, and (d) DECs versus time t
and γ respectively. Here, β = 1.5, c1 = 0.5, and k1 = 1. The scale of time t is taken in Gyr.
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(c)

Figure 5. (a) The plot of (r− s). (b) The plot of (r− q). (c) The plot of (s− q). Here, β = 1.5, c1 = 0.5,
and k1 = 1.
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(a) (b)

Figure 6. (a) Evolution of thermodynamical temperature T in the κ(R, T) gravity model. (b) Evolution
of thermodynamical entropy density Sd in the κ(R, T) gravity model. Here, β = 1.5, c1 = 0.5, and
k1 = 1.
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3. Generalized Energy Conditions

The energy requirements are very helpful for understanding classical GR, which
determines the behavior of null, space-like, or time-like geodesics in the Universe and
helps in understanding the singularity difficulties of space–time. The most-prevalent EC
types are the strong energy conditions (SECs), null energy conditions (NECs), weak energy
conditions (WECs), and dominant energy conditions (DECs). The ECs may be formulated
in several ways, for example in a geometrical way, i.e., ECs are well-expressed involving
the Ricci or Weyl tensors, in a physical way, i.e., the ECs are expressed purely through
the stress–energy–momentum tensor, or in an effective way, i.e., the ECs can be expressed
involving the energy density (ρ), which plays the role as the time-like component, and
pressure p, which serves as the three-space-like component [49,50]. The best way to describe
these four EC formulations is:

Strong energy conditions (SECs) if ρe f f + 3pe f f ≥ 0;

Weak energy conditions (WECs) if ρe f f ≥ 0, ρe f f + pe f f ≥ 0;

Null energy condition (NECs) if ρe f f + pe f f ≥ 0;

Dominant energy conditions (DECs) i f ρe f f ≥ 0, |pe f f | ≤ ρe f f .

By using Equations (15) and (16), we obtain

ρe f f + 3pe f f =

3
(

4πG−
√

16π2G2 − 4(β−3)(3γ−1)λ
(2c1+(β−3)(γ+1)t)2

)
2

(1− 3γ)λ2 − 8β

(2c1 + (β− 3)(γ + 1)t)2 (18)

ρe f f =

(
4πG−

√
16π2G2 − 4(β−3)(3γ−1)λ

(2c1+(β−3)(γ+1)t)2

)
2

(1− 3γ)λ2 +
4β

(2c1 + (β− 3)(γ + 1)t)2 (19)

ρe f f + pe f f =

2
(

4πG−
√

16π2G2 − 4(β−3)(3γ−1)λ
(2c1+(β−3)(γ+1)t)2

)
2

(1− 3γ)λ2 (20)

ρe f f − pe f f =
8β

(2c1 + (β− 3)(γ + 1)t)2 (21)

The profiles of the ECs are shown in Figure 4a–d. In our derived model, the WECs,
NECs, and DECs are satisfied (see Table 1). The SECs are violated for γ = 0, 1/3, 1. As
a result, the validity of the NECs and ρ > 0 together ensure the WECs and DECs. The
negative behavior of the SECs demonstrates the accelerating expansion of the Universe [50].

Table 1. The behavior of energy conditions for various limits of parameters γ and λ.

Range of λ γ WECs DECs NECs SCEs

−1.005 (0, 1/3) K = 3 (0, 1) K = 6 (0, 1.5) K = 0.7 (0, 1.8) K = 0.5 (0, 1.6)
[3 ↓ 0] [1, 10] [6 ↓ 0] [1.5, 10] [0.7 ↓ 0] [1.8, 10] [0.5 ↓ −1.5] (1.6, 2)

[−1.5 ↑ 0] [2, 10]

−1.005 (1/3, 1) K = 0 (0, 1) K = 2.4 (0, 1.6) K = −0.03 (0, 1) K = −3 (0, 1.8)
K = 0.3 (1, 2) [2.4 ↓ 0] [1.6, 10] [−0.03 ↑ 0] [1, 10] [−3 ↑ 0] [1.8, 10]
[0.3 ↓ 0] [2, 10]

