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Abstract: As the opponent of motion vector (MV)-based video steganography, the corresponding
symmetric steganalysis has also developed a lot in recent years, among which the logic-based
steganalytic schemes, e.g., AoSO, NPELO and MVC, are the most prevailing. Although currently
achieving the best detection performance, these steganalytic schemes are less effective in detecting
some logic-maintaining steganographic schemes. In view of the fact that the distributions of covers’
local Lagrangian cost quotients are normally more concentrated in the small value ranges than
those of stegos and “spread” to the large values ranges after modifying the motion vector, the
local Lagrangian cost quotient would thus be an efficient indicator to reflect the difference between
cover videos and stego ones. In this regard, combining the logic-based (Lg) and local Lagrangian
cost quotient (LLCQ)-based feature, we finally proposed a more effective and general steganalysis
feature, i.e., Lg-LLCQ, which is composed of diverse subfeatures and performs much better than the
corresponding single-type feature. Extensive experimental results show that the proposed method
exhibits detection performance superior to other state-of-the-art schemes and even works well under
cover sources and steganographic scheme mismatch scenes, which indicates our proposed feature is
more conducive to real-world applications.

Keywords: video steganalysis; video steganography; motion vector; local Lagrangian cost quotient

1. Introduction

Steganography is the science and art of covert communication by slightly modifying
the data in digital media, such as image, audio and video, without drawing any suspicion.
In the past decade, many efforts have been dedicated to improving the security of image
steganography [1–6], while less attention has been attached to video steganography. On the
other hand, with the rapid development of electronic and multimedia technology, video
is gradually being widely used in our daily lives, especially with the emergence of the
H.264/AVC video format. Compared with other traditional cover medias, H.264/AVC
videos have rich compression pipelines in terms of cover elements. Additionally, according
to the difference on the selection of cover elements, currently, video steganography can be
divided into the following categories: motion vector (MV)-based [7–17], quantized DCT
coefficients based [18–26], partition modes based [27–32] and quantization-parameters-
based [33–35], among which, motion vector (MV)-based H.264/AVC video steganography
is currently the most prevalent.

Generally speaking, MV-based steganographic schemes can be further categorized
into two popular types: heuristic schemes [7–9] and content-adaptive ones [10–17]. For
heuristic MV-based video steganography, secret messages are usually embedded into the
candidate MVs through some predefined selection rules, but these rules tend to increase
its potential security risks. Recently, with the emergence of the framework of minimal
distortion embedding, content-adpative MV-based video steganographic schemes have
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been gradually proposed, which mainly focuses on the design of efficient distortion cost.
For example, Cao et al. [11] assigned a cost to each MV by exploiting its probabilities
of satisfying the optimal criteria, and the secret messages were embedded into MVs by
using WPCs (Wet Paper Codes) and STCs (Syndrome-Trellis Codes) [36]. More recently,
Zhang et al. [12] proposed another video steganographic scheme called MVMPLO (Motion
Vector Modification with Preserved Local Optimality) to preserve the local optimality in
SAD (Sum of Absolute Differences) sense. Moreover, in order to maintain the statistical
distribution of MV after embedding modifications, Yao et al. [13] suggested modifying the
MVs with slight changes in MV distributions and prediction errors.

To cope with the abuse of MV-based steganography, considerable progress has been
made in developing symmetric MV-based steganalytic features [37–49], including statistic-
based features, calibration-based features and logic-based features. With regard to the
statistic-based features, they are usually constructed based on the distribution of noise
residuals calculated from adjacent MVs, with the assumption that the embedding mod-
ifications are additive independent. For instance, Su et al. [37] utilized the statistical
characteristics of neighboring MV differences to construct steganalytic features. More-
over, Tasdemir et al. [38] proposed a spatio-temporal rich model-based steganalytic feature,
which was built from the MV residuals filtered by a series of high-pass filters.

As for calibration-based features, they are usually constructed by the histogram of the
difference between original MVs and corresponding recompressed ones. Following this
way, Cao et al. [39] proposed a calibrated feature by recompressing the H.264/AVC video
to improve detection performance. Moreover, in response to the mismatching of motion
estimation of cover and stego video after recompression, Wang et al. [40] recently proposed
an improved version by predicting the motion estimation before calibration.

It is well known that the MVs of cover videos are mostly locally optimal and inconsis-
tent, but the steganographic embedding modification usually breaks these characteristics.
Motivated by this defect, a kind of logic-based feature constructed from the logical proba-
bilities of MVs subsequently appeared. Typically, Wang et al. [41] constructed an AoSO
(Add-or-Subtract-One) feature by checking whether an MV is locally optimal in SAD sense,
which is the first logic-based feature. Based on this, Zhang et al. [42] further utilized the La-
grangian cost function to check the local optimality and then proposed an enhanced feature
called NPELO (Near-Perfect Estimation for Local Optimality). Moreover, in response to the
case that the originally different MVs of the sub-blocks in the same macroblock tend to be
consistent after embedding modifications, Zhai et al. [43] proposed a more powerful feature
called MVC (Motion Vector Consistency), which exhibits better detection performance in
most cases.

It should be noted that statistic-based features require the block size to be fixed, but the
fixed block size option has already been abandoned in the current practical video codings,
e.g., H.264/AVC and H.265/HEVC, and uses variable block size instead; therefore, they
can not be applied in the detection of variable block-size-based video steganography. As for
calibration-based features, both the way of motion estimation and the coding parameters
are required to be kept the same before and after calibration, otherwise, the detection
performance will be degraded. Although they perform much more effectively than the
statistic-based and calibration-based features, logic-based features still have the risk of being
defeated by some target steganographic schemes [11,12,16]. Given all this, it is desirable
to construct an effective and general steganalytic feature for MV-based H.264/AVC video
steganography. In this paper, we propose a novel steganalytic feature composed of diverse
subfeatures for existing MV-based steganographic schemes. This work is mainly motivated
by the numerical anomaly of local Lagrangian cost quotient introduced by the embedding
modifications and, based on which, a local Lagrangian cost quotient (LLCQ)-based feature
is proposed. Moreover, for further improving its detection performance, the previous
efficient logic-based feature (Lg) is then introduced and integrated into the LLCQ, thereby
forming a more powerful steganalytic feature, i.e., Lg-LLCQ. Experimental results show
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that our proposed Lg-LLCQ is much more effective and general compared with the existing
steganalytic schemes. The main contributions of this paper are summarized as follows.

