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Abstract: The purpose of this study is to summarize the pattern recognition (PR) and deep learning
(DL) artificial intelligence methods developed for the management of data in the last six years. The
methodology used for the study of documents is a content analysis. For this study, 186 references
are considered, from which 120 are selected for the literature review. First, a general introduction
to artificial intelligence is presented, in which PR/DL methods are studied and their relevance to
data management evaluated. Next, a literature review is provided of the most recent applications
of PR/DL, and the capacity of these methods to process large volumes of data is evaluated. The
analysis of the literature also reveals the main applications, challenges, approaches, advantages, and
disadvantages of using these methods. Moreover, we discuss the main measurement instruments;
the methodological contributions by study areas and research domain; and major databases, journals,
and countries that contribute to the field of study. Finally, we identify emerging research trends, their
limitations, and possible future research paths.

Keywords: data management; artificial intelligence; pattern recognition; deep learning

1. Introduction

With the creation of larger volumes of data, the need to analyze them keeps growing.
The management of large compilations of data within an asymmetrical data structure is
an ever growing problem for companies. Likewise, challenges on an operational skills
level, in data integration and in informatics technological infrastructure, require continuous
upgrades in terms of data management software for big data (BD). As a consequence, data
management makes automatization essential for operations management, which results in
BD management. For Ying et al. [1], the rapid evolution of information architecture, along
with the ability to analyze, access, and manage BD, makes timely decision making increas-
ingly critical. Currently, the management of heterogeneous complex data, all the faster in
a BD environment, escapes human capacities. However, this does not apply to machine
learning (ML). Data management demands a correlation, integration, and superposition of
artificial intelligence (AI) with different intelligent computational techniques, such as ML,
DL, BD, and data mining/science [2]. AI and ML have been created to provide solutions to
different problems related to massive data analyses, pattern identification, and automatized
forms, and to generate accurate predictions. Disruptive technologies are techniques that of-
fer research and development options and assist in the management of data. Among them,
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the following techniques are discussed further below: (i) AI, (ii) cognitive computation
(CC), (iii) expert systems, and (iv) machine intelligence (MI), manifested through ML, PR,
and DL, combined with data mining/science, BD, and advanced data analytics [3].

If data are the raw materials in which the new data paradigm of Industry 4.0 is
nurtured, ML and AI are the transformation engines in the current digital age. ML is a
subfield of AI, used in the design of new smart data, a model oriented toward decision
making. From the engineering point view, authors, such as Mitchell [4], define ML as a
computer program that learns an experience, E, in respect to a task, T, and performance
measurement, R,—whereby their performance in T, measured with R, improves experience
E. DL, a part of ML, is a tool based on artificial neural networks (ANNs). DL, unlike
ANNs, can have several hundred complex layers, each one with different processing
units (neurons).

(i) AI is a field of computational sciences that leads the design and construction of
systems capable of performing tasks associated with human intelligence. The modern
version of AI owes much to Alan Turing [5] and to the conference at Dartmouth College in
1956, when the term AI was coined—later to be officially defined by John McCarthy [6] in
1958 as “The science and engineering to fabricate intelligent machines”. In the literature,
several meanings for AI can be found—a not uncommon example of scientific concepts
obtaining their ultimate definition only after a period of maturation [7]. For the purposes
of this article, AI is the simulation of human intelligence processes for machines. These
processes include: data learning—which constantly changes; reasoning—for providing
sense to data; and self-correction mechanisms—for decision making. In the literature, many
AI terms can be found that appear similar, yet, in reality, have very distinct meanings.
One of these terms is (ii) CC, which mimics the intelligence, behavior, and reasoning of
humans to solve complex problems. CC learns to study data according to several sources of
information: these are mainly self-learning technologies that are used for data mining, and
also include PR and natural language process (NLP), among others [8]. CC refines pattern
identification and data processing, thus, becoming capable of identifying new problems
and modeling possible solutions. CC is not responsible for determining decisions instead
of humans. Rather, it simply complements the information from which humans determine
decisions, while AI, by contrast, is responsible for decision making, minimizing human
intervention (according to the best algorithm possible) [9]. Therefore, CC is considered
a subcategory of AI. On the other hand, (iii) expert systems are a branch of AI. They are
processes based in computers, are interactive and reliable, and are capable of making
decisions [10]. AI simulates these processes, and when we talk about expert systems, we
refer to the resolution of complex problems in a specific domain. Expert systems are reliable
operators that do not allow any type of mistake. They are also very flexible and the data
compilation mechanism is highly effective. Another important term is (iv) MI. Although it
is often used indistinguishably with the term AI, in fact, it uses various types of intelligent
problem-solving tools (computer sight, voice recognition, forensic analysis, autonomous
vehicles, grouping and classification, among others). MI is suitable for multivariable
problems, where an unclear relation exists between a variable and the expected results.
For Mohannad Naser [11], MI uses revolutionary algorithms designed for learning hidden
patterns in observations through a series of steps of adaptive learning and probabilistic
discovery for systematic values. Once the pattern is discovered, this pattern is exploited
even further to identify its ruling parameters.

AI has many branches, with some of the most commonly used being ML, DL, ANN,
chatbots, computer vision, NLP, natural language generation (NLG), digital virtual as-
sistants, recommendation systems, fuzzy logic, and predictive analysis [12]. In the past
decade, AI has had the potential to change how we work and produce, and as a result, it is
having a significant impact in all engineering domains. Through AI, data management is
transforming the way business is conducted, leading to improvements in customer and
provider services, competitive advantages, new business opportunities, efficiency and cost
reduction, and personalized products and services [13]. Additionally, using the Clarivate-
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WOS tool, Figure 1 illustrates the number of publications that demonstrate the use of
AI methods in engineering. The data show that the use of most methods has increased
in the last decade; however, the number of studies utilizing fuzzy logic techniques and
k-means methods has not seen a significant change. Despite the growing popularity of
neural networks, the number of new studies centered on their use has remained constant
over the past six years. Conversely, the number of studies using ML, PR, MI, support vector
machines (SVMs), and Bayesian methods has seen a noticeable uptick. Additionally, deep
architectures, such as convolutional neural networks and deep belief networks, have been
a trending area of research in recent years.
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1.1. Scope and Motives for the Study

The field of artificial learning has seen the emergence of new techniques that can be
used as intelligent methodologies for managing data. This study focuses on the use of
PR/DL methods and explores their potential applications in the field of data management.
By understanding the latest developments in PR/DL methods, we can assess their impact
and how they can contribute to different domains and research areas. As such, the findings
of this study can serve as a roadmap for discovering long-term solutions for PR/DL in data
management engineering.

