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Abstract: In the QCD, a transition restoring the chiral symmetry occurs at a high temperature and
density. Searching for the signals of the QCD phase transition is one of the goals of the current
relativistic heavy-ion physics programs. The metastable state is a unique feature of the first-order
phase transition. Using the van der Waals equation of state, the role of the metastable state in finite-
size effects is analyzed. It is found that the finite-size effects of the first-order phase transition are
closely related to the metastable state. Metastability can be observed in the distribution of the order
parameters and the probability of its occurrence depends on the system scale. A sizable probability of
the metastability requires a small enough system size. The possibility of observing the metastability
in the RHIC/BES is discussed.

Keywords: relativistic heavy-ion collision; phase transition; finite-size effect

1. Introduction

In the 1970s, T. D. Lee et al. [1,2] predicted that through high-energy heavy-ion
collisions, it was possible to form a high-temperature and/or high-density environment so
that a new state of matter—quark gluon plasma (QGP) [3,4]—would be produced. Since
then, great theoretical and experimental progress has been made in the field. In the 2000s,
the relativistic heavy-ion experiments, in particular the Relativistic Heavy-Ion Collider
(RHIC) in the Brookheaven National Laboratory with a collision energy of several hundred
GeV, had observed the parton (quark and gluon) degrees of freedom [5–8]. It is widely
believed that a strongly coupled QGP has been formed. The discovery of the QGP phase
is a milestone in heavy-ion physics. However, the phase boundary between the hadron
phase and the QGP phase has not been conclusively mapped yet, challenging the theory
and experiment.

Consider N f flavors of massless quarks which couple in the fundamental represen-
tation of a SU(Nc) color gauge group. The flavor symmetry of the quantum theory is
G f = ZA(N f )× SU(N f )× SU(N f ). At zero temperature, the chromodynamic vacuum
spontaneously breaks G f to SU(N f ), while at a high temperature, the full chiral symmetry
is restored to the vacuum [9]. Lattice QCD calculations at a high temperature indicate that
the restoration of the spontaneously broken chiral symmetry with a physical quark mass
is a smooth crossover at zero baryon chemical potential [10], while several QCD-based
models predict a first-order phase transition at a high baryon chemical potential [11–15].
The existence of the critical point, which terminates the first-order phase transition line
in the QCD phase diagram, is expected and being searched for in the ongoing heavy-ion
experiments.

High cumulants of conserved charges are sensitive observables to the critical
point [16–18]. Their sign or the change in the sign can signal the critical point. Especially,
the fourth-order cumulant (kurtosis) should show a non-monotonic energy dependence
when the chemical freeze-out line gets close to the critical point [19]. The STAR data of the
first stage of the beam energy scan (BES) at the RHIC indeed shows the non-monotonic
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behavior of the kurtosis of the net-proton distribution [20]. However, it is hard to obtain
a definite conclusion due to the large error bar, as well as the lack of knowledge on the
finite-size effects, the acceptance effect and the non-equilibrium dynamics.

Instead of directly observing the critical point, the identification of the first-order
phase transition is thought to be crucial to the determination of the phase boundary. If
we see signals of the first-order phase transition, the existence of the critical point is also
validated because a first-order phase transition line will definitely terminate at a critical
point before touching the crossover region. For that reason, the future second stage of the
BES at the RHIC not only enhances the statistics and acceptance at existing energies but
also extends the energy range down to lower energies. Other heavy-ion programs, e.g.,
the Compressed Baryonic Matter Experiment (CBM) at FAIR (in Germany), the Nuclotron-
based Ion Collider fAcility (NICA) at JINR (in Russia) and the Cooling Storage Ring (CSR)
at HIRFL (in China), will also concentrate on lower energies and hence a larger baryon
chemical potential, giving more possibilities to explore the first-order phase transition.

A possible signature of a first-order phase transition is reported in the directed flow
measurements in the STAR BES Au+Au collision data [21]. The slope near the mid-rapidity
for protons and antiprotons at intermediate impact parameters shows a minimum between
a collision energy of 11.5 and 19.6 GeV. The net-proton slope changes the sign twice between
7.7 and 39 GeV, which qualitatively resemble the predictions of a hydrodynamical model
with a first-order phase transition. However, the position of the dip in the data differs from
that of the hydrodynamic model, and the error bars for different centralities are large, which
requires more statistics and a better reaction plane resolution. Therefore, other signals and
evidence of the first-order phase transition are still needed.