(1) The effects of the MV modifications on the statistic characteristics of local La-
grangian cost quotient are evaluated, and the steganalytic performances of LLCQ are
provided, all of which indicate the effectiveness of the proposed LLCQ feature.

(2) The logic-based (Lg) feature and local Lagrangian cost quotient (LLCQ)-based
features are merged for steganalysis, which provides better results than the corresponding
single-type feature.

The rest of the paper is structured as follows. In Section 2, Lagrangian cost functions
in motion estimation and local optimality for video steganalysis of H.264 video are briefly
described. The construction of our proposed steganalytic feature is presented in Section 3,
followed by the experimental results and analysis in Section 4.1 for its verification of
reasonability and feasibility. Finally, the paper is concluded in Section 5.

2. Preliminaries
2.1. Several Key Notions in H.264/AVC

Motion estimation: Motion estimation is to search for the best matching block in
a previously coded reference frame for the current block based on a certain matching
criterion within a given search area. Motion vector: Motion vector is the relative displace-
ment between the current block and the matching block. Motion compensation: Motion
compensation is achieved by subtracting the matching block from the current block to
obtain the residual block. Obviously, the motion vector is the product of motion esti-
mation. Additionally, the motion vector and the best matching block can be used in
motion compensation to reduce the interframe redundancy.

2.2. Lagrangian Cost Function in Motion Estimation

Motion estimation is one of the most important coding options of video encoders,
which can efficiently remove interframe redundancies. During the process of motion
estimation, the bitrate and distortion of each macroblock in a search window is calculated,
by which the selection of MV can be subsequently determined based on minimal distortion.
It should be noted that the distortion is inversely proportional to the bitrate, i.e., the smaller
the resultant distortion, the larger the corresponding bitrate. To achieve the trade-off
between distortion and bitrate, some effective Lagrangian optimization techniques for
rate-distortion optimization are adopted. Specifically, motion estimation is achieved by
searching for the best matching block in the previously coded reference frame based on a
rate-distortion criterion. The criterion is usually conducted by minimizing the following
Lagrangian cost function [50]:

mv∗i = arg min
mvi∈Ω

{Ψ(Sorg, Smvi ) + λmotion · Rmotion(mvi, re f _idx)}, (1)

where mv∗i represents the best matching MV in the search space Ω, Ψ(Sorg, Smvi ) is the
distortion obtained by calculating the prediction error between the original block Sorg
and corresponding prediction block Smvi indexed by ith mvi of the cover video and
Rmotion(mvi, re f _idx) represents the total number of bits required for coding mvi. re f _idx
stands for the index of reference frame utilized in multiple reference frames motion esti-
mation. λmotion is a weighting factor, which can be obtained by calculating an empirical
formula [50] with a given QP (Quantization Parameter).

λmotion =
√

0.85× 2(QP−12)/3, (QP ∈ [0, 51]). (2)

As for the choice of distortion measures between the original frame and the corre-
sponding predicted frame, there are two commonly used methods, i.e., SAD (Sum of
Absolute Differences) and SATD (Sum of Absolute Transformed Differences), wherein SAD
is employed as a pixelwise distortion measure, while SATD is employed as a sub-pixel-
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wise one in rate-distortion optimization. Specifically, the pixelwise distortion SAD [42] is
given by

SAD = ∑
m

∑
n

∣∣Sorg(m, n)− Smvi (m, n)
∣∣, (3)

where Sorg(m, n) and Smvi (m, n) denote the (m, n) th pixel sample in original coding unit
Sorg and prediction unit Smvi , respectively. Additionally, the sub-pixel-wise distortion
SATD [42] is given by

SATD = ∑
m

∑
n
|T4×4(m, n)|, (4)

where T4×4 is the 4× 4 block obtained by applying Hadamard transform on the prediction
error between coding unit Sorg and Smvi .

In order to quickly calculate the number of bits used to encode and transmit the MVs,
i.e., Rmotion(mvi), the Exp-Golomb coding is employed in H.264/AVC to encode the MV
difference. Specifically, for a given mvi, we first obtain the corresponding MV difference
and denote it as mvd = (mvdx, mvdy), then calculate the Exp-Golomb indices for each MV
difference component according to the following mapping rule [51]:

CodeNumd =

{
2|d|, d ≤ 0

2|d| − 1, d > 0
, (5)

where d ∈ {mvdx, mvdy}. According to the Exp-Golomb indices, the number of bits
required to encode and transmit mvi is finally defined as [51]

Rmotion(mvi) = 2blog2(CodeNummvdx + 1)c+ 2blog2(CodeNummvdy + 1)c+ 2, (6)

where CodeNummvdx and CodeNummvdy denote the Exp-Golomb indices of mvdx and mvdy,
respectively.

2.3. Local Optimality for Video Steganalysis

For H.264/AVC cover videos, most of the MVs still remain locally optimal after
compression. Specifically, an MV mvi = (x, y) is said to have local optimality with respect
to its adjacent MVs, i.e., Ω(mvi) = {mv′i = (x + ∆x, y + ∆y)|∆x, ∆y ∈ {−1, 0, 1}}, if, for
any mv′i ∈ Ω(mvi), there is [42]

JΨ
motion(mvi) ≤ JΨ

motion(mv′i), (7)

with the Lagrangian cost function given by

JΨ
motion(mv′i) = Ψ(Srec, Smv′i

) + λmotion · Rmotion(mv′i), (8)

where Ψ(Srec, Smv′i
) represents the prediction error between the reconstructed block Srec

and the corresponding prediction block Smv′i
measured as SAD or SATD.