The purpose of this revision is to provide a summary of the theoretical foundations of
the methods, to give a general understanding of their uses, review recent developments in
the field, examine case studies and research proposals, and explore potential avenues for
future research.

The main objective of this revision is to provide an in-depth examination of the key
aspects of PR/DL, including the open challenges, potential applications, and perspectives
on computational tools.
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The solutions to many problems can be found in the data, and AI techniques, including
PR/DL, are considered to be effective and dependable tools for managing data. PR/DL
technologies have progressed due to the development of advanced algorithms, increased
computational capabilities and performance, and reduced costs for hardware and firmware.
This advancement has resulted in vast amounts of data requiring powerful algorithms
for summarization and interpretation. These algorithms have enabled smart machines to
not only capture and store data, but also perform complex generalization and abstraction
processes, which are useful for tasks such as data mining, medicine, engineering, and
computer vision classification, grouping, identification, and control.

This revision serves as an introduction to other topics within PR/DL. To make the
study easier to follow, a conceptual framework was established to classify methodological
proposals (Figure 2). In order to provide a comprehensive overview, Section 1 summarizes
the current PR/DL domains used in various engineering applications. This framework
divides PR/DL methodologies into eight domains: computer-aided diagnostics (CAD),
architecture design, forecasting, control systems, fault detection, image analysis, data
imputation, and security. In Section 2 of the theoretical framework, the main areas of study
affected by recent developments in PR/DL over the past five years are highlighted. It is
important to note that these areas are examined within the scope of this article. A total of
13 areas of study are included in the proposed conceptual framework: agriculture, medicine,
telecommunications, business, transportation, computing, infrastructure, electric power,
weather technology, manufacturing, marketing, and information security. Additionally,
Section 3 presents the different computational paradigms discussed in this study and their
interrelatedness.
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1.2. Previous Research

AI and engineering are commonly used terms in the field of data analysis. This inte-
grated term, along with technologies such as the Internet of Things (IoT), cloud computing
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(CC), ML, smart sensors, data analytics, robotics, and others, has been the subject of previ-
ous research. Mathematical computational models are used in semantic segmentation to
describe processes within organizations [14]. Yaqoob et al. [15] discuss the use of blockchain,
IoT, and AI for managing healthcare data systems. Izonin et al. [16] use AI techniques,
primarily ANNs, for managing missing data in air monitoring. Zhuang et al. [17] propose
a process traceability and data management system based on digital twins for complex
products, and Wang et al. [18] conducts a survey to review recent research trends in AI for
urban trajectory data management. They also describe the qualities that a trajectory data
management system should possess to maximize flexibility. Kong et al. [19] propose, using
a digital twin system in IoT, to provide efficient data management for building workshops,
and Putz et al. [20] conducts semistructured interviews with experts to evaluate a model
that uses digital twins in a decentralized data exchange. They also propose an access
control model to address integrity and confidentiality in data management.

Recently, researchers have been comparing statistical and AI methods for inputting
missing data in electrical energy. The experimental results, using 2 years of electrical
energy data from Taiwan, show that AI methods generally have better performance than
statistical methods [21]. Pan and Zhang [22] developed a digital twin framework that
integrates construction information modeling, IoT, and data mining for advanced project
management. The results indicated that AI improves data communication and exploration,
leading to a better understanding, prediction, and optimization of physical construction.
Liu et al. [23] proposed an allocation model for corporate human resources that uses AI
methodologies, specifically an ANN classifier, for data mining. Results showed that the
model has a high ability to combine data in the ideal distribution of human resources.
Jiang et al. [24] presented an integrated framework combining statistical techniques and
AI for measuring and improving publicity in social media related to household waste
management. Hashmi et al. [25] developed an architecture and design framework and
implemented an automated electrical energy management system based on IoT and CC
that generates a loading profile of the consumer in terms of the current, voltage, and
power available through a portal. Shao et al. [26] conducted an exploratory study on the
implementation of Industry 4.0 on a supply chain level and its data management system.

Previous research articles have highlighted the use of AI in data management, but
they primarily focused on traditional techniques. This revision article aims to provide a
broader perspective on the research efforts in the use of two emerging AI methods, PR/DL,
in engineering for data management.

1.3. Main Contributions of This Paper

This revision article aims to (1) analyze and summarize the methodologies related to
PR/DL technologies for data management over the past six years, (2) identify the key chal-
lenges, trends, and emerging future directions for using PR and DL in data management,
and (3) discuss the limitations, performance, evaluation methods, and scope of the PR/DL
methodologies reviewed for data management.

The structure of this revision article is as follows: Section 1 introduces several disrup-
tive technologies used in data management and presents an authors’ discussion about how
AI-integrated advances are being used in conjunction with other technologies to collect
and analyze data. Additionally, the main limitations and contributions of the study are
discussed in this section. Section 2 describes the methodology used in the search and
selection of relevant documents for this study. Section 3 conducts a literature review, in-
troducing new PR and DL techniques, and providing a critical analysis of their relevance,
challenges, limitations, and scope for data management. Additionally, this section includes
a descriptive study analysis. Section 4 discusses potential future research paths and emerg-
ing trends for the use of PR/DL methods in data management. Finally, Section 5 concludes
the literature review with a brief summary.
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2. Literature Review

This section aims to examine, evaluate, and discuss the primary methodologies and
algorithms of the latest generations of PR and DL applications for data management.
Firstly, the main concepts of PR/DL were discussed through the theoretical framework.
Afterwards, the information from each study was analyzed, extracted, and classified using
a systematic literature review approach.

2.1. Pattern Recognition

The concept of PR was first introduced by Oliver Selfridge in 1955, defined as the
extraction of significant characteristics from a group of irrelevant data [27]. Recently, PR has
been defined as a scientific discipline that aims to classify input data into classes or patterns
by extracting significant properties that allow for separation among the classes being
studied (classifying objects into categories). Real-world observations classified using a PR
system are captured through sensors. Depending on the application, it can be used in image
processing, video, text, electromagnetic signals, the web, sounds, and microarray gene data,
odors, or any other type of measurement that requires classification [28]. PR developments
are mainly presented as scientific and engineering disciplines, such as biology, medicine,
computer vision, AI, feature recognition, digital marketing, computer-assisted diagnostics,
voice recognition, among others [29].