An interesting feature of the first-order phase transition is the spinodal curve, i.e., the
“S"-shape curve of the equation of state, such as the function p(V) of the van der Waals
fluid. It refers to an interval of the number density where the derivative of the pressure
with respect to the volume is positive, i.e.,

( ∂p
∂V
)

T > 0. Such a mechanical instability forms
a region on the T-n plane, called the spinodal instable region. It also refers to an interval
where

( ∂p
∂V
)

T < 0, but the state is metastable. This region is called the spinodal metastable
region. Spinodal instability and metastability are general features of the first-order phase
transition and are associated with a convex anomaly in the entropy or free energy [22].
The distribution of the order parameter (number density) which is determined by the free
energy also has a convex anomaly, resulting in a double-peak shape.

A double-peak shape of energy and density distributions is demonstrated in a lattice
gas model [22]. A similar shape of the density distribution is also shown in a van der
Waals fluid [23]. The double-peak distribution can fit the first four cumulants of the proton
distribution observed in the STAR data of Au+Au collisions at 7.7 GeV [23]. However, the
physical meaning of each peak has not been clarified. Because systems created in heavy-ion
collisions are only a few fm in size [24,25], the dependence of the double-peak distribution
on the system size, i.e., the role of stable and metastable states in a small-size system, has
not been studied so far.

Because the calculation of the QCD phase transition at high baryon chemical potential
is unavailable, the van der Waals fluid is used just as an example to demonstrate the general
behaviors of the metastable states. This paper is organized as follows. The van der Waals
equation of state is given in Section 2. We demonstrate the spinodal metastable region
on the T-µ plane in Section 3. The two peaks of the density distribution are analyzed to
correspond to the gas and the liquid phase, which appear in the form of a stable state and
a metastable state, respectively. There is a notable volume dependence of the probability
of the metastable states which is carefully studied. A small system size is favored to
observe the metastable state. The metastable states only contribute to finite-size systems.
By considering the contribution of the metastable states, some of the finite-size effects of the
first-order phase transition are easily understood. A possible metastable state indicating
the quark phase in the STAR Au+Au collision data at 7.7 GeV is also shown in Section 3.
Section 4 gives the summary.
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2. Formalisms and Methods

The standard van der Waals equation of state (EoS) is given by the pressure function
in the canonical ensemble (CE) with a fixed particle number as

p(V, T, N) =
NT

V − bN
− a

N2

V2 . (1)

p, V, T and N have their usual meanings as the pressure, the volume, the temperature and
the particle number, respectively. The parameters a and b describe the attractive interactions
and the repulsive interactions caused by the excluded volume.

In order to accommodate systems with varying particle number, we have to extend
the van der Waals EoS to the grand canonical ensemble (GCE). Such extending can be
found in the pioneering work [26]. For ease of reference, a systematic deduction is given in
Appendix A. Relativistic dispersion relation and Boltzmann statistics are used. As a result,
the particle number density n (n ≡ N/V) as a function of temperature T and chemical
potential µ is given by the following transcendental equation,

µ = −T ln
(1− bn)ϕ(T)

n
+ b

nT
1− bn

− 2an, (2)

with

ϕ(T) =
gTm2

2π2 K2

(
m
T

)
. (3)

Here, g is the degeneracy factor, m is the particle mass and K2(m/T) denotes the modified
Bessel function of the second kind.

In a model of interacting nucleons, g = 4 and m = 938 MeV are used. We further
assume a = 262 MeV·fm3 and b = 1.11 fm3, resulting in a critical point with Tc =

8a
27b =

69.9366 MeV, nc =
1
3b = 0.3003 fm−3 and µc = 791.542 MeV [23]. The general behavior of

the spinodal curve does not change with parameters.

3. Results and Discussions
3.1. Spinodal Metastable Region of the van der Waals Fluid

With the definition v ≡ V/N (volume occupied by each particle), the EoS (1) can
transform to

p(T, v) =
T

v− b
− a

v2 . (4)

At T < Tc, the function p(v) gives an isotherm, i.e., a spinodal curve, shown in Figure 1a.
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Figure 1. (a) An isotherm in p(v) plot at T = 62 MeV (a randomly chosen temperature for T < Tc).
(b) An isotherm in µ(p) plot.

On this curve, the segment DON represents an instable state where the condition
of stable equilibrium ( ∂p

∂V )T < 0 is violated. An orange dotted line is used to denote
unstable states in Figure 1a. The conditions of phase equilibrium require that a horizontal
line BOQ is constructed to replace the spinodal curve in order to maintain equal T, p
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and µ in the two phases (also known as Maxwell’s construction). An equilibrium phase
transition between the gas and the liquid takes place along the straight line BOQ rather
than the spinodal curve. The systems on segments AB, BOQ and QL correspond to a pure
liquid, gas–liquid coexistence and a pure gas, which are all stable states, denoted by blue
lines in Figure 1a. The condition of stable equilibrium does not exclude segments BD
and NQ. The systems on the two segments are possible to appear but will rapidly evolve
to some corresponding states on line BOQ in case of disturbance. That is why they are
called metastable states. The metastable states, plotted as green dashed lines in Figure 1a,
were confirmed by experiments and named super-heated liquid and super-cooled gas [27],
respectively.