It should be noted that due to the influence of quantization in the encoding process,
the local optimality of the MV in the encoder may not always be fully maintained in the
decoder, by which the newly proposed MV-based steganographic schemes [11,12] can well
evade the detection of the previous local optimality feature AoSO [41]. In view of this
defect, an improved local optimality feature called NPELO is proposed in [42]. In NPELO,
the Lagrangian cost-based criterion is used to check whether an MV is locally optimal.
In addition, to more accurately distinguish the local optimal MVs in cover videos from
the ones in stego videos, an exponentially magnified relative difference between current
Lagrangian cost and minimum Lagrangian cost is further integrated into the NPELO
feature, thereby forming a final 36D steganalytic feature. Although the enhanced local
optimality feature NPELO can compensate for this defect, the risk of being targeted attacked
still exists.



Symmetry 2023, 15, 520 5 of 19

3. The Proposed Steganalytic Feature for H.264/AVC Video
3.1. The Statistic Characteristics of Local Lagrangian Cost

As mentioned in Section 2.3, most MVs are locally optimal in cover videos, i.e.,
JΨ
motion(mvi) ≤ JΨ

motion(mv′i), but the local optimality of MVs in stego videos is likely to
be destroyed by embedding modifications, thereby causing numerical anomaly of local
Lagrangian cost. To verify this, we performed an analytical experiment to compare local
Lagrangian cost for cover and stego videos. In this experiment, the video sequences with
resolution 352× 288 from the database provided in [52] are the original cover videos, and
they are all encoded by JM 19.0 reference software [53]. Then, we use the steganographic
scheme MVMPLO to generate the corresponding stego videos with relative payload 0.4 bp-
nsmv (bits per nonskip motion vector). For ease of intuitively observing the changes
in statistical characteristics after embedding modifications, we first separately count the
histogram of the probability distribution of local Lagrangian cost on cover and stego video
datasets under QP = 28 and QP = 18 (different QPs represent different compression effi-
ciency, and the larger the QP, the lower the corresponding bitrate), and then calculate the
histogram differences between the cover and the corresponding stego, as shown in Figure 1.
From Figure 1a,b, we can find that the embedding modifications on the video with QP = 28
will arise more and richer histogram differences, also known as stronger steganographic
traces, than those of QP = 18. Specifically, the apparent histogram difference at QP = 28 lies
within the local Lagrangian cost of [0, 500], while the ones at QP = 18 lie within the range of
[0, 200]. Therefore, we can assert that the local Lagrangian cost can effectively differentiate
cover videos from stego videos.
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Figure 1. The difference of histogram of probability distribution for local Lagrangian cost between
cover videos and stego videos. (a,b) are the difference of the histogram of probability distribution for
local Lagrangian cost under QP = 28 and QP = 18, respectively. Histogram bins with values greater
than 0 are shown in red, while those less than 0 are shown in blue.

3.2. The Proposed Feature

The statistical properties of local Lagrangian cost are influenced by video content
and movement (e.g., larger values occur in fast-moving and rough regions, while smaller
values are for slow-moving and smooth regions). In order to decrease these influences
and improve the stability of steganalytic features, we proposed a new indicator, i.e., the
local Lagrangian cost quotient (LLCQ), to reflect the difference between cover videos and
stego ones. The advantage of LLCQ as compared with the local Lagrangian cost is that
the video content is largely suppressed, which has a much narrower dynamic range, thus
allowing a more stable statistical description. Moreover, the previous efficient logic-based
feature (Lg) is then integrated into the LLCQ, thereby forming a more powerful steganalytic
feature, i.e., a logic- and LLCQ-based feature (Lg-LLCQ), which is composed of five types of
subfeatures. For ease of description, the specific procedure of feature extraction is sketched
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in Figure 2. In a H.264/AVC video with a GOP size of K, assuming that each GOP contains
N MVs, for each MV mvi (i ∈ [1, N]) in a given GOP, we first obtain the neighborhood
set Ω(mvi), then calculate JSAD

motion(mvk
i ) and JSATD

motion(mvk
i ) associated with the kth (k ∈ [1, 9])

MV in Ω(mvi), according to Figure 3. Thereafter, the five types of subfeatures in Lg-LLCQ
are separately constructed as follows.

2( )motion iJ ψ mv1( )motion iJ ψ mv

4( )motion iJ ψ mv

(       6 )motion iJ ψ mv (       7 )motion iJ ψ mv

Decode
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Figure 2. The extraction procedure diagram of the proposed Lg-LLCQ feature.
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Figure 3. The specific relationship of neighborhood position of MVs.

3.2.1. Feature of Type 1

The feature of type 1, denoted as F1, is the NPELO feature [42], which consists of two
subfeatures, i.e., SAD-based and SATD-based subfeature. Additionally, the SAD-based sub-
feature is obtained by checking the local optimality of MVs by computing JSAD

motion(mvk
i ), i.e.,

F1(k) = P(JSAD
motion(mvk

i ) = JSAD
min (Ω(mvi)))

=
1
N

N

∑
i=1

δ(JSAD
motion(mvk

i ), JSAD
min (Ω(mvi))), k ∈ [1, 9],

(9)

F1(k + 9) =
1
β

N

∑
i=1

exp
{ |JSAD

min (Ω(mvi))− JSAD
motion(mvi)|

JSAD
motion(mvi)

}
· δ(JSAD

motion(mvk
i ), JSAD

min (Ω(mvi))), k ∈ [1, 9],

(10)

where β denotes the normalization factor and is given by
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β =
9

∑
k=1

N

∑
i=1

exp
{ |JSAD

min (Ω(mvi))− JSAD
motion(mvi)|

JSAD
motion(mvi)

}
· δ(JSAD

motion(mvk
i ), JSAD

min (Ω(mvi))), k ∈ [1, 9].