In PR, a pattern represents a description of an object. It refers to a group of attributes
used to define an object (a category determined through shared attributes). A class of
patterns is a group of similar patterns. The concept of a characteristic vector can be
defined as a group of properties that distinguish object patterns. Only the properties that
differentiate an object are retained.

PR consists of two phases: (1) the learning or training phase (original information
retrieval, preprocessing, feature extraction, feature normalization, feature analysis, and
feature selection) and (2) the classification or test phase (classifier design and performance
evaluation). In the learning phase, the machine is trained through a pattern recognition
system to recognize specific objects or patterns (extraction and selection module). During
this phase, the classifier is trained and calibrated to divide the feature space. In the
classification phase, the unknown pattern is compared using the trained classifier and
classified into the class that it most closely resembles. The error classification rate is
evaluated using the evaluation system module [30].

In summary, PR is a form of ML that is also a field within AI. It mainly relies on statisti-
cal and ML approaches, with an increasing focus on DL methods in recent years. According
to Zhang et al. [31], a complete PR system includes data acquisition, processing, feature
selection, retrieval, and decision-making classification. For Paolanti and Frontoni [32],
depending on the presence or absence of prior knowledge, PR classification methods can be
divided into four main groups: (i) supervised, (ii) unsupervised, (iii) semisupervised, and
(iv) reinforced. Supervised PR uses labeled data to train the system and make predictions,
while unsupervised PR uses multivariate algorithms to reveal similarity relations between
data points and create clusters. Semisupervised PR uses predefined classes to find new
relationships and define new groups, and reinforced PR uses a feedback mechanism and
reward system to improve decision making iteratively. The training of a group of labeled
data involves constantly calculating the cost-difference function (comparing predicted
and actual outcomes) and adjusting the weight and biases values to obtain the lowest
value. This process uses a gradient, which is the rate at which the cost changes based
on the weight or bias values. In group (ii), classification examples are not available, so
multivariable automatic classification algorithms are used to identify similarities between
characteristic values and create clusters. Group (iii) uses predefined object classes to find
new relationships and define new groups. Finally, in group (iv), decisions are improved
through a feedback mechanism and reward system. Table 1 summarizes the main PR
algorithms that use ML and DL statistical methods.
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Table 1. PR applications in engineering for data management.

Type of Study Domain Case Structure Used PR Method for Data Management

Research article [33]. Classification model. Detailed visual recognition. CNN

Research article [34]. Characteristic retrieval, selection
and classification. Robotic hand control. SVM and naïve Bayes (NB)

Research article [35]. Forecast. Hierarchy pattern recognition for
tourist demand. Nearest neighbor (NN)

Research article [36]. Image classification. Chemical pattern recognition in
medicine plants.

Hierarchical cluster analysis and principal
component analysis (PCA)

Research article [37]. Characteristic retrieval and
classification. Grip control in hand prosthetic. CNN

Literature review [28]. PR algorithms security. General description of PR
algorithms. Literature index

Research article [38]. Image classification. Image processing in steel samples. Random forest (RF)

Research article [39]. Characteristic retrieval. Structural health monitoring. NN

Research article [40]. Group analysis. Trajectory semantics for common
life patterns in cities. ANN, k-means, and density-based method

Research article [41]. Character retrieval. Online human activities
classification. CNN

Research article [42]. Optimal number of sensors and
number of fusion patterns. Structural steel health monitoring. Concentrated method

Research article [43]. Hybrid synaptic device. Acoustic pattern recognition. ANN

Research article [44]. Chemical fingerprint. Chemical pattern recognition in
medicine plants.

PCA, hierarchical cluster analysis, and
partial least squares discriminant analysis

Survey [45]. Activity recognition based on
sensors.

Sensor mode, deep mode, and
application. Content analysis

Research article [46]. Prosthetic leg device. Recognizer based on
electromyogram. Hidden Markov model

Research article [47]. Loading profiles grouping. Residential electric consumption
behavior. PCA and k-means

Research article [48]. Labeling and audio classification. Pretraining for BD. CNN

Research article [49]. Characteristic retrieval and
classification. Failure diagnostics in rollers. Deep belief networks

Research article [50]. Data retrieval and classification. Vehicular trajectory integrity. Dynamic time warping and bottom-up
algorithms

Research article [51]. Pattern association. Multivariable pattern recognition
for quality monitoring. NB

Research article [52]. Electronic nose. Toxic volatile compound
monitoring. Self-organizing map (SOM) and k-means

Research article [53]. Grouping analysis. Travel behavior analysis at homes. K-means or C-means

Literature review [54]. Precision agriculture. Farming teledetection. Descriptive literature revision

Research article [55]. Characteristic retrieval. Statistical process control. CNN

Research article [56]. Data grouping. Mixed characteristic data cluster
analysis Mixture regression

Research article [57]. Synaptic device. Color recognition and color
mixture. ANN

Research article [58]. Characteristic classification. Unmanned aircraft structural
health monitoring. SOM and principal component analysis

Research article [59]. Visual recognition. Instance segmentation in objects. CNN

Research article [60]. Characteristic retrieval, selection,
and classification. Control graphics pattern behavior. Radial basis function neural network

Research article [61]. Characteristic classification. Prosthetic control for upper
extremities. Linear discriminant analysis (LDA)

Research article [62]. Photonic device design. Dimensional reduction technique. PCA



Symmetry 2023, 15, 535 8 of 29

Table 1. Cont.

Type of Study Domain Case Structure Used PR Method for Data Management

Research article [63]. Image classification. Tool wear forecast. ANN

Research article [64]. Training pattern generation. Control graphics for quality
assurance. SVM and probabilistic neural network

Research article [65]. Characteristic retrieval and
classification.

Failure diagnostics for planetary
gearboxes.

Stacked autoencoders (SAEs) and generative
adversarial networks

Literature review [66]. Application summary for artificial
neural networks.

Current tendencies in ANN
models regarding pattern

recognition.
Content analysis

Research article [67]. Image classification and
preprocessing.

Pattern identification for partial
GIS downloads in an IoT context. CNN

Research article [68]. Characteristic retrieval, selection,
and classification.

Conduction pattern recognition
for intelligent electrical energy

management.
PCA

Research article [69]. Electric signal analysis and
classification.

Reliable schematics for island
detection. K-nearest neighbor (KNN)

Research article [70]. Classification and forecast.
Determination of flow charts and

flow volume fractions in
pipelines.

Support vector machine and multilayer
perceptron

Research article [71]. Characteristic retrieval and
classification.