0.010 (0, 1/3) K = 3 (0, 2) K = 6 (0, 1.5) K = 0.7 (0, 2) K = 0.5 (0, 1.7)
[3 ↓ 0] [2, 10] [6 ↓ 0] [1.5, 10] [0.7 ↓ 0] [2, 10] [0.5 ↓ −1.5] (1.7, 2)

[−1.5 ↑ 0] [2, 10]

0.010 (1/3, 1) K = 0 (0, 0.7) K = 2.4 (0, 1.6) K = −0.3 (0, 1) K = −3 (0, 1.8)
K = 0.4 (0.7, 2) [2.4 ↓ 0] [1.6, 10] [−0.3 ↑ 0] [1, 10] [−3 ↑ 0] [1.8, 10]
[0.4 ↓ 0] (2, 10)
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Table 1. Cont.

Range of λ γ WECs DECs NECs SCEs

1.005 (0, 1/3) K = 0 (0.3, 0.6) K = 6 (0, 1.5) K = 0.06
(0, 0.2) ∪ (0.6, 2) K = 0.5 (0, 1)

K = 0.8
(0, 0.3) ∪ (0.6, 2) [6 ↓ 0] [1.5,10] [0.6 ↓ 0] [2,10] [0.5 ↓ −1] (1, 2.5)

[0.8 ↓ 0] [2, 10] [−1 ↑ 0.5] [2.5, 10]

1.005 (1/3, 1) K = 1 (0, 1.5) K = 2.4 (0, 1.6) K = −0.2 (0, 1.2) K = −3 (0, 1.8)
[1 ↓ 0] [1.5, 10] [2.4 ↓ 0] [1.6, 10] [−0.2 ↑ 0] [1.2, 10] [−3 ↑ 0] [1.8, 10]

4. Statefinder

The behavior of higher derivatives of the scale factor, other than H and q, is a crucial
component that must be explained in order to fully comprehend the dynamics of the
Universe. Due to these reasons, we generalized our domain to construct geometrical
parameters that involve higher derivatives of a. Statefinder diagnostics is a method that
takes into account a pair of geometric parameters (r, s) proposed by [51,52] to describe
how different DE models work. The geometrical parameters that are utilized to evaluate
and contrast various DE models are covered in this section. These parameters, (r, s), are
described as

r = 2q2 + q− q̇
H

r =
1
2

[
t2(2c1 + (β− 3)(γ + 1)t)2 + t(2c1 + (β− 3)(γ + 1)t)

−((β− 3)(γ + 1)(−t)− 2c1)(c1 + (β− 3)(γ + 1)t)
]

(22)

s =
1
3

[ r− 1
q− 1

2

]

s =
1

3(2c1t + (β− 3)(γ + 1)t2 − 1)

[
t2(2c1 + (β− 3)(γ + 1)t)2 + t(2c1 + (β− 3)(γ + 1)t) + 1)t)

+(c1 + (β− 3)(γ(2c1 + (β− 3)(γ + 1)t)− 2
]

(23)

The trajectories (r, s), (r, q), and (s, q) are illustrated in Figure 5a–c, respectively. It is
important to note that in, the (r, s) plane, the point (1,0) represents the Λ CDM model, r > 1
s < 0 denotes a Chaplygin gas model, and r < 1 s > 0 is the quintessence region. However,
our model shows a behavior of CG at early times and approaches the Λ CDM model at
late times. Similarly, in the (r, q) plane, the point (1, 0) indicates the Λ CDM model. This
trajectory is separated into two distinct areas. The region r > 1, q < −1 on the (r, q) plane
shows the “phantom model”, whereas the region r > 1, q > −1 shows the “quintessence”
model [53].

In Figure 5c, q lies in a negative region and approaches the ΛCDM point. Similarly,
(s, q) = (0, 0) represents the ΛCDM model. The purpose of these trajectories is to examine
the convergence and divergence of parametric curves such as (r, s), (r, q), and (s, q) with
respect to the ΛCDM model.