Additionally, JSAD
min (Ω(mvi)) denotes the minimum value of an element in the set

{JSAD(mv′i)| mv′i ∈ Ω(mvi)}, δ(a, b) is the Kronecker delta function, with δ being 1
if a equals b and 0 otherwise, and N is the MV number in the GOP. Since the construction
of the SATD-based subfeature is similar to the SAD-based subfeature, for simplicity, we
do not give further details on the construction of the SATD-based subfeature (see [42] if
needed).

3.2.2. Feature of Type 2

The feature of type 2 is associated with the plain quotient between JSAD
motion(mv9

i ) and
JSAD
motion(mvk

i ), with a given relative spatial position k, i.e.,

F2(k) =
1
N

N

∑
i=1

JSAD
motion(mv9

i )

JSAD
motion(mvk

i ) + α
, k ∈ [1, 8], (11)

where α is a constant introduced to avoid dividing by zero and set as 1.0 in our implementation.

3.2.3. Feature of Type 3

The feature of type 3 corresponds to the exponentially magnified quotient between
JSAD
motion(mv9

i ) and JSAD
motion(mvk

i ), with a given relative spatial position k, i.e.,

F3(k) =
1
N

N

∑
i=1

(
JSAD
motion(mv9

i )

JSAD
motion(mvk

i ) + α

)p

, k ∈ [1, 8], (12)

where p is a positive integer not less than 1.

3.2.4. Feature of Type 4

The feature of type 4 is associated with the plain quotient between JSATD
motion(mv9

i ) and
JSATD
motion(mvk

i ), with a given relative spatial position k, i.e.,

F4(k) =
1
N

N

∑
i=1

JSATD
motion(mv9

i )

JSATD
motion(mvk

i ) + α
, k ∈ [1, 8]. (13)

3.2.5. Feature of Type 5

The feature of type 5 corresponds to the exponentially magnified quotient between
JSATD
motion(mv9

i ) and JSATD
motion(mvk

i ), with a given relative spatial position k, i.e.,

F5(k) =
1
N

N

∑
i=1

(
JSATD
motion(mv9

i )

JSATD
motion(mvk

i ) + α

)p

, k ∈ [1, 8]. (14)

3.3. The Final Joint Feature

Combining all these subfeatures together, a final 68-dimensional-feature Lg-LLCQ is
defined as

F(k) =



F1(k), k ∈ [1, 36]

F2(k− 36), k ∈ [37, 44]

F3(k− 44), k ∈ [45, 52],

F4(k− 52), k ∈ [53, 60]

F5(k− 60), k ∈ [61, 68]

(15)
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where F1 is the logic-based subfeature, and F2∼F5 are the LLCQ-based subfeatures. For
ease of expression in the following, the F1 feature is denoted as “logic-based subfeature”,
the F2/F4 features are denoted as “plain quotient-based subfeature” and F3/F5 features are
denoted as “magnified quotient-based subfeature”.

Figure 4 shows the LLCQ feature of cover and stego videos under QP = 28 and
QP = 18, and the stego videos are produced by steganographic scheme MVMPLO with
relative payload 0.4 bpnsmv. Referring to the results in Figure 4a,b, the difference of the
histogram of probability distribution for the plain quotient-based subfeature shows that
the plain quotient-based subfeature of cover videos are normally more concentrated in
the value ranges less than 0.3; it will be “spread” from the small value ranges to the large
value ranges in stego videos after embedding modifications. Figure 4c,d shows magnified
quotient-based subfeatures of cover videos are normally more concentrated in the value
ranges close to 0, and the embedding modifications will magnify some subtle distinctions
between cover videos and stego ones. In a word, Figure 4 indicates that the two kinds
of subfeatures in LLCQ are significantly different between cover videos and stego ones.
Given these apparent differences in steganalytic feature statistics between cover videos and
stego ones, we can assert that the proposed LLCQ feature will be feasible for detecting the
MV-based steganography.
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Figure 4. The difference of the histogram of probability distribution for plain quotient-based and
magnified quotient-based subfeatures between cover videos and stego videos. (a,b) are the difference
of the histogram of probability distribution for plain quotient-based subfeatures under QP = 28
and QP = 18, respectively. (c,d) are the difference of the histogram of probability distribution for
magnified quotient-based subfeatures under QP = 28 and QP = 18, respectively. Histogram bins
with values greater than 0 are shown in red, while those less than 0 are shown in blue.
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4. Experiments

In this section, extensive experiments are conducted to verify the effectiveness, gen-
eralization and stability of the proposed scheme. We compare the detection performance
of our proposed Lg-LLCQ feature with three other state-of-the-art steganalytic features,
i.e., AoSO, NPELO and MVC, under various application scenes. Specifically, seven kinds
of setups are carefully constructed in the following. Setup 1 is the basic test that runs to
determine the constant exponential parameter p, and Setup 2 is first performed to test the
effectiveness of the LLCQ feature and then is constructed to further verify the effective-
ness of the proposed combined Lg-LLCQ feature. The stability of the Lg-LLCQ feature
is assessed under Setup 3, and the independent effects of the subfeatures in Lg-LLCQ,
i.e., logic-based subfeature, plain quotient-based subfeature and magnified quotient-based
subfeature, are carefully investigated and compared under Setup 4. The experiment under
Setup 5 is mainly to show our method can be directly applied to the previous video coding
standards. Setup 6 is carried out to test whether the proposed feature is still effective under
cover sources and steganographic scheme mismatch scenes. Lastly, and most importantly,
a well-designed experiment is conducted to evaluate the steganalytic performance of the
proposed Lg-LLCQ feature under different video resolutions. Additionally, bold in the
tables indicates the best performance under the given settings.