Automatic interpretation of data
of nonspecified metabolomics. CNN and RF

Research article [72]. Group analysis. Maritime traffic patterns. Gaussian distribution

Research article [73]. Characteristic classification. Structural health monitoring at
pedestrian bridges. ANN

Research article [74]. Learning convergence. Effective learning rules for pattern
recognition. Spiking neural networks

Research article [75]. Forecast. Electrical energy consumption
forecast.

k-medoids, deep neural network (DNN),
and long short-term memory

Research article [76]. Dimension reduction and
clustering.

Computational data mining for
bacterium detection.

PCA, multidimensional scaling, minimum
curvilinearity, and Markov clustering

Research article [77]. Character segmentation, retrieval,
and recognition.

Automatic bill and banknote
processing. ANN

Literature review [78]. Main methodologies summary. Syntactic methods for artificial
vision tasks. Systematic literature review (SLR)

Research article [79]. Drop pattern analysis. Design of an automatic drop
detection system. ANN

Research article [80]. Multiple regression model. Financial indicator retrieval. Principal component analysis and
backpropagation neural network

Research article [81]. Image classification. Medical image quality evaluation. CNN

Research article [82]. Forecast. Electrical energy consumption
evaluation with velocity forecast.

K-means, ANN, Markov transition matrix,
and multiple linear regression

Research article [83]. Signal process. Short-circuit failure detection. Fast Fourier transforms and multiple signal
classification

Survey [84]. Robust and efficient pattern
recognition.

Interpretation analysis in DL
methods and network
architecture designs.

Content analysis

Research article [85]. Image processing. Textile industry quality control. CNN

Research article [86]. Signal classification. Fracture characterization in
asphaltic mixtures. K-means

Research article [87]. Signal classification and analysis. Prosthetic control for upper limbs. LDA

Research article [88]. Characteristic retrieval. Damage detection, localization
and diagnostics. Autoregressive model

Research article [89]. Data grouping. Acoustic emission analysis in
cement mortars. K-means
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Table 1. Cont.

Type of Study Domain Case Structure Used PR Method for Data Management

Research article [90]. Electric signal classification
and analysis.

Electrical energy
consumption optimization. ANN

Research article [91]. Sound wave classification
and grouping.

Ultrasound for muscular
contraction monitoring. LDA and Gaussian process regression

According to Table 1, the types of problems addressed included classification, regres-
sion, and prediction. These structures mainly focused on solutions for artificial vision,
computer-assisted diagnostics, acoustic recognition, and optical character recognition,
among others. In supervised learning, the main methodologies used were ANN, SVM, RF,
decision tree, NB, and KNN algorithms. The most common classifiers were SVM, KNN,
NB, and minimal distance. Clusterizers such as K-means, balanced iterative reducing
and clustering hierarchies (BIRCHs), self-organizing map, wave clusters, mean-shift, the
density-based spatial clustering of applications with noise (DBSCAN), fuzzy k-medias,
fuzzy C-means, k-medias sequential, CHAMELEON, hierarchy clusters, clustering using
representative (CURE), clustering in quest (CLIQUE), expectation–maximization algorithm,
and the statistical information grid-based method (STING) were used. The most commonly
used preprocessing methods were a combination of characteristics and stepwise selection.
For data dimension and characteristic selection, the most used methods were principal com-
ponent analysis, quadratic discriminant analysis, linear Fisher discriminant, LDA, Bayes’
theorem, and wrapper methods. Among statistical methods, generative models, such as
the hidden Markov model (HMM), Gaussian distribution, KNN, latent Dirichlet allocation,
and Parzen window, were most used. The same situation happened with discriminative
models such as SVM and decision trees.

From Table 1, 54 research articles, four review articles, and two polls composed the
most significant contributions. The most used PR method for data management was
CNNs, used in 16% of publications, followed by ANN methodological frameworks, used
in 13% of publications. Characteristic selection methodologies such as PCA were used
in 10% of publications. Other data partition methods based on the well-known centroid
algorithm, k-means, were used in 7% of publications. NN, SVM, and LDA algorithms
were each used in 5% of publications, and SOM was used in 3%. Finally, methods such as
the hierarchical cluster analysis, random forest, concentrated method, Bayesian network,
mixture regression, radial basis neural network, deep belief networks, dynamic time
warping, SAE, Gaussian distribution, hidden Markov model, spiking neural networks,
fast Fourier transforms, k-medoids, and autoregressive model each accounted for 2% of
the publications.

2.2. Deep Learning

When selecting DNN, it is important to consider the type of classification or pattern
recognition being used and whether unsupervised learning can be utilized. DNNs are
a type of ML model that can be used for both supervised and unsupervised learning,
and are effective in analyzing large amounts of data. They are characterized by having
many layers, leading to a higher level of complexity [92]. The number of layers and
type of neural network used in a DNN are chosen, and the training process is used to
determine the weights. Currently, there are several popular types of DNNs, including
multilayer perceptron (MLP) [93], convolutional neural network (CNN) [94], recurrent
neural network (RNN) [95], generative adversarial networks (GANs) [96], the deep belief
network (DBN) [97], SAE [98], and graph neural networks (GNNs) [99]. Some authors refer
to DNNs in general without specifying the specific type of architecture. Table 2 provides a
summary of the main DL methods used for data management.



Symmetry 2023, 15, 535 10 of 29

Table 2. DL applications in engineering for data management.

Type of Study Dominion Case Structure DL Methods Used for Data Management

Research article [21]. Data input. Hybrid framework for electrical
energy data monitoring. MLP

Research article [92]. Informatics security. Attack detection in data
management. NB and DNN

Research article [100]. Nonlinear classifiers. Multilayered neural network
interpretation. CNN

Research article [101]. Federated learning. Data collaboration framework at
an IoT scenario. DNN

Research article [102]. Classification model. Fabrication quality control. MLP

Research article [103]. Hybrid model for object detection. Semantic image segmentation. CNN

Survey [104]. New GNN taxonomy. GNN general and complete
description. Literature survey

Research article [105]. Failure diagnostics. Useful life prediction bearing
electric locomotive. DBN

Research article [106]. Computer vision. Climatic degradation free images. GAN

Research article [107]. Classification model. Parkinson’s disease automatic
illness detection. CNN

Research article [108]. Predictive model. Smart electrical energy gauges. RNN

Research article [109]. Graphic signal processing. Convolutional filter graphs and
architecture. GNN