5. Thermodynamics

In this section, we consider the part of our analysis that has to do with thermodynamics.
According to the second law of thermodynamics, the horizon’s entropy is always positive
and increases with time in the Universe [54]. The energy in a comoving volume is U = ρV.
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The following equation describes how dissipative effects in a fluid with temperature T
produce entropy Sn in a comoving volume:

T Ṡn = U̇ + pV̇ (24)

When a cosmic fluid’s energy density and pressure are entirely dependent on temper-
ature, when the cosmic fluid has no net charge, we obtain easily [28]

Sn =
V
T (ρ + p) (25)

For a fluid whose equation of state is given by p = γρ, Equation (25) reduces to

Sn =
(1 + γ)ρV
T (26)

where 0 < γ < 1.
Now that we have determined the entropy density in terms of temperature, the first

law of thermodynamics can be stated as

Sd =
Sn

V
=

(1 + γ)ρ

T . (27)

It expresses the entropy density as a function of temperature. The first law of thermo-
dynamics is expressed as

d(ρV) + γρdV = (1 + γ)T d
(Vρ

T

)
. (28)

Integrating Equation (28), we obtain

T = ρ
γ

1+γ (29)

From Equations (27) and (29), one can obtain

Sd = (1 + γ)ρ
1

1+γ (30)

Accordingly, the entropy of a comoving volume varies:

Sn ∼ SdV (31)

These equations are invalid for a vacuum fluid with γ = −1. For a Zel’dovich fluid (γ = 1),
we obtain:

T ∼ ρ
1
2 and Sn ∼ ρ

1
2 (32)

Using Equations (10) and (13) in Equations (29) and (30), we find, respectively, the tempera-
ture (T ) and entropy density (Sd) as

T =


(

4πG−
√

16π2G2 − 4(β−3)(3γ−1)λ
(2c1+(β−3)(γ+1)t)2

)
2

(1− 3γ)λ2

 γ
γ+1 (33)

Sd = (1 + γ)


(

4πG−
√
(16π2G2 − 4(β−3)(3γ−1)λ

(2c1+(β−3)(γ+1)t)2

)
2

(1− 3γ)λ2

 1
γ+1 (34)
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From Figure 6a, it is clear that the temperature for our model is a decreasing function of
time. The model therefore satisfies the second law of thermodynamics. From Equation (34),
we see that the rate of change of entropy with time is positive (see Figure 6b). This also
implies that the entropy decreases over time. This conforms well with the second law of
thermodynamics.

6. Cosmological Model with Observational Constraints

In this part, we implement the parametrization approach to reconstruct the cosmologi-
cal models. For example, one may find a fascinating research work in which they employed
the parametrization approach to investigate cosmological models. The primary benefit
of using this method is that we can explore cosmological theories using observable data.
The relationship between the scale factor a(t) and the redshift z is 1 + z = a0/a, where a0
is the late-time scale factor. From the above relation, we can find d

dt = −H(1 + z) d
dz . To

describe the dynamics of the Universe, the Hubble parameter H in terms of redshift can be
written as

H(z) = H0(1 + z)
(3−β)(γ+1)

2 (35)

where H0 is the present value of H(z) and β is the free parameter. In order to describe the
dynamical and physical properties of the model with redshift, we considered γ = 1 for
the stiff fluid model to describe the behavior of the Universe. In this context, we discuss
two observational datasets in the following section.

6.1. Observational Hubble Data

The observational data and statistical techniques used to constrain the model pa-
rameters of the derived Universe are described in this subsection. We used “57 H(z)
observational data point ranges 0 ≤ z ≤ 2.36 acquired using the Markov Chain Monte
Carlo (MCMC) technique”.

The χ2 statistic was used to determine the best-fitting values and limits for a fitted
model [55]. The estimated values of were H0 = 61.5+2.7

−2.4 kms−1 Mpc−1 and β = 1.981+0.087
−0.084.

In order to limit the model’s parameters H0 and β, we define χ2 as

χ2(H0, β) =
57

∑
i=1

(Hth(i)− Hob(i))
2

σ(i)2 (36)

where “Hth(i)” is the theoretical value of “H(z), and σi’s” is the error in the observed value
of “H(z)”. With confidence levels of 68.3 %, 95.4 %, and 99.7%, we were able to obtain
the 1D marginalized distribution and 2D contours for our model, which are shown in
Figures 7 and 8.

6.2. Pantheon Data

The pantheon data are the most-important observational datasets, with 1048 data
points, and are the most-comprehensive known SNe Ia records. Pantheon datasets include
points that spectroscopically cover the region of redshift z between z = (0.01, 2.26).