Another isotherm can be expressed by µ(p). By solving the GCE EoS (2) at given T
and µ, particle number density n can be obtained. There are unique or three solutions,
denoted by ni(T, µ), i = 1 or i = 1, 2, 3. By putting ni into the variant form of EoS (1), i.e.,

p(T, n) =
nT

1− bn
− an2, (5)

the pressure pi(T, µ) can be obtained, with unique or three values, too. If T is fixed, an
isotherm expressed by µ(p) is plotted in Figure 1b for T < Tc. Using the thermodynamical
identity ( ∂µ

∂p )T = v, one can present the chemical potential µX at any point X on the
isotherm as

µX = µY +
∫ pX

pY

dp′v(p′, T), (6)

where the integration is performed along the isotherm from point Y to point X. According
to Equation (6), the chemical potential decreases with v if ( ∂p

∂v )T < 0, and it increases if

( ∂p
∂v )T > 0. Therefore, the chemical potential is a monotonously decreasing function of v

along ABD (in Figure 1a) and reaches its minimal value at D. Then, it increases along DON
and reaches its maximal value at N. Next, the chemical potential decreases monotonously
along NQL. Therefore, segment ABD in Figure 1b is the liquid state, with AB denoting a
stable liquid (blue line) and BD denoting a metastable liquid (green dashed line); segment
NQL is the gas state, with LQ denoting a stable gas (blue line) and QN denoting a metastable
gas (green dashed line); and the coexistence line BOQ in Figure 1a changes to a point Q(B)
in Figure 1b.

The chemical potential of the first-order phase transition is denoted as µ0, i.e., the
value at point Q(B) in Figure 1b. µ− denotes the chemical potential of point D and µ+

denotes that of point N. As the green dashed lines indicate, metastable states are possible
to appear in the interval µ ∈ (µ−, µ+). At another temperature, a similar µ(p) plot can be
obtained, as long as T < Tc, giving another set of µ0, µ− and µ+. By such procedure, we
obtain the three curves µ0(T), µ−(T) and µ+(T), as plotted in Figure 2.

μ

T

pure gas
phase

pure liquid
phase

spinodal metastable
region

μ0 μ+μ-

(I) (II) (III) (IV) (V)

Figure 2. The phase diagram of a van der Waals fluid. The red point denotes the critical point and
the solid line denotes the first-order phase transition line in the thermodynamic limit. Spinodal
metastable region is marked by the green shaded area.
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µ0(T), denoted by the solid line in Figure 2, is just the well-known gas–liquid coex-
istence line, which forms the boundary of gas phase and liquid phase, in the sense of the
thermodynamic limit. In Figure 2, the red point denotes the critical point. The region
between µ− and µ+ is colored in green, demonstrating the spinodal metastable region
where both the stable states and the metastable states are possible states. Thus, the phase
diagram is divided into five regions, which are marked by Roman numerals I-V in Figure 2.
Region I (µ < µ−) describes a pure gas; Region II (µ− < µ < µ0) describes the spinodal
region of a stable gas (corresponding to segment LQ in Figure 1b) and a metastable liquid
(corresponding to segment BD in Figure 1b); Region III (µ = µ0) describes the coexistence
of the gas and the liquid; Region IV (µ0 < µ < µ+) describes the spinodal region of a
metastable gas (see segment QN) and a stable liquid (see segment AB); Region V (µ > µ+)
describes a pure liquid. Both Region II and Region IV are spinodal metastable regions.

In the thermodynamic limit, only the stable states are adopted due to the criteria of
stable equilibrium. As Figure 1b shows, in order to choose the stable state, the criteria
of the minimum chemical potential at a fixed pressure is equivalent to the criteria of the
maximum pressure at a fixed chemical potential. For example, at a given temperature and
chemical potential, there are three solutions of Equation (2) in the case of µ− < µ < µ0
or µ0 < µ < µ+. The three solutions are located on the orange, green and blue lines,
respectively, as points s1, s2 and s3 in Figure 1b show. The solution s3 on the blue line is
chosen due to its maximum pressure. That means the metastable states s2 do not play a
role in the thermodynamic limit. However, in the case of finite volume, metastable states
play an important role in the spinodal metastable region, as will be illustrated below.