Research article [110]. Computer vision. Cardiac movement analysis. SAE

Survey [111]. ANN. CNN new algorithms. Literature survey

Research article [112]. Forecast. Climatologic information. MLP

Research article [113]. Classification model. Teledetection. CNN and SAE

Research article [114]. Signal integrity evaluator. Automatic image quality. SAE

Research article [115]. Hybrid model for data analysis. Urban traffic flow forecast. CNN and RNN

Research article [116]. Data input. Hybrid framework for Hadoop
cluster monitoring. DBN

Research article [117]. Federated learning.
Data administration from the
Industrial Internet of Things

(IIoT).
DNN

Research article [118]. Failure diagnostics. Useful life forecast for rollers. CNN

Research article [119]. Model classification. Health attention APP based in
CC. MLP

Research article [120]. Data input. Urban traffic management and
control. GAN

Research article [121]. Data input. Noise elimination model for
traffic data. SAE

Survey [122]. Data overfitting in DL. Image data enhancement. Literature survey

Research article [123]. Predictive methods. Hidden link visibility in supply
chains. GNN

Research article [124]. Data input. Historical monitoring of a raised
bridge. CNN

Research article [125]. Parallel calculation method
(master–slave). Urban traffic flow forecast. DBN.

Research article [126]. Backpropagation algorithm. Neural error assignation. DNN

Research article [127]. Hybrid ML model. Information lifecycle
management. MLP

Research article [128]. Failure detection.
Useful life forecast engine

bearings, centrifugal pump, and
hydraulic pump.

CNN
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Table 2. Cont.

Type of Study Dominion Case Structure DL Methods Used for Data Management

Research article [129]. Computer vision. Synthetic image and automatic
COVID-19 patient detection. GAN

Research article [130]. Local directional position pattern
(LDPP). Facial expression recognition. DBN

Survey [131]. Object detection. Summary of latest methodological
advances with DL. Literature survey

Research article [132]. High-resolution network
(HRNet). Visual recognition. CNN

Research article [133]. Regression and binary
classification model. Emergency event forecast. RNN

Research article [134]. Empirical risk minimization. ML on graphs. GNN

Research article [135]. Characteristic retrieval. Human activity recognition. CNN and RNN

Research article [136]. DL architecture. Location recognition. DNN

Research article [137]. Object detection fast R-CNN. Detection system performance. CNN

Survey [138]. DL.
Concepts, CNN architectures,
challenges, applications, and

future directions.
Literature survey

Research article [139]. Deep long short-term memory
(LSTM) architecture.

Automatic COVID-19 detection
and X-rays. DNN

Research article [140]. Forecast. Electrical energy load profiles in
smart gauges. RNN

Research article [141]. Supervised classificationand
ConvNetQuake algorithm.

Earthquake detection and
localization. CNN

Research article [142]. Bioinspired DL. Credit approval decision
automation. MLP

Research article [143]. Hybrid forecast model. Natural gas price. DBN

Research article [144]. ANN classifier. Facial image manipulation
detection. GAN

Research article [145]. Image classification. Breast cancer and
computer-assisted diagnostics. CNN

Research article [146]. Deep tensor neural network
architecture. Molecular property discoveries. DNN

Research article [147]. Process analytics. Enterprise process forecast. SAE

Literature review [148]. Conceptual framework for GNN
process classification. Latest GNN methods. SLR

Research article [149]. Computer vision. Synthetic medical image
generation. GAN

Research article [150]. Failure detection. Useful life forecast of rollers. RNN

Research article [151]. Classification model. COVID-19 automatic pneumonia
detection. CNN

Research article [152]. Cyberattack detection. SCADA network systems. DBN

Research article [153]. DL architecture. Short-term urban traffic flow
forecast. DNN

Research article [154]. Graphic signal nonlinear
processing. Topological network analysis. GNN

Research article [155]. Time series analysis. BD growth forecast. SAE

Research article [156]. Image classification. CNN architecture design. CNN and genetic algorithms

Research article [157]. Robust predictive modeling. Detection of novel chemical
substances. CNN

According to Table 2, the main types of problems addressed using deep learning meth-
ods were pattern classification, feature learning, and feature representation. These methods
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were primarily used in the fields of computer vision, process control, multimedia analysis
and understanding, image recognition, image super-resolution, data recovery, understand-
ing, transmission, and NLP. The literature review showed that in supervised learning, the
most used techniques were CNNs, DNNs, and RNNs, including the gated recurrent unit
(GRU) and LSTM approaches. In unsupervised learning, generative networks, dimensional
reduction, clustering (GANs, autoencoders, restricted Boltzmann machine (RBM), etc.),
and RNNs, including GRU and LSTM approaches, were widely used. For sequential data
processing and retrieval tasks, such as image/video/music analyses and NLP, RNNs were
commonly used, and its extension, recursive neural networks, were shown to be effective.

From Table 2, 54 research articles, 1 literature review article, and 5 polls were found to
be the most significant contributions in the field of deep learning for data management. The
most used deep learning method was the CNN, which was used in 22% of the publications.
The second most used method was DNNs, which were used in 13% of the publications.
Other commonly used methods for pattern identification and classification included DBNs,
RNNs, MLPs, and SAEs, each being used in 10% of the publications. Another unsupervised
deep learning method, GANs, was used in 8% of the publications. Finally, GNNs, a type of
algorithm designed to perform inferences on data represented by graphics, were used in
7% of the publications.

It was observed that different authors proposed the use of different CNN architectures,
among the most used being AlexNet [158], VGGNet [159], ResNet [160], Inception-V3 [161],
GoogleNet [162], DenseNet [163], CapsuleNet [164], HRNet [132], among others.

3. Methodology

A systematic literature review (SLR) was conducted, which involved a thorough search
of the most relevant pattern recognition/deep learning (PR/DL) artificial intelligence stud-
ies in the field of data management. SLRs are studies that synthesize available scientific
evidence. In this study, a review of qualitative and quantitative aspects of previous studies
was performed with the aim of analyzing, classifying, and summarizing the existing infor-
mation on the topic. The SLR methodology included a content analysis, a valid technique
for studying scientific documents [165]. The content analysis was used to thoroughly read
the articles and select the relevant information from each of the studies included in the
SLR. To successfully conduct an SLR, it is necessary to have a good understanding of the
methodologies used in previous studies [166–173].

The goal of this literature review was to examine the main PR/DL methodologies
as reliable and efficient tools in the field of data management. The methodological devel-
opment of this study provided an understanding of the most recent PR/DL algorithms
used in data management in engineering. Hamid et al. [174] used an SLR to analyze the
methodological development of AI for big data processes in order to identify the main
challenges and gaps in the use of application systems for smart tourism.