4.1. Experiment Setups
4.1.1. Datasets

In order to comprehensively compare the detection performance of different ste-
ganalytic features under different scenes, three public video datasets are introduced for
experiments, i.e., DB1 [54], DB2 [52] and DB3 [54]. DB1, DB2 and DB3 all consist of
100 video sequences. Each sequence in DB1 and DB3 includes 100 frames on average, while
the sequence in DB2 includes 220 frames on average. Moreover, the video sequences in
DB1 and DB2 are stored in the 4:2:0 color sampling format with the same resolution, i.e.,
352× 288, and the video sequences in DB3 are stored in the 4:2:0 color sampling format
with resolution, i.e., 176× 144.

4.1.2. Steganographic Schemes

To evaluate the effectiveness, generalization and stability of our proposed steganalytic
feature, three advanced MV-based steganographic schemes are introduced for experiments.
One of them is the conventional scheme proposed by Aly [9] (denoted as Tar1), the other
two are content-adaptive embedding schemes, i.e., MVMPLO [12] (denoted as Tar2) and
Cao et al. [11] (denoted as Tar3). For fair comparison, the payload is depicted by a relative
indicator, i.e., bpnsmv, also called relative payload, which is the ratio of the number of
embedded bits to the total number of nonskip MVs, and all the involved steganographic
schemes are implemented using JM 19.0 reference software [53]. It should be noted that
the payload is ranging from 0.1 bpnsmv + M to 0.5 bpnsmv + M in Tar3, where M is an
additional M-bit in the second channel of Tar3.

4.1.3. Setups for Performance Evaluation

To better test the feasibility of the proposed steganalytic feature in practical application,
six kinds of setups are elaborately constructed in this paper.

Setup 1: In this setup, the steganalytic performance and the average time consumption
of feature extraction are evaluated under different parameter p ∈ {5, 10, 15, 20, 25}. All
these experiments are conducted on DB1 by using Tar2 at payload 0.4 bpnsmv under
QP = 28 and QP = 18, and the experiment environment is Visual Studio 2013 on a 3.0 GHz
Intel Core E5-2653 CPU with 128 GB memory.

Setup 2: Two kinds of experiments are conducted in this setup. One aims at testing
the effectiveness of the proposed LLCQ feature in detecting Tar2 on DB1 and DB2 under
QP = 28 and QP = 18. The other is performed to further evaluate the steganalytic perfor-
mance of the combined feature Lg-LLCQ against involved steganographic schemes with
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payloads 0.1∼0.5 bpnsmv under QP = 28 and QP = 18. Additionally, each video sample in
these experiments is coded with BaselinePro f ile, under which the prediction structure is
IPPPPPPPPPIPP . . . , i.e., one I-slice followed by nine P slices with one reference frame.

Setup 3: In practical applications of steganalysis, the stego videos may contain various
payloads and QPs. In order to evaluate the stability of our proposed features against this
circumstance, we then mix the stego videos obtained under setup 2 for experiments.

Setup 4: For evaluating the independent effects of various subfeatures of the proposed
Lg-LLCQ, the logic-based subfeature, plain quotient-based subfeature and magnified
quotient-based subfeatures are separately employed to detect Tar2 and Tar3, wherein the
stego videos are obtained under setup 2 at payloads 0.2∼0.4 bpnsmv.

Setup 5: To evaluate the applicability of the proposed Lg-LLCQ under fixed block
size and different QPs, the size of all coding units is taken as 16 × 16, and the QPs are
also set as 28 and 18. The proposed Lg-LLCQ and other involved steganalytic features
are all employed to detect Tar2 at payloads 0.2 and 0.4 bpnsmv under the same coding
configurations in setup 2.

Setup 6: The mismatch of cover sources and steganographic schemes is generally
considered to be the most influential factor limiting the application of steganalysis in
the real world. In this setup, to simulate the real detection scene, an experiment is
performed to evaluate the applicability of our proposed feature by training and test-
ing on different cover sources and steganographic schemes. To differentiate various
steganalytic and steganographic schemes, in this part, we use the syntax of names fol-
lowing the convention: name = {steganalytic scheme}−{steganographic scheme}, where
{steganalytic scheme} indicates steganalytic scheme, i.e., AoSO, NPELO, MVC and Lg-
LLCQ, and {steganographic scheme} is the steganographic scheme, i.e., Tar2 and Tar3.

Setup 7: To evaluate the steganalytic performance of the proposed Lg-LLCQ on DB3,
the proposed Lg-LLCQ and other involved steganalytic features are all employed to detect
Tar2∼3 at payloads 0.1 and 0.3 bpnsmv under the same coding configurations in setup 2.

4.1.4. Training and Classification

In our experiments, the features are extracted from each video sample. Throughout
all the steganalytic experiments, sixty percent cover–stego pairs are randomly selected
for training, while the remaining are randomly shuffled and sent into the SVM classifier
one by one for testing. The penalty factor C and kernel factor γ in Gaussian-kernel SVM
are optimized by a five-fold cross-validation on the grid space 〈(C, γ)|C = 210, 211, . . . , 215,
γ = 2−15, 2−14, . . . , 23〉. The detection performance will be quantified as the average
accuracy PACC, which is defined as

PACC = 1− 1
2
(PFA + PMD), (16)

where PACC is averaged over 50 iterations on each steganalytic experiment and PFA and
PMD represent the probability of false alarm and missed detection, respectively.