3.2. The Probability of the Metastable State and Its Dependence on the Volume

Let us show the metastable state in the distribution of the particle number density of
the van der Waals fluid and its role in understanding the finite-volume effects. According
to the standard formula in statistical physics, the probability for a system with particle
number N in the grand canonical ensemble is as follows,

P(N) ≡ P(N; V, T, µ) =
(e

µ
T )NZvdW

CE (V, T, N)

∑N(e
µ
T )NZvdW

CE (V, T, N)
, (7)

where the partition function of the van der Waals fluid in the canonical ensemble is given
in Equation (A7). Based on P(N), the distribution of the number density P(n) can also be
obtained, which is volume dependent.

Figure 3 shows the distribution of the number density P(n) in the five regions of the
phase diagram.We see double-peak shapes in Regions II, III and IV. In Region III, the two
peaks are always of equal height. In Region II, the left peak is dominant, while in Region
IV, the right peak is dominant. Four finite volumes are studied in Figure 3. In Regions II
and IV, the relative height of the two peaks varies with volume.

The double-peak shape of the distribution is due to a convex anomaly in entropy or
free energy [22]. According to the Landau–Ginzburg theory, the free energy has two valleys
for T < Tc, which results in two peaks in the distribution of the order parameter according
to the relation P(X) ∼ exp(−F) [27]. Therefore, the first-order phase transition of finite
volume is associated with a double-peak distribution of the order parameter. On the phase
boundary, the two peaks are of equal height, while nearby the phase boundary, the two
peaks are of different height.
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Figure 3. Distribution of the particle number density in five regions of the phase diagram. Each
column has the same volume as indicated at the top. From left to right, the volume is 400, 200, 100
and 50 fm3, respectively. The left peak describes the gas, and the right peak describes the liquid. The
higher peak describes the stable state, and the lower peak describes the metastable state.

In order to understand the physical meaning of each peak in Figure 3, we give an
example in Table 1. For T = 62 MeV and µ = 803 MeV (a randomly chosen point in
Region IV), the solutions of Equation (2) are shown in the first column of Table 1. Putting
ni(i = 1, 2, 3) and T = 62 MeV into Equation (5), the corresponding pressure is obtained
and shown in the second column of Table 1. A horizontal gray dotted line of µ = 803 MeV is
plotted in Figure 1b, showing three intersections with the isotherm. Point s1 (corresponding
to the solution of n1) is located on the orange dotted line, so n1 is instable; point s2
(corresponding to the solution of n2) is located on the green dashed line QN, so n2 denotes
a metastable gas, i.e., ng = n2 = 0.124643 fm−3; s3 (corresponding to the solution n3) is
located on the blue line AB, so n3 denotes a stable liquid, i.e., nl = n3 = 0.518450 fm−3.
The two data of ng = 0.124643 fm−3 and nl = 0.518450 fm−3 are drawn as the red dotted
lines on one of the distribution plots in Figure 3, which correspond to the maximum of
the distribution. The left peak describes the gas, and the right peak describes the liquid.
Moreover, the higher peak describes the stable state, and the lower peak describes the
metastable state.

Table 1. The solutions of Equation (2) at T = 62 MeV and µ = 803 MeV. The three solutions
correspond to the three points s1,2,3 in Figure 1b.

n(fm−3) p(MeV· fm−3)

n1 = 0.290612 p1 = 4.47057 instable
n2 = 0.124643 p2 = 4.89833 metastable gas (ng = n2)
n3 = 0.518450 p3 = 5.29507 stable liquid (nl = n3)

Figure 3. Distribution of the particle number density in five regions of the phase diagram. Each
column has the same volume as indicated at the top. From left to right, the volume is 400, 200, 100
and 50 fm3, respectively. The left peak describes the gas, and the right peak describes the liquid. The
higher peak describes the stable state, and the lower peak describes the metastable state.