The χ2 function for the Pantheon sample of 1048 SNe Ia reads as

χ2(H0, β) =
1048

∑
i=1

[µth(z(H0, β, zi))− µobs(zi)]
2

σ(i)2 (37)

“µobs and µth are represents as the observed and theoretical distance modulus. σ(i) de-
notes the standard error of the observed values”. We fit the free parameters of our model
by comparing µobs with the observational values µth of the distance modulus. The dis-
tance model can be obtained by the equation µth = µ(DL) = m−M = 5log10(DL) + µ0.
The associated terms M, m and µ0 are represented as the absolute magnitude, apparent
magnitude, and marginalized nuisance parameter. Furthermore, µ0 can be obtained as
µ0 = 5log(H−1

0 /Mpc) +25 (see Figure 9) [56].
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H0 = 69.3 ± 1.7

2.2 2.3 2.4

= 2.289+0.036
0.033

Figure 7. The 1− σ and 2− σ likelihood contours for the model parameters with H(z) + Pantheon
data.

Figure 8. The figure depicts the error bar plot of the 57 OHD points with the fitting of Hubble function
H(z) versus redshift. This plot is compared to the conventional ΛCDM.

We summarize the numerical result of the statistical analysis in Table 2. We can test
the predictions of our theory with the available data by implementing the MCMC process.

Table 2. The results are summarized for the parameters of H(z), Pantheon, and H(z) + Pantheon.

Data H0 Model Parameter (β)t

H(z) 61.5+2.7
−2.4 1.981+0.087

−0.084

Pantheon 73± 2.1 2.96+0.86
−0.99

H(z) + Pantheon 69.3± 1.7 2.289+0.036
−0.033
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Figure 9. The error bar plot of the 1048 points of the Pantheon compilation SNe Ia datasets is shown in
the image, along with the fitting of function µ(z) and redshift z for comparison with the conventional
ΛCDM model.

7. Cosmological Parameters

The deceleration parameter q = −1 + (1+z)
H(z)

dH
dz is one of the cosmological parameters

that plays a vital role in understanding the current condition of the expansion of our
Universe. When the value of the deceleration parameter is strictly less than zero, it demon-
strates the accelerating behavior of the Universe; however, when the value of the parameter
is not strictly less than zero, it demonstrates that the cosmos is decelerating. In addition,
all of the observational evidence (OHD, Pantheon, OHD + Pantheon) demonstrates that
our present Universe is in an accelerating phase for γ = 1. This is the case since γ = 1
denotes the acceleration of the expansion of the Universe (see Figure 10a).

Figure 10b shows that there is an increase in the energy density of the Universe with a
redshift, and this trend appears to be continuing as the Universe expands. On the other
hand, Figure 10c shows that there is a decrease in pressure with redshift, and this pressure
has large negative values throughout the course of cosmic evolution. The EoS parameter,
known as ωe f f , may also be used to classify the decelerating and accelerating behavior of

the Universe, and its definition is as follows: ωe f f =
pe f f
ρe f f

. After examining Figure 10d, we
found that ωe f f = −3.001 for OHD, ωe f f = −1.024 for Pantheon, and ωe f f = −1.864 for
OHD + Pantheon are the current values of the EoS parameter and that ωe f f < 0. Our result
aligns with some of the studies [57], which indicates an accelerating phase.

7.1. Energy Conditions

Figure 11 depicts the profile of the energy density, WECs, NECs, DECs, and SECs in
relation to redshift z. We can see from the figure that the WECs and DECs are satisfied,
whereas the NECs and SECs are violated. This is in agreement with the present scenario
of the Universe. These features led us to the conclusion that every behavior shows an
accelerating expansion of the cosmos.
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Figure 10. (a) Behavior of deceleration parameter versus redshift. (b) Behavior of effective density
versus redshift. (c) Behavior of effective pressure versus redshift. (d) Behavior of EoS parameter
versus redshift.
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Figure 11. Behavior of all types of energy conditions against redshift for various observational data.

7.2. Statefinders

Many trajectories in the (r − s), (r − q), and (s − q) planes show the chronologi-
cal evolution of several dark energy concepts. A few fixed point in these planes are
(r, s) = (1, 0) and (r, q) = (1,−1) for Λ CDM shown in the (r, s) plane, and (r, q) and (s, q)
have a large deviation from the ΛCDM model in the future (see Figure 12).
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Figure 12. Behavior of statefinder trajectories (r− s), (r− q), and (s− q).