Ribeiro-Navarrete et al. [175] used an SLR to research AI technologies for controlling
COVID-19 and future pandemics by analyzing the gathering and massive data management
from users’ mobile devices. Similarly, Garg and Mago [176] also used an SLR to summarize
and describe the role of various ML techniques used in various medical applications.

3.1. Study Search

The research employed the Prisma methodology [177,178], as outlined in Figure 3.
Articles from 2016 to 2021 were included in the study. The search was conducted using
Google Scholar and digital platforms, such as Springer Link, Emerald Insight, Science Direct,
Wiley Online Library, Taylor & Francis Group, and IEEE Xplore Digital Library, among
others. The main focus of the study was to identify the key types of studies, dominions, case
structures, and algorithms that contributed to the development of methodologic proposals
for data management using PR and DL.
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Figure 3. PRISMA flow diagram in three levels.

The initial search for the term ML returned over four million results; therefore, it
was necessary to refine the search by using an advanced search method. This included
using AND/OR connectors with the following keywords: “data management” AND “deep
learning”, “data management” AND “pattern recognition”, “data management” AND
“artificial neural networks”, and other techniques used for retrieving, analyzing, and
managing big data, specifically limited to methodologic proposals for PR/DL.

As a result, 1087 articles were identified in the first step. The second step was the
selection of the most relevant titles. The third step was the summary reading. The fourth
and last steps comprised completely reading the articles. After the above, the studies were
reviewed according to the exclusion criteria (Table 3). Finally, 120 articles were selected to
be a part of the SLR.

Table 3. Study inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Studies answer directly to research question of the study. Not written in the English language.
Studies must clearly show an AI focus using PR or DL during a large

portion of its methodology. Lack of focus on domains and research areas.

h5 index ≥ 40. Data management capacity in engineering.
SJR index ≥ 40. Scientific publications not reviewed by peers.

Studies must be classified under journal quartile Q1 and Q2,
preferably Q1. Studies must be published between the years 2016–2021.

Number of quotes. Database reputation.
Number of citations, excluding for publications of the year 2021. No use of PR/DL methodologies.

If the studies were published in more than one magazine or conference,
the most recent version is included.
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3.2. Study Selection

The strategy for selecting studies in this research included six inclusion criteria and
seven exclusion criteria. The articles had to pertain to the research question of the study
and have a focus on PR/DL methodologies using AI. The selection process also considered
two quality measures, the h5 index from Google Scholar [179] and the SJR (Q1 and Q2)
from the SCImago journal rank [180]. A summary of these criteria can be found in Table 3.

4. Descriptive Study Analysis

Figure 4, using the VOSviewer software, summarizes the main keywords found in
the SLR.
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The distribution of publications by quartile showed that the study was mainly limited
to high-impact journals in the engineering area; for this reason, 116 studies were a part of
quartile one and only three were a part of quartile two [39,42,52,135] (Figure 5).
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The number of references per year, showed in Figure 6, confirmed the growing interest
of researchers in PR/DL methodological proposals for data management. According to the
inclusion and exclusion criteria of this study, in the year 2021, 31 articles were published.
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Figure 6. Distribution of references by year of publication.

The distribution of studies by domain showed that the SLR used a total of eight
domains with 120 articles. The DL image analysis domain provided the largest contribution
with 15 studies. In the second position, the DL forecast domain contributed 13. In the
third position was PR control systems (with 13). In the fourth position was PR architecture
design (with 11). The fifth position was held by PR fault detection (with nine). In the sixth
position, PR-CAD had seven. The seventh position was given to DL data imputation with
five. Finally, the eighth position went to DL security with two (Figure 7).
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According to the conceptual framework for the SLR, the top 13 areas that comprised the
greatest methodological contributions were (1) DL computing (20 studies), (2) PR technol-
ogy (10 studies), (3) PR infrastructure (8 studies), (4) engineering solutions in DL medicine
(7 studies), (5) PR/DL manufacturing processes (6 studies), (6) PR/DL transport, electrical
energy, and telecommunications (5 studies each), (7) PR agriculture (3 studies), (8) smart
tools for decision making PR/DL business (2 studies each), and (9) DL marketing, weather
conditions, and informatic security (1 study each) (Figure 8).

Figures 9–11 show, in order, the distribution trends of the Google Scholar h5 index,
the SJR index, and the number of citations received by each reference as of 2/20/2022.
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The journals with the most publications were IEEE Access (with eight publications),
Nature Communications, (with six) and Pattern Recognition (with five) (Table S1). Table
S1 includes the author, year of publication of the article, name of the journal, h5 index
(median), SJR index, SJR quartile, and the number of citations that the articles received as
of the aforementioned date.

The country with the most research on methodological proposals for PR/DL was
China, with 43 publications, followed by the USA with 19 publications and the United
Kingdom with 5 publications (Figure S1). The ScienceDirect and IEEE databases had
the most publications on this topic, with 39 publications each, followed by the Springer
database with 12 publications (Figure S2).

In the SLR study, the main performance metrics used to evaluate the DNN algorithms
were the correlation coefficient (R), mean absolute percentage error (MAPE), area under
the curve (AUC), mean absolute error (MAE), root mean squared error (RMSE), variance
of absolute percentage error (VAPE), and root mean square prediction error (RMSEP).
Through an analysis of these statistical indicators, it was found that accuracy was the most
influential factor, accounting for 27% of the metrics. It was closely followed by performance
at 24%, convergence at 18%, speed at 11%, tolerance to failure at 7%, volume at 6%, scaling
at 4%, and latency at 3%.

The study found that current DNN models, such as the CNN, DBN, SAE, RNN, MLP,
and GAN, were the most used techniques for PR among other ANN models. Models such
as reservoir computing, the time-delay neural network (TDNN), transformers, SOMs, the
radial basis function network (RBFN), single-layer perceptron (SLP), probabilistic neural
network (PNN), and RBM also showed good performance in PR applications. Additionally,
new models with methodological proposals were proposed to address limitations or issues
that may arise with DNN models.