In order to understand the physical meaning of each peak in Figure 3, we give an
example in Table 1. For T = 62 MeV and µ = 803 MeV (a randomly chosen point in
Region IV), the solutions of Equation (2) are shown in the first column of Table 1. Putting
ni(i = 1, 2, 3) and T = 62 MeV into Equation (5), the corresponding pressure is obtained
and shown in the second column of Table 1. A horizontal gray dotted line of µ = 803 MeV is
plotted in Figure 1b, showing three intersections with the isotherm. Point s1 (corresponding
to the solution of n1) is located on the orange dotted line, so n1 is instable; point s2
(corresponding to the solution of n2) is located on the green dashed line QN, so n2 denotes
a metastable gas, i.e., ng = n2 = 0.124643 fm−3; s3 (corresponding to the solution n3) is
located on the blue line AB, so n3 denotes a stable liquid, i.e., nl = n3 = 0.518450 fm−3.
The two data of ng = 0.124643 fm−3 and nl = 0.518450 fm−3 are drawn as the red dotted
lines on one of the distribution plots in Figure 3, which correspond to the maximum of
the distribution. The left peak describes the gas, and the right peak describes the liquid.
Moreover, the higher peak describes the stable state, and the lower peak describes the
metastable state.
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Table 1. The solutions of Equation (2) at T = 62 MeV and µ = 803 MeV. The three solutions
correspond to the three points s1,2,3 in Figure 1b.

n (fm−3) p (MeV· fm−3)

n1 = 0.290612 p1 = 4.47057 instable
n2 = 0.124643 p2 = 4.89833 metastable gas (ng = n2)
n3 = 0.518450 p3 = 5.29507 stable liquid (nl = n3)

When µ varies from Region I to Region V, the two peaks compete against each other
(see from top to bottom in the same column in Figure 3). The unique peaks at Region I
and Region V represent a pure gas state and a pure liquid state, respectively. Near the
phase boundary, both the gas and the liquid are possible states in the ensemble. The only
difference lies in their probabilities of occurrence. On one side of the phase boundary,
only one phase is dominant. From Region II to Region IV, the system evolves from a
gas-dominant state to a liquid-dominant state.

What do we mean by saying a gas-dominant state nearby the phase boundary? Take
the time evolution of the magnetization M in the Monte Carlo simulation of the Ising model
below Tc as an example [28]. When on the phase boundary, i.e., the external field H = 0, the
magnetization M shows many transitions between +ML and −ML. M = ±ML represents
two ordered phases, i.e., the upward magnetization and downward magnetization. The
time lengths staying at +ML and −ML are almost equal. When below the phase boundary,
i.e., H obtains a small negative value, M shows transitions between +ML and −ML too,
with a longer time (larger probability) staying at −ML. If there are many replicas of the
system in an ensemble (like the samples obtained by the Monte Carlo simulations), some
systems are in the phase of upward magnetization and others are in the phase of downward
magnetization. The number of systems of the downward magnetization is more than that
of the upward magnetization. That represents a downward magnetization-dominant state.
Therefore, a gas-dominant state represents an ensemble where the number of systems
staying in a gas state is more than that of liquid.

It is widely known that the phase boundary is well-defined in the thermodynamical
limit. However, in the case of finite volume, there can not be a clear boundary. Within the
spinodal metastable region, both phases are possible to appear. To quantify the relative
probability of the metastable state, we define

ζ ≡ PMS

PSS
, (8)

where PMS and PSS are the probability peak heights of the metastable state and the stable
state, respectively.

The chemical potential dependence of ζ at a fixed volume, e.g., V = 200 fm3, is shown
as the blue curve in Figure 4a. ζ equals to 1 at µ0 and gradually decreases to 0 at both sides.
The non-zero relative probability illustrates the contribution of metastable states at a finite
volume.

V=200 fm3

V=2000 fm3

μ

0.5

1.0
ζ

μ0μ- μ+

(a)

200 400 600 800
V (fm3)

0.2

0.4

0.6

0.8

1.0
ζ

(b)

Figure 4. (a) The relative probability of the metastable state ζ as a function of µ at two given volumes.
(b) ζ as a function of volume at µ = 803 MeV (µ0 < µ < µ+).
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As the volume increases to 2000 fm3, the area enclosed by the purple curve shrinks
and ζ decreases to 0 more rapidly. That means a metastable state can be observed within a
narrower µ interval. We can expect that the interval of the chemical potential will shrink to
zero as the volume approaches infinity. That confirms the statement that metastable states
do not have a role to play in the thermodynamic limit.

The spinodal metastable region in the last subsection is specified by the interval
(µ−, µ+) for systems with a varying particle number. According to Figure 4a, we can infer
that the size of the metastable region is volume dependent for finite-size systems. The
smaller the volume, the larger the metastable region.

To quantify how the relative height of the two peaks varies with the volume, ζ as a
function of volume is shown in Figure 4b. It approximately has a law of

ζ ∼ exp(−V), (9)

which is consistent with the Ising model [28].