4.2. Performance Evaluation
4.2.1. Evaluation of Computational Complexity and Steganalytic Performance of the
Proposed Features under Different Parameter P

In this part, we evaluate the computational complexity and steganalytic performance
of our proposed Lg-LLCQ in terms of average computation time (Ave-Time) and average
accuracy (PACC) under different exponential parameter p, and the corresponding results are
listed in Table 1. As can be seen from Table 1, an increasing p does not always significantly
improve detection performance, but negatively affects Ave-Time. In this regard, for the
trade-off between Ave-Time and steganalytic performance, we set p as 10 in this paper.
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4.2.2. Steganalytic Performance Comparison

With the determination of parameter p, we can then compare the detection perfor-
mance of the proposed LLCQ with other state-of-the-art MV-based steganalytic schemes,
i.e., AoSO, NPELO and MVC, in detecting Tar2, and the corresponding results are shown
in Table 2. As we can see from Table 2, the proposed LLCQ achieves remarkable perfor-
mance improvement over NPELO, which proves the conclusion drawn in Section 3.3 that
the LLCQ feature will be feasible for detecting the MV-based steganography. We then
systematically compare the detection performance of the proposed combined feature, i.e.,
Lg-LLCQ, with involved steganalytic schemes at different payloads on DB1 and DB2, the
corresponding results are summarized in Tables 3 and 4, respectively. To further evaluate
the detection performance, Figures 5 and 6 give the ROC curves for the detection of the in-
volved steganographic schemes on DB1 and DB2 at 0.3 bpnsmv. For Tar1∼3, our proposed
Lg-LLCQ exhibits excellent detection performance at various payloads under QP = 28
and QP = 18 and outperforms other competing methods, as shown in Tables 3 and 4 and
Figures 5 and 6, indicating the effectiveness of the proposed Lg-LLCQ in detecting the
involved steganographic schemes.

Table 1. The average time consumption (in seconds) and average accuracy PACC (in %) of our
proposed Lg-LLCQ under parameter p.

QP Evaluating Scheme
Parameter p

5 10 15 20 25

28 Ave_Time 483 491 503 522 541
PACC 93.28 94.36 94.61 94.79 94.58

18 Ave_Time 561 578 593 609 621
PACC 93.61 95.45 95.67 95.84 95.67

Table 2. Average accuracy PACC (in %) of AoSO, NPELO, MVC and our proposed LLCQ against Tar2
under various payloads (in bpnsmv) and QPs (28 and 18) on DB1 and DB2.

Dataset QP Feature
Payload (in Bpnsmv)

0.1 0.2 0.3 0.4 0.5

DB1

28

AoSO 50.48 51.49 52.18 53.04 56.38
NPELO 61.02 72.12 79.28 85.21 88.34

MVC 57.69 69.71 78.59 85.68 88.76
LLCQ 61.28 75.82 86.34 88.65 92.24

18

AoSO 51.87 54.02 60.01 64.13 72.31
NPELO 63.21 71.47 82.18 88.24 91.45

MVC 68.56 81.74 89.39 94.71 96.46
LLCQ 70.28 85.64 91.68 94.15 96.32

DB2

28

AoSO 50.51 50.89 52.23 54.61 58.84
NPELO 66.54 80.36 86.69 91.26 93.15

MVC 65.34 79.61 87.26 92.48 94.23
LLCQ 68.25 85.66 91.32 93.47 95.28

18

AoSO 50.39 53.62 59.37 65.54 71.62
NPELO 64.29 78.81 87.69 92.37 94.61

MVC 69.12 87.41 94.12 96.49 97.45
LLCQ 68.34 85.16 92.62 95.41 97.08
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Table 3. Average accuracy PACC (in %) of AoSO, NPELO, MVC and our proposed Lg-LLCQ against
the steganographic schemes Tar1∼3 under various payloads (in bpnsmv) and QPs (28 and 18) on DB1.

Scheme Feature
Payload (QP = 28) Payload (QP = 18)

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Tar1

AoSO 92.13 95.47 96.49 97.12 97.89 93.19 96.21 97.12 97.68 98.32
NPELO 93.52 97.43 99.12 99.36 99.71 95.18 98.19 99.28 99.39 99.51

MVC 78.46 83.89 89.65 92.15 94.48 82.69 89.17 93.78 95.66 97.18
Lg-LLCQ 95.54 98.34 99.32 99.52 99.76 97.29 98.86 99.33 99.45 99.82

Tar2

AoSO 50.48 51.49 52.18 53.04 56.38 51.87 54.02 60.01 64.13 72.31
NPELO 61.02 72.12 79.28 85.21 88.34 63.21 71.47 82.18 88.24 91.45

MVC 57.69 69.71 78.59 85.68 88.76 68.56 81.74 89.39 94.71 96.46
Lg-LLCQ 62.14 78.96 89.34 94.36 95.87 71.87 89.18 94.21 95.45 97.39

Tar3

AoSO 50.08 50.69 51.54 53.51 55.24 50.04 52.01 57.15 66.59 74.29
NPELO 65.24 75.62 80.34 84.11 87.26 57.62 68.42 78.12 85.22 89.56

MVC 58.14 72.16 79.23 84.87 88.34 61.66 76.53 85.33 91.36 95.21
Lg-LLCQ 69.14 80.77 88.72 92.23 94.34 69.03 84.76 89.36 95.21 96.81

Table 4. Average accuracy PACC (in %) of AoSO, NPELO, MVC and our proposed Lg-LLCQ against
the steganographic schemes Tar1∼3 under various payloads (in bpnsmv) and QPs (28 and 18) on DB2.

Scheme Feature
Payload (QP = 28) Payload (QP = 18)

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Tar1

AoSO 93.49 96.14 97.09 97.71 98.26 94.31 96.89 97.89 98.14 98.86
NPELO 94.68 98.12 99.18 99.38 99.54 95.69 98.35 99.18 99.42 99.66

MVC 85.63 89.14 94.36 95.15 97.69 88.79 93.88 95.79 97.16 98.84
Lg-LLCQ 95.79 98.61 99.22 99.46 99.61 97.42 98.63 99.36 99.53 99.72

Tar2

AoSO 50.51 50.89 52.23 54.61 58.84 50.39 53.62 59.37 65.54 71.62
NPELO 66.54 80.36 86.69 91.26 93.15 64.29 78.81 87.69 92.37 94.61

MVC 65.34 79.61 87.26 92.48 94.23 69.12 87.41 94.12 96.49 97.45
Lg-LLCQ 69.71 88.03 94.43 97.36 98.27 70.38 89.13 96.02 97.61 98.86

Tar3

AoSO 50.08 51.29 53.18 55.08 57.29 50.39 54.02 57.71 61.69 65.83
NPELO 69.58 79.31 85.12 87.37 89.37 62.25 74.31 82.34 86.74 88.17