8. Conclusions

This article focused on the κ(R, T) gravity model. The deterministic solutions of
the κ(R, T) field equations were derived by considering the p = γρ. We examined the
cosmological parameters such as the energy density, pressure, EoS, deceleration, Hubble,
and cosmological planes such as statefinder trajectories (r, s), (r, q), and (s, q). We also
discussed the Universe’s thermodynamic behavior.

The characteristics of the derived model were examined using appropriate model
parameter values. Our findings are summarized below:

• We examined how much the DP reveals about the current acceleration of the Universe.
The Hubble parameter (H) and the DP (q) are crucial parameters that may be utilized
to describe the geometrical characteristics of the cosmos. Since a > 0, the expansion of
the cosmos is symbolized as H > 0. The evolution of q versus t is depicted in Figure 1.
Our model lies in an accelerating phase at present.

• During the cosmic evolution, the effective energy density ρe f f is positive and declines
with time (see Figure 2a). However, we can observe that the effective pressure p is
always negative for various γ values throughout the development (see Figure 2b).

• From the behavior of the EoS parameter, it is observed that ωe f f lies in the quintessence
region for γ = 0; for γ = 1/3, the ωe f f approaches the ΛCDM point; for γ = 1, the
model lies in a phantom region (see Figure 3).

• All energy conditions, with the exception of the SEC, are satisfied in both the early- and
late-time stages, according to our analysis of the energy conditions for all three types
of models γ = 0, 1/3, 1. According to recent results for the accelerating Universe, the
SECs must be violated on a cosmological scale (see Figure 4a–d).

• In the case of κ(R, t) gravity theory, the statefinders play a significant role. Our findings
are described in Figure 6a–c, demonstrating that (r, s), (r, q), and (s, q) are good
diagnostics of dark energy. Figure 5a depicts that the model converges to the fixed
point (r = 1, s = 0) (ΛCDM), but also traverses the Chaplygin gas and quintessence
regions (see, Figure 5a–c).

• From a thermodynamic perspective, we observed that the temperature of our model
is decreasing with time and that the entropy density is positive (see, Figure 6a,b).

• In Figure 7, the 2D contour plots show the best-fit values of H0 and β from the EMCEE
codes for the OHD, Pantheon, and OHD+Pantheon datasets. Similarly, Figures 8 and 9
for H(z) and µ(z) show how well our model fits the data and how it compares to the
ΛCDM model. They also show the error bars for the 57 points and 1048 points of the
Hubble datasets and Pantheon datasets that were used. We can see the our model
is accelerated (see Figure 10a) and the behavior of the density and pressure are the
standard ones (see Figure 10b,c). The EoS parameter lies in the phantom region, which
indicates an accelerating phase (see Figure 10d). The plots of the energy conditions in
Figure 11 show that the WECs and DECs are met, but the NECs and SECs are not. The
SECs’ discrepancy correlates with the acceleration of cosmic expansion. The nature
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of the dark energy concept is seen in Figure 12. The derived model is now in the
quintessence area and shows the Λ CDM point in (r, s), but it will deviate significantly
from the Λ CDM model in the future (r− q).

As a consequence, this research will contribute to a better understanding of the
behavior and development of the cosmos under κ gravity.
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Appendix A

Upon solving Equations (6) and (7) by using Equations (8) and (9):

(3− β)

3
H2 =

8πG
3

ρ− λρ2

3
(1− 3γ) (A1)

and

Ḣ +
(3− β)

3
H2 =

(1 + 3γ)

6

[
− 8πGρ + λ(1− 3γ)ρ2

]
. (A2)

From Equation (A1), we obtain

H2 =
[8πGρ− λ(1− 3γ)ρ2

3− β

]
(A3)

Using H2 from Equation (A2) in Equation (A3), we obtain

Ḣ +
(3− β)(1 + γ)

2
H2 = 0. (A4)

Upon solving Equation (A4), we obtain the Hubble parameter as

H = − 2
2c1 + (β− 3)(1 + γ)t

, (A5)

which is the same as Equation (10) of Section 2.
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