5. Discussion

The 4.0 data ecosystem, which merges the real and virtual worlds, necessitates the
integration of AI and BD to foster ML systems. The interconnectivity between systems and
computers enables the processing of BD from the IoT and local supply chains. The ability
to analyze BD is possible due to the use of MI generated through AI techniques. These ML
systems can now extract valuable insights by interpreting BD into actionable ideas and, in
many instances, they enable autonomous decision making without human intervention.
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The BD analysis is a complex system involving multiple variables that need to be
identified and processed. If the goal of the ML model is to predict continuous variables,
it performs regression. However, if the objective is to predict discrete variables, it per-
forms classification. Forecasting is a high-value research domain that has been a trend
in scientific discussion in recent years, driven by ML technologies. The SLR identified
important PR/DL methodological advancements in areas such as energy consumption
forecast, climate, commodity price, traffic flow, accident forecast, tourist demand, and other
topics. Today, these constant methodological advancements have led to the development
and improvement of DNN proposals, resulting in exceptional predictive performances.
As a result, DNN has become an essential tool for PR in a wide range of applications,
such as image classification, iris scanning, object detection, fingerprint scanning, video
compression, and optic character recognition, among others. In comparison, traditional PR
methods have certain disadvantages, such as the need for a greater effort to design and
learn significant and high-level characteristics, the limited learning of superficial character-
istics, and the need for well-labeled BD to train the models, limiting them to learn from
static data.

In PR systems, the performance of an algorithm mainly depends on its parameters.
The algorithms used must be able to understand and take into account different factors
that affect the distribution of input data, as this allows for variations in the real world.
Algorithms that can abstract and process a wide range of phenomena have the strongest
predictive power. While DL methods require a larger volume of data compared to statistical
and ML methods, the processing of a large volume of data positively correlates with the
performance of all three methods.

According to the SLR, the success of PR applications relies heavily on the method-
ological advancements in statistical and ML methods, with ML and its evolution towards
DL being powerful and efficient tools for managing BD. The constant evolution and de-
velopment of DL methodologies has led to a new paradigm for ML, where the constant
optimization of its algorithms results in new and improved capabilities.

PR methods have a clear capacity for managing big data; their ability to identify
specific trends and patterns gives them a significant advantage, making PR an essential
support tool for decision-making in engineering. PR’s capacity for data retrieval, classifica-
tion, and categorization allows it to gain experience and acquire knowledge, resulting in
improved accuracy and efficiency. PR methods are precise in handling multivariable and
multidimensional data and can perform well in changing or unknown environments.

The SLR study on PR applications in engineering for data management identified
several challenges, including time consumption, mainly due to the complexity and scale
of the process (handling large amounts of data in the form of megabytes, gigabytes, and
even terabytes). Insufficient data can lead to problems with accuracy and complicate
object recognition logic. Additionally, the SLR highlighted other challenges, such as
overfitting, difficulties in object detection, noise (image restoration), uncertainty, difficulty
in recognizing identical images, data issues (incomplete, dispersed, and dynamic), complex
relationships between fields, challenges in voice recognition accuracy, hierarchy, and data,
complexity of DNN models, recognition issues with surface materials, interpretability
of results, incorporating domain knowledge, more accurate recognition of unsupervised
activities, active user interaction, flexible models for recognizing high-level activities and
integration with other systems, and recognizing planned attacks, among others.

As per the SLR, ML and DL statistical models were shown to require understanding
the inner workings of the black box predictive models that run them in order to comprehend
which aspects of input data drive decision making in the network [32]. Thus, the decision-
making process in the DNN has become a subject of active research.

Currently, DL methods, particularly CNN architectures, have shown remarkable
success in PR tasks. According to the SLR, CNNs have a larger number and development
of methodological proposals for tasks, such as recognizing emotions, image recognition,
facial expressions, video recognition, voice and text recognition, etc. In general, CNNs
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have performed well in image data, PR, classification, and regression [111], and have
advantages in accuracy for solving real-life problems in BD management. One of the
notable advantages of CNNs is their ability to provide greater precision and improve
system performance due to their unique features, such as local connectivity and shared
weights [66].

CNNs have several advantages compared to other DNN models. These include being
more similar to the human visual processing system, having a highly optimized structure
for processing 2D and 3D images, and being effective in learning and identifying abstract
2D characteristics [32]. Additionally, CNNs are an effective method for diagnosing fail-
ures [118], detecting lanes [181], inputting data [124], extracting features [135], classifying
images [145], classifying audio [48], building recommendation systems [182], and more.

Additionally, the SAE can be used in coding–decoding processes to learn to repre-
sent advanced features through an unsupervised learning scheme. This type of network
is used to evaluate the quality of images [114,183], noise in data [121,184], computer vi-
sion [110,185], process analytics [147], forecasting [155], etc. Similarly, RNNs are an efficient
prediction algorithm, and PR mainly uses sequential data in the network. Due to their
embedded structure in data sequencing, they provide valuable information, making them
an excellent tool for sequential ML, such as voice processing and NLP, and they are used
in predictive models for electrical energy consumption [108], urban traffic [115], early
emergency warnings [133], failure detection [150], etc. Adversarial learning has shown
significant advancements in generative models, with GANs being one of the best examples,
specialized in unsupervised learning. In GANs, a generator competes against a discrimina-
tor. The generator attempts to model the data distribution by generating false images using
a noise vector input and uses these false images to deceive the discriminator, while the
discriminator competes with the generator to identify real images from the false ones [131].
GANs have been proven to be effective in applications such as enhancing the quality of im-
ages [106], inputting data [120], automatic image recognition [129], computer security [144],
generating synthetic images [149], etc.

DBNs, or deep belief networks, are a type of generative graphic model composed of
multiple RBMs stacked on top of each other. They are commonly used for tasks such as
voice recognition, NLP, and image and audio classification. DBNs have connections be-
tween layers, but not within a single layer. These layers can be trained using unsupervised
algorithms [66]. DBNs have been used in various applications, such as failure diagnos-
tics [105], data input [116], urban traffic flow [125], facial expression recognition [130], price
forecasting [143], and control systems [152]. On the other hand, MLPs are a common type
of network that are based on a simpler network called a "simple perceptron." They have one
or more hidden layers and an output layer, and are a unidirectional, feedforward network.
The input layer is used to introduce and propagate information from the outside, and the
number of neurons must match the number of inputs into the data. The hidden layer in an
MLP network performs the nonlinear processing of information. The number of neurons
used for the input and output layers varies depending on the specific application. The
algorithm commonly used for training MLPs is called backpropagation, which aims to
find the optimal weights for each connection in the network to produce an output that
closely matches the desired output, while minimizing the error. MLPs are relatively easy
to implement, and produce high-quality models with a relatively low training time com-
pared to more complex methods. They are commonly used in applications such as quality
control [101], time series forecasting [112], CC [119], life cycle of information [127], data
input [21], and automated decision making [142].