3.3. Metastable States’ Contribution in Understanding Finite-Size Effects of the First-Order
Phase Transition

The number density n, as an order parameter of van der Waals fluid, is shown in
Figure 5. A spinodal curve ABDNQL is obtained by solving Equation (2) for T < Tc. Same
as the previous designation, the blue solid line, the green dashed line and the orange dotted
line represent stable states, metastable states and instable states, respectively. Because the
criteria of a stable equilibrium only chooses stable states, the order parameter n shows the
discontinuity in the thermodynamical limit, as the blue line shows in Figure 5.
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D
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Figure 5. The average number density 〈n〉 at T < Tc.

The number density at finite volume is calculated by obtaining the average from the
distribution P(n). The discontinuity of the number density is rounded at finite volumes, as
the black dashed line and black dotted line show in Figure 5. The width ∆µ over which the
transition is rounded is approximately inversely proportional to the volume, i.e.,

∆µ ∝
1
V

=
1
Ld , (10)

where d is the dimension of the system. This relation is in agreement with the Ising
model [28] and the finite-size scaling theory [29–32].

When µ < µ0, the ensemble is a gas-dominant state. In this state, the relative proba-
bility of the metastable liquid is ζ and the average number density can be approximately
related to ζ as a weighted average,

〈n〉V '
ng + ζnl

1 + ζ
. (11)

Because ζ is volume-dependent, the average number density is also volume-dependent
and can be labeled by a subscript V. Due to ng < nl , the contribution of the metastable
liquid results in 〈n〉V > ng for µ < µ0. That explains that the black curves representing two
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finite volumes are above the blue curve at the left of the discontinuity point. In particular,
due to ζ|V=200 > ζ|V=800 (see the left half of Figure 4a), there is 〈n〉V=200 > 〈n〉V=800 for
µ < µ0. That is the reason why the dotted line (for 200 fm3) is higher than the dashed line
(for 800 fm3) at the left neighborhood of the discontinuity. Therefore, the volume ordering
of the number density at finite volumes reflects the contributions of the metastable states.
The smaller the volume, the larger the relative probability of the metastable state, and the
smoother and flatter the curve of the number density.

When the chemical potential approaches the discontinuity point µ0, ζ approaches 1
for whatever volume, as Figure 4a shows. It results in

〈n〉V
∣∣∣∣
µ0

' nl + ng

2
, independent of volume, (12)

which generates the fixed point behavior (the intersection point of curves of different
volumes).

3.4. A Possible Metastable State in the STAR Data at 7.7 GeV

The conjectured QCD phase diagram has the same structure as that of the van der
Waals fluid. The lattice QCD and NJL models predict that high cumulants of conserved
charges are sensitive observables of the critical point [16–18]. The conserved charges,
especially the number density of net baryon, denoted as nnetB, plays the role of the order
parameter of the QCD phase transition. It obtains a small value in the hadronic phase
and a large value in the quark phase, i.e., nhadron

netB < nquark
netB [33] (the quark number density

shown in Reference [33] is just the baryon number density except a factor of 1/3). Because
the freeze-out line is located in the hadronic phase, if it is close to the first-order phase
transition line, we hope to see a lower peak on the right side of the distribution representing
the metastable quark phase.

In Reference [23], a two-component model was constructed to reproduce the first
four factorial cumulants of the proton at 7.7 GeV, especially to explain the large four-
particle correlations. If there are two different types of events, denoted by (a) and (b), the
distribution of N (the number of proton) is given by

P(N) = (1− α)P(a)(N) + αP(b)(N), (13)

where (1 − α) and α denote the probability that an event belongs to class (a) and (b).
P(a)(N) and P(b)(N) are multiplicity distributions governing the event classes (a) and (b),
respectively. The factorial cumulants (the relation between the cumulants and the factorial
cumulants is discussed in Reference [34]) of the total distribution read

〈N〉 = (1− α)〈N(a)〉+ α〈N(b)〉,
C2 = C(a)

2 − α(C̄2 − (1− α)N̄2),

C3 = C(a)
3 − α{C̄3 + (1− α)[(1− 2α)N̄3 − 3N̄C̄2]},

C4 = C(a)
4 − α{C̄4 − (1− α)[(1− 6α + 6α2)N̄4

− 6(1− 2α)N̄2C̄2 + 4N̄C̄3 + 3(C̄2)
2]}, (14)

where

N̄ = 〈N(a)〉 − 〈N(b)〉,
C̄n = C(a)

n − C(b)
n , (15)

and C(a/b)
n represents the factorial cumulants of the class (a) or (b).
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The factorial cumulants of the model are given in Equation (14). The mean value
of the first four factorial cumulants in the STAR Au+Au collision data at 7.7 GeV are as
follows [20,23],

〈N〉 = 39.2908, C2 = −1.7511,

C3 = −10.3098, C4 = 172.906. (16)