MVC 63.49 76.21 83.67 88.21 91.69 65.86 79.71 88.37 92.08 93.68
Lg-LLCQ 75.39 86.41 90.39 92.48 94.26 72.43 85.68 91.51 93.73 95.27

Referring to the results, we find that the tested steganalytic features show excellent
performance in detecting Tar1. As for the detection on Tar2∼3, the AoSO performs the worst.
This is because Tar2∼3 maintain the local optimality of MVs in SAD sense, which would
have a dramatically negative influence on AoSO’s steganalytic performance. The NPELO
shows comparable performance under QP = 28 but broadly inferior performance under
QP = 18 in detecting Tar2∼3 as compared with MVC. The reason that contributed to the
detection performance degradation under QP = 18 may be the way of MVs modifications.
Specifically, the NPELO is built by checking the local optimality of MVs in rate-distortion
sense. However, according to SAD-based modification criterion in Tar2∼3, the stego MVs
have certain probabilities to preserve the local optimality in rate-distortion sense. Thus,
they lead the detection performance of NPELO degradation under QP = 18 as compared
with MVC. Although the MVC feature shows overall better performance in detecting
Tar2∼3, it is still inferior to NPELO in some cases, i.e., some small payloads under QP = 28.
The accepted internal mechanism is as follows. MVC is a steganalytic feature built by
checking the consistency of MVs in small blocks. However, according to the principles
of video encoding, when setting high QP in BaselinePro f ile, the encoder tends to choose
larger blocks to encode videos. Additionally, the small blocks in the encoded videos will
accordingly decrease, adversely affecting the performance of MVC. The NPELO is designed
based on the observation that the embedding modifications will break the local optimality
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of MVs. However, it is less effective in detecting some logic-maintaining steganographic
schemes, e.g., Tar2∼3. Unlike NPELO, in which only the logic-based feature is utilized
to detect the MV modifications, our proposed Lg-LLCQ takes into account both the logic-
based feature and local Lagrangian cost quotient (LLCQ)-based feature for steganalysis,
which may contribute to its substantial performance improvement over NPELO and overall
performance improvement as compared with MVC in detecting Tar1∼3 under QP = 28
and QP = 18.
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Figure 5. ROC curves of AoSO, NPELO, MVC and Lg-LLCQ on DB1 at 0.3 bpnsmv. (a) Tar1 under
QP = 28; (b) Tar1 under QP = 18; (c) Tar2 under QP = 28; (d) Tar2 under QP = 18; (e) Tar3 under
QP = 28; and (f) Tar3 under QP = 18.
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Figure 6. ROC curves of AoSO, NPELO, MVC and Lg-LLCQ on DB2 at 0.3 bpnsmv. (a) Tar1 under
QP = 28; (b) Tar1 under QP = 18; (c) Tar2 under QP = 28; (d) Tar2 under QP = 18; (e) Tar3 under
QP = 28; and (f) Tar3 under QP = 18.

4.2.3. Stability Performance Evaluation

To evaluate the stability of our proposed Lg-LLCQ, the stego video samples with
different embedding payloads and QPs under the same steganographic scheme will be
grouped together for experiments. Under this circumstance, we compare the detection
performance of our proposed Lg-LLCQ with AoSO, NPELO and MVC, and the correspond-
ing experimental results are reported in Table 5. It can be noted from Table 5 that our
scheme outperforms all competitors consistently, which demonstrates that our proposed
Lg-LLCQ exhibits more stable steganalytic performance against the involved MV-based
steganographic schemes.
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Table 5. Average accuracy PACC (in %) of AoSO, NPELO, MVC and our proposed Lg-LLCQ under
mixed payloads (0.1∼0.5 bpnsmv) and QPs (28 and 18) on DB1 and DB2.

Scheme
DB1 DB2

AoSO NPELO MVC Lg-LLCQ AoSO NPELO MVC Lg-LLCQ

Tar1 95.68 97.82 92.79 98.31 96.26 98.38 94.32 99.12
Tar2 58.31 84.57 86.72 93.62 60.19 86.41 88.26 94.68
Tar3 57.72 83.16 85.04 92.16 57.46 85.67 86.34 93.46

4.2.4. Evaluation of Steganalytic Performance of Subfeatures

Setup 4 aims to evaluate the independent effects of subfeatures of the proposed Lg-
LLCQ against Tar2∼3, and the results are shown in Figures 7 and 8. It is observed that
the proposed feature, built on a combination of all subfeatures, achieves outstanding
gains in detecting Tar2∼3. It is also noted that (1) the logic-based subfeature and plain
quotient-based subfeature provide satisfactory detection accuracies in most cases. (2) The
magnified quotient-based subfeature enlarged some subtle distinctions between cover and
stego videos to further boost the detection performance.
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Figure 7. Average accuracy PACC (in %) of subfeatures against Tar2. (a) DB1 and (b) DB2. A, B and C
indicate the logic-based subfeature, plain quotient-based subfeature and magnified quotientbased
subfeature, respectively.
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Figure 8. Average accuracy PACC (in %) of subfeatures against Tar3. (a) DB1 and (b) DB2. A, B and C
indicate the logic-based subfeature, plain quotient-based subfeature and magnified quotient-based
subfeature, respectively.

4.2.5. Applicability Performance Evaluation

We then compare the applicability of the proposed Lg-LLCQ with other steganalytic
schemes, i.e., AoSO, NPELO and MVC at payloads 0.2 and 0.4 bpnsmv on DB1 and DB2. To
accomplish this, we take Tar2 with fixed block size for experiments, and the corresponding
results are summarized in Table 6. They show that our proposed Lg-LLCQ still performs
the best. On the other hand, they also show the MVC is totally ineffective in detecting Tar2,
which can be attributed to the reason that MVC is defined for the sub-blocks within the
same macroblock, while the encoder does not exist sub-blocks under fixed-size option in
BaselinePro f ile. Although our proposed Lg-LLCQ is originally designed for the detection
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of H.264/AVC video steganography, owing to the general applicability of Lg-LLCQ, it can
be easily extended to previous video coding standards, i.e., MPEG-2 and MPEG-4.