Recent research found in SLRs suggests a growing interest in GNN methodologies for
graphic data coming from different scenarios of the real world. GNNs are DNNs based
on graphs, where nodes store information from neighboring nodes; in other words, data
are transmitted and incorporated into the properties of the corresponding node (message
transference).
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GNNs are a powerful tool for unsupervised learning, and are commonly used for
forecasting, imputing missing data, and 3D modeling in a wide range of fields, such as social
networks, movement planning, knowledge graphs, recommendation systems, molecular
compositions, search engines, power blackouts, financial markets, among others [157].
They are typically used for tasks such as node classification, link prediction, clustering, and
graph classification. The GNN process consists of four phases: the preprocessing of graphs,
graph construction, graph representation, and graph classification [148]. GNNs take a
formatted graph as the input and produce a numeric value vector that represents important
information about the nodes and their relationships. The output of GNNs is an embedding,
which is a vector representation of the node’s data and its knowledge from other nodes in
the graph. In summary, the SLR (systematic literature review) mainly proposed the use of
convolutional GNN architectures, followed by other taxonomies, such as recurrent GNNs,
graph autoencoders, and spatial–temporal GNNs.

6. Conclusions

The growth of BD is driven by key technological trends, such as IoT technology,
Industry 4.0, and the data paradigm 4.0. The effective management of BD requires the
ongoing development of ML concepts, where the combination of PR/DL methods should
lead to reliable and efficient data management frameworks. This study focused on the field
of engineering and specifically examined the AI techniques of PR/DL that are currently
being used in diverse applications for data management. This document complemented
the study of Joel et al. [186], which proposes a conceptual framework for the analysis of
major emerging ML methodology proposals. Due to space limitations, the focus of the
review of each article was on the type of research, topic content, case structure considered,
and AI methodology used.

This review highlighted the latest developments in PR/DL methodological proposals
for data management and provided a general overview of these methods. The methodology
of this study involved selecting research articles from highly reputable and relevant journals.
The articles selected for the SLR came from journals with a high SJR and Google Scholar
h5 index. The review was conducted between the years 2016 and 2021, and a total of
186 studies was used, of which 120 were included in the SLR.

This SLR encompassed various methodological supports that complement PR/DL
solutions, such as the component analysis, support vector machines, hierarchical cluster
analysis, K-means clustering, LDA, focused method, decision trees, self-organizing map,
RF, hidden Markov model, NB, mixture regression, K nearest neighbors, dynamic time
warping, Gaussian distribution, fast Fourier transforms, k-medoids, and the autoregressive
model. These methods were utilized for a variety of data types and engineering applications
in the past six years.

The literature suggests that CNN architectures have contributed significant advance-
ments as PR (predictive) solutions for data mining in engineering problems. Addition-
ally, SAEs, RNNs, DBNs, GANs, and GNNs were also highlighted as notable meth-
ods. The fields of computer science and technological development had the highest
number of methodological proposals for the development of PR/DL solutions. Further-
more, research in PR/DL proposals was led by countries such as China, followed by the
United States. The databases Science Direct, IEEE, and Springer and journals IEEE Access,
Nature Communications, and Sensors provided the most significant contributions.

This study found that PR/DL methods have been adapted and increasingly used for
addressing various issues in data management. This conclusion was supported by other
literature reviews, such as [28,30,54,186]. These studies indicated a positive correlation
between new PR/DL technologies and emerging methods of artificial intelligence for
big data management, which is a crucial aspect for Industry 4.0. The findings of this
study aligned with the conclusions of other authors [2,66,78,148], who claimed that PR/DL
methods have greater capabilities for resolving complex interactions of parameters in
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data management, allowing for the solving of problems that are difficult to address using
traditional statistical methods.

As ML becomes more prevalent, there is an increasing need to acquire larger amounts
of data, particularly for next-generation DNNs. DL is a powerful tool for interpreting
engineering data. More advanced DNN methods focus on the properties that define the
object, which results in faster processing speeds and improved recognition efficiency, even
with low-quality patterns.

The use of multiple clustering algorithms presents a challenging problem. The SLR
suggested methodological advancements that involve the deliberate or random selection of
certain clustering techniques, with modifications to the initial conditions and the use of
different subgroups for parameters.

The SLR found several key findings: (1) In the field of failure detection systems,
PR/DL methods have the potential to be next-generation approaches for engineering by
performing evaluations, mainly in the diagnostics of rollers, bearings, gear assemblies,
electrical systems, engines, pumps, etc. (2) In the field of computer-assisted image and di-
agnostic analyses, the SLR showed that PR/DL methods can process dimensional graphical
information from sensors; the main methodological contributions focused on the analysis
of medical images, location detection, visual recognition, facial expressions, CC, automatic
image quality, remote sensing, substance and microorganism detection, quality control,
color mixture recognition, chemical patterns, structural health, detailed visual recognition,
etc. (3) The SLR suggested that PR/DL methods could be used in the fields of neural
network architectural design and control systems to describe outdoor/indoor systems,
classify objects, analyze sensitivity parameters, detect emergency events, control urban
traffic, robotic assistance, network topology, and network interpretation, among others.
(4) The field of forecasting was shown to be mainly used for the analysis of time series
for urban traffic, commodity pricing, process analytics, consumption profiles, emergency
events, demand forecasting, flow regimes, and tool wearing, among others. (5) The fields
of data input and information security had relatively few solution methodologies. Some
DL solutions were found for power data, traffic data, structural sensor data, IoT scenarios,
facial image manipulation, etc.

The latest and advanced PR/DL methods have driven numerous small and big changes
that have had a positive impact on society. From all angles, AI is making inroads in areas
that were previously only accessible to human intelligence. Achieving its full potential is
within reach, as long as it is conducted ethically and in a sustainable manner.

According to the results of the SLR analysis, future studies should include more
in-depth research to optimize the clarification of problems and object location, and to
improve scalability with a larger number of layers. Additionally, research should address
issues related to scaling or normalization, encoder–decoder architectures in NLP modeling
and automatic translation, large-scale graphic processing performance, control graphics
performance, solutions to leak gradients or explosions in training (propagation method),
challenges in selecting methods for parameters for ANN design in relation to PR, chal-
lenges in computer vision and NLP in PR, problems in information security (persistent
advanced threats), and new challenges in failure recognition, among others. To provide a
comprehensive and complementary PR/DL approach, a multidisciplinary research team is
needed to enhance the performance and success of applications.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/sym15020535/s1, Table S1: table of references, Figure S1:
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of articles identified.
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MAPE Mean absolute percentage error
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RBFN Radial basis function network
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CLIQUE Clustering in quest
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