A combination of a binomial distribution (event classes (a)) and a Poisson distribution
(event classes (b)) are used in Reference [23]. There are four parameters in total, including
two parameters from the binomial distribution, one parameter from the Poisson distribution
and one weight factor α. One of the parameters in the binomial distribution is fixed and they
only fit 〈N〉, C3 and C4. In this section, we follow the method in Reference [23], but fit all
the first four factorial cumulants, without fixing any parameters. Each formula in Equation
(14) should be equal to the corresponding mean value given in Equation (16), forming
four equations. Since the number of parameters is equal to the number of equations, the
parameters are exactly determined by solving the set of equations. The result is shown in
Figure 6a. The distribution indeed shows a two-peak shape.

Total

Event class (a)

Event class (b)

20 40 60 80 100 120
N10-7

10-5

0.001

0.100

P(N)

(a)

α=0.0025

C5=-2819

C6=45,476

Total

Event class (a)

Event class (b)

20 40 60 80 100 120
N

10-5

0.001

0.100

P(N)

(b)

α=0.015

C5=-2149

C6=-8978

Figure 6. The distribution of the proton number. (a) A two-component distribution with a lower peak
on the left side, similar to what is performed in Reference [23]. (b) A two-component distribution
with a lower peak on the right side which is consistent with the scenario of the metastable state.
The blue line represents the stable hadron phase, while the green line represents the metastable
quark phase.

However, it does not agree with the prediction from the metastable state. Because the
number of anti-baryon is much less than that of baryon at low-energy collisions, we expect
the number of baryon can approximate the number of net baryon. Thus, nhadron

B < nquark
B

should hold and nhadron
proton < nquark

proton approximately holds. In the case of a first-order phase
transition, the lower peak of the metastable state representing the quark phase should be
located on the right side. Figure 6a does not show this feature.

In fact, there is not a unique way to identify the distribution in only reproducing the
first four factorial cumulants. We try some other fittings and find that a combination of a
normal distribution (event class (a)) and a binomial distribution (event class (b)) can also
reproduce the first four factorial cumulants measured by STAR, which is shown in Figure 6b.
There are five parameters in total, including two parameters from a normal distribution, two
from a binomial distribution and one weight factor α. Fitting only four factorial cumulants
needs to fix one parameter. Here, we fix the integer parameter of the binomial distribution to
be 70. In this case, the lower peak representing the metastable quark phase lies on the right
side as the green dashed line in Figure 6b shows, being consistent with the scenario of the
first-order phase transition. So far, the physical meaning of the two components becomes
clear. They represent two phases. The dominant component (event class (a)) represents the
stable phase, and the small component (event class (b)) represents the metastable phase.
The presence of the metastable phase may signal a first-order phase transition.

Even though the weight factor α is small (α = 0.0025 and 0.015 in Figure 6a,b, re-
spectively), the small component can not be ignored. Without the contribution of the
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small component, the four factorial cumulants can not be well reproduced. Particularly,
the small component has a vital effect on higher cumulants, such as C6. As the legends
show, C6 = 45,476 and −8978 in Figure 6a,b, respectively. That means, even though the
first four factorial cumulants are equal by magnitude for both cases, the fifth factorial
cumulant differs by ∼30% and the sixth factorial cumulant differs significantly (by 5 times
in magnitude as well as a different sign).

In case the lower peak in Figure 6b is a metastable quark phase, the extremely small
weight factor α (reflecting a small relative probability of the metastable state) may hint that
the freeze-out point is a little far from the first-order phase transition line. In addition, the
two peaks are not separated far enough in the current data. If the collision energy decreases,
the temperature decreases and the difference between nhadron

proton and nquark
proton increases. The

centers of the two peaks will be further apart and it will be better to observe the double-peak
structure.

Whether the metastable state is spotted strongly depends on the upcoming measure-
ments of higher factorial cumulants, especially C6. As indicated in Figure 6, C5 has the
same sign and a similar figure in both cases, while C6 has an opposite sign and differs
much. A definite conclusion should be drawn on the basis of the future C6 measurement.

4. Summary and Conclusions

In this paper, we revisit the van der Waals fluid and map the spinodal metastable
region in the phase diagram. It is a triangular band along the first-order transition line. In
the thermodynamic limit, the first-order phase transition line serves as a boundary between
the gas and the liquid. However, at a finite volume, the phase boundary loses its original
meaning and is replaced by a triangular band where both phases are possible states.