Table 6. Average accuracy PACC (in %) of AoSO, NPELO, MVC and our proposed Lg-LLCQ against
Tar2 under fixed block size.

Scheme Feature
QP = 28 QP = 18

0.2 0.4 0.2 0.4

Tar2

AoSO 55.71 58.31 67.45 71.78
NPELO 72.61 77.86 71.46 76.58

MVC 50.00 50.00 50.00 50.00
Lg-LLCQ 83.26 89.43 81.27 88.24

4.2.6. Evaluation of Steganalytic Performance under Cover Sources and Steganographic
Schemes Mismatch

Since all the involved features achieve excellent performance in detecting Tar1, Tar1 is
not considered in this setup. We then proceed to compare the detection performance of our
proposed Lg-LLCQ with AoSO, NPELO and MVC under cover sources and steganographic
scheme mismatch scenes, which are summarized in Table 7. For Tar2∼3, our proposed
Lg-LLCQ shows nearly perfect detection performance at various payloads under QP = 18
and QP = 28, indicating the effectiveness of the proposed Lg-LLCQ in the detection of
Tar2∼3. Note that low QP value, e.g., QP = 18, will weaken the detection model of our
proposed Lg-LLCQ in cover sources and steganographic scheme mismatch scenes due to
small distortion. This could explain why our proposed Lg-LLCQ is slightly inferior to the
MVC feature in detecting Tar2∼3 under QP = 18.

Table 7. Average accuracy PACC (in %) of AoSO, NPELO, MVC and our proposed Lg-LLCQ under
cover sources and steganographic scheme mismatch scenes.

Scheme Trained Model
Payload (QP = 28) Payload (QP = 18)

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Tar2

AoSO-Tar3 50.05 50.41 50.88 51.06 51.49 50.06 51.76 55.89 62.45 65.78
NPELO-Tar3 63.11 74.55 82.39 86.32 88.61 56.58 69.92 77.17 82.69 84.86

MVC-Tar3 59.22 74.95 84.81 90.34 93.42 66.78 82.17 89.32 91.66 94.18
Lg-LLCQ-Tar3 66.73 82.34 90.36 93.65 96.74 64.36 78.67 85.61 88.47 90.26

Tar3

AoSO-Tar2 50.38 50.69 51.24 52.18 53.86 50.19 51.04 53.89 58.23 61.78
NPELO-Tar2 64.32 72.14 77.39 82.32 84.61 58.65 68.27 73.66 76.89 78.24

MVC-Tar2 60.27 68.07 78.69 85.24 87.36 62.66 76.12 83.49 85.17 86.38
Lg-LLCQ-Tar2 68.13 79.84 86.34 91.15 92.08 63.85 73.81 79.63 82.51 83.82

4.2.7. Evaluation of Steganalytic Performance under Different Video Resolutions

We then proceed to evaluate the detection performance of our proposed scheme on
DB3. Three SOTA steganalytic schemes, i.e., AoSO, NPELO and MVC, are still included
for performance comparison, and the corresponding experimental results are finally listed
in Table 8. It is observed that our proposed Lg-LLCQ can still perform the best among
involved steganalytic schemes in detecting Tar2∼3 under the other resolution database.
Table 8 also shows an interesting result that all the test steganalytic schemes perform worse
under higher QP value (i.e., QP = 28). This could be due to the fact that a high QP value
leads to a decline in the number of MVs. In our paper, the payload is depicted by a relative
indicator, i.e., bpnsmv, which is the ratio of the number of embedded bits to the total
number of nonskip MVs. Therefore, as the number of MVs decreases, the corresponding
embedding payload will also reduce, thereby leading to relatively fewer embedding traces,
which finally makes it more difficult for steganalyzers to detect.
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Table 8. Average accuracy PACC (in %) of AoSO, NPELO, MVC and our proposed Lg-LLCQ against
Tar2∼Tar3 at relative payloads 0.1 and 0.3 bpnsmv on DB3.

Scheme Feature
Payload (QP = 28) Payload (QP = 18)

0.1 0.3 0.1 0.3

Tar2

AoSO 50.32 50.59 50.68 53.78
NPELO 51.42 66.21 52.14 74.52

MVC 50.58 66.73 61.64 83.16
Lg-LLCQ 52.81 77.15 63.81 89.22

Tar3

AoSO 50.13 50.41 50.37 51.69
NPELO 53.54 68.27 51.71 72.18

MVC 51.82 67.55 55.86 81.58
Lg-LLCQ 55.63 76.49 59.78 85.62

5. Conclusions

In this paper, we proposed an effective and general steganalytic feature named Lg-
LLCQ to detect MV-based H.264/AVC steganography. The proposed Lg-LLCQ is composed
of two types of subfeatures, i.e., the logic-based (Lg) subfeature and the local Lagrangian
cost quotient (LLCQ)-based subfeature, wherein the Lg subfeature is inherited from the
previous art NPELO, and the LLCQ subfeature is newly designed according to the statistic
of local Lagrangian cost quotient. As for the characterization of this statistic, we referred
to the fact that the embedding modifications usually cause the numerical anomaly of the
local Lagrangian cost quotient and proposed a local Lagrangian cost quotient(LLCQ)-based
indicator, the validity of which was also validated. Moreover, with the introduction of the
LLCQ-based subfeature, the defect in the Lg-based subfeature that it is less effective in the
detection of some logic-maintaining steganographic schemes can be well-compensated,
and the resulting Lg-LLCQ feature shows the best performance in detecting MV-based
H.264/AVC steganography. By the way, we will extend the proposed Lg-LLCQ to MV-
based H.265/HEVC steganography to further enhance its generality in the future.
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