Finite volumes make the metastable state visible in the distribution of the order
parameter. On the phase boundary, the distribution has two peaks of equal height. Near
the phase boundary, the distribution is still a two-peak shape, but their heights are unequal.
The origin of the two-peak distribution is a convex anomaly in the entropy or free energy.
The two valleys of free energy at T < Tc, as the Landau–Ginzburg theory shows, generate
the two peaks of the distribution of the order parameter. The two peaks represent two
phases. The higher peak represents the stable state, while the lower peak represents the
metastable state. The probabilities of the metastable state are less than that of the stable
state. At the left half of the green area in Figure 2, the gas phase is the stable state and its
probability in the ensemble is dominant, while the liquid phase is the metastable state and
its probability is less prominent. The dominant peak at one side of the phase boundary
becomes less dominant at the other side.

The relative probability of the metastable state ζ has significant volume dependence.
The rule that the probability ζ decreases exponentially with the volume is consistent with
the Ising model. At the same T and µ, the smaller the volume, the larger the probability of
the metastable state. As a result, the size of the metastable region is also volume dependent.
The smaller the volume, the larger the metastable region in the phase diagram. At a given
volume, the closer to the phase boundary, the easier it is to find the metastable state. The
metastable states play important roles in understanding the finite-size effects of the first-
order phase transition. The smoothness of the discontinuity of the order parameter at finite
volume reflects the contribution of the metastable states. The volume ordering, even the
fixed point, of the number density can also be understood by considering the contribution
of the metastable states.

By fitting the first four factorial cumulants of the proton number in the STAR data at
7.7 GeV, a two-peak distribution, which is consistent with the scenario of the metastable
state, is obtained. The presence of a metastable quark phase may hint at a first-order phase
transition. However, the statement is still uncertain. Due to the non-uniqueness of the
fitting, future measurements of higher factorial cumulants, e.g., C6, will help to distinguish
the scenarios. The fitting made in this study may indicate that the freeze-out point of
7.7 GeV is within the spinodal metastable region. There are two suggestions according to
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this study. First, the current weight factor α (reflecting the probability of the metastable
state) is rather small. To enhance the probability of the metastable state, a smaller system
size is favored. Second, the centers of the current two peaks are not separated far enough.
A lower collision energy is favored to decrease the temperature. Then, the two peaks will
be further apart and easier to observe.
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Appendix A. EoS of a van der Waals Fluid in the Grand Canonical Ensemble

Appendix A.1. The Ideal Gas

For an ideal gas, the partition function in the canonical ensemble is

Z id
CE(V, T, N) =

∫
e−

∑N
i=1

√
p2

i +m2

T
1

N!

N

∏
i=1

dxidpi
h3 =

VN ϕN(T)
N!

, (A1)

where V, T, N have their usual meanings as the volume, the temperature and the particle
number. The subscript “CE” denotes the canonical ensemble and the superscript “id”
denotes the ideal gas. In Equation (A1),

ϕ(T) =
gTm2

2π2 K2

(
m
T

)
. (A2)

Here, g is the degeneracy factor, m is the particle mass and K2(m/T) denotes the modified
Bessel function of the second kind.

Then, the free energy of the ideal gas reads

Fid
CE(V, T, N) = −T lnZ id

CE = −NT
(

1 + ln
Vϕ(T)

N

)
, (A3)

with the Stirling’s approximation ln N! ≈ N ln N − N used.
The chemical potential is obtained accordingly,

µ =

(
∂F
∂N

)
V,T

= −T ln
Vϕ(T)

N
. (A4)

According to Equation (A4), the number density, defined as n ≡ N/V, reads

nid(T, µ) = ϕ(T)eµ/T . (A5)
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Appendix A.2. The van der Waals Fluid

The EoS of a van der Waals fluid is usually given by the pressure function as

p(V, T, N) =
NT

V − bN
− a

N2

V2 . (A6)

The parameter a describes the attractive interaction and b denotes the repulsive interaction.
The EoS (A6) can be obtained by the mean-field attractive interaction U = −a N

V [27]
and the repulsive interaction represented by an excluded volume V− bN. Then, its partition
function is

ZvdW
CE (V, T, N) =

∫
e−

1
T (∑

N
i=1

√
p2

i +m2+UN) 1
N!

N

∏
i=1

dxidpi
h3

=
1

N!
ϕN(T)(V − bN)Ne

aN2
TV . (A7)

Then, its free energy reads

FvdW
CE (V, T, N) = Fid

CE(V − bN, T, N)− a
N2

V
, (A8)

and the chemical potential will be

µ = −T ln
(1− bn)ϕ(T)

n
+ b

nT
1− bn

− 2an. (A9)

This is the equation of state of the van der Waals fluid in the grand canonical ensemble. It
is a transcendental equation.
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