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Abstract: Recently, the properties of analytic functions have been mainly discussed by means of a
fuzzy subset and a q-difference operator. We define certain new subclasses of analytic functions by
using the fuzzy subordination to univalent functions whose range is symmetric with respect to the
real axis. We introduce the family of linear q-operators and define various classes associated with
these operators. The inclusion results and various integral properties are the main investigations of
this article.
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1. Introduction

The phrase “q-calculus” refers to classical calculus without the concept of limits. q-
calculus has recently garnered a lot of attention from mathematicians due to its applications
in the study of, for example, q-deformed super-algebras, quantum groups, optimal control
problems, fractal and multi-fractal measures, and chaotic dynamical systems. Following the
introduction of the idea of q-calculus, various authors [1–4] have analyzed classical complex
operators in terms of q-calculus. The application of q-calculus involving q-derivatives and
q-integrals was initiated by the author of [5,6]. The class of analytic functions f(v) in the
open unit disk Ω = {v : |v| < 1} is denoted by X(Ω). The class Xr contains the functions
f ∈ X(Ω) containing a series of the form:

f(v) = v +
∞

∑
k=r+1

akvk, (v ∈ Ω). (1)

For r = 1, we have X1 = X ; the class of normalized analytic functions in Ω. We denote
the classes of univalent functions, starlike functions, and convex functions by S, S∗, and C,
respectively. For q ∈ (0, 1), Jackson [5] introduced and studied the q-difference operator,
which is defined by:

Dqf(v) =
f(v)− f(qv)

(1− q)v
; q 6= 1, v 6= 0. (2)

We note that lim
q→1−

Dqf(v) = f′(v), where f′(v) is the usual derivative of the function.
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We note that

Dq

{
∞

∑
k=1

akvk

}
=

∞

∑
k=1

[k]qakvk−1, (3)

where

[k]q =
1− qk

1− q
=

∞

∑
k=0

qk, (v ∈ Ω). (4)

For the following fundamental properties of q-difference operator, we refer to [7,8].

Dq(xf1(v)± yf2(v)) = xDqf1(v)± yDqf2(v).

Dq(f1(v)f2(v)) = f1(qv)Dq(f2(v)) + f2(v)Dq(f1(v)).

Dq

(
f1(v)

f2(v)

)
=

Dq(f1(v))f2(v)− f1(v)Dq(f2(v))

f2(qv)f2(v)
, f2(qv)f2(v) 6= 0.

Dq(log f(v)) =
ln qDq(f(v))

(q− 1)f(v)
.

The concepts of geometric function theory and q-theory were connected by introducing
a q-analogue of the starlike functions in [9]. Such functions are called q-starlike functions
and the class of these functions is denoted by S∗q . The class Cq stands for the class of
q-convex functions. q-Mocanu-type functions were discussed by the authors of [10,11]. The
systematic application of the q-difference operator in the framework of geometric function
theory was studied by Srivastava [12] in 1989. Furthermore, beneficial for readers who are
interested in geometric function theory, is the survey-cum-expository review study by the
same author [13]. This review study methodically emphasized several different fractional q-
calculus applications in geometric function theory. For more recent contributions associated
with the q-difference operator, we refer to [14–19]. The study of linear operators plays
a significant role in the theory of functions. Many prominent mathematicians in this
field of study are interested in introducing and studying the linear operators in terms of
q-analogues.

In [20], the authors introduced an operator Rλ
q : X → X defined by:

Rλ
q f(v) = v +

∞

∑
k=1

[k + λ− 1]q
[λ]q![k− 1]q!

akvk, (λ > −1), (5)

where f ∈ X and

[k]q! =
{

[k]q[k− 1]q . . . . . . [1]q; k = 1, 2, . . .
1; k = 0.

For λ = m ∈ N0 = N∪ {0}, we have

Rm
q f(v) =

vDm
q
(
vm−1f(v)

)
[m]q!

.

From this, we can easily deduce that:

R0
qf(v) = f(v) and R1

qf(v) = vDqf(v).

Particularly, for q → 1−, the operator Rλ, known as the Ruscheweyh derivative
operator, is implied, for detail see [21].

The authors in [22] introduced the q-Srivastava–Attiya operator. First, for b ∈ C \Z−0 ,
s ∈ C when |v| < 1 and <(s) > 1 when |v| = 1, they defined the q-Hurwitz–Lerch zeta
function as the following:

φq(s, b; v) =
∞

∑
k=0

vk

[n + b]sq
.
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Equivalently, we have

ψq(s, b; v) = [k + b]sq
{

φq(s, b; v)− [b]sq
}

= v +
∞

∑
k=2

(
[1 + b]q
[k + b]q

)s

vk. (6)

Then, by making use of (6) and (1), they defined the q-Srivastava–Attiya operator,
Js
q,b : X → X , as

Js
q,bf(v) = ψq(s, b; v) ∗ f(v)

= v +
∞

∑
k=2

(
[1 + b]q
[k + b]q

)s

akvk. (7)

In particular, if we take q → 1−, then this operator, Js
q,b, reduces to the Srivastava–

Attiya operator [23]. We use (5) and (7) to define RJs,λ
q,b : X → X by

RJλ,s
q,b f(v) = v +

∞

∑
k=2

[k + λ− 1]q
[λ]q![k− 1]q!

(
[1 + b]q
[k + b]q

)s

akvk. (8)

The following identities can easily be deduced from (8):

vDq

(
RJλ,s+1

q,b f(v)
)
=

(
1 +

[b]q
qb

)
RJλ,s

q,b f(v)−
[b]q
qb RJλ,s+1

q,b f(v). (9)

vDq

(
RJλ,s

q,b f(v)
)
=

(
1 +

[λ]q

qλ

)
RJλ+1,s

q,b f(v)−
[λ]q

qλ
RJλ,s

q,b f(v). (10)

The subordination of analytic functions P and Q denoted by P ≺ Q are defined as
P(v) = Q(w(v)), where w(v) is Schwartz function in Ω (see [24]). Moreover, the idea of
differential subordination was introduced and investigated by the authors in [25,26]. G.I.
Oros and Gh. Oros were the first to study fuzzy subordination and differential subordi-
nation. For more information, see [27,28]. The study of fuzzy differential subordination
involved the work of several scholars, for example, see [29–38]. Here, we provide a brief
review of a few key fundamental ideas pertaining to the fuzzy differential subordination
and q-calculus.

Definition 1 ([39]). Let S 6= φ. When F maps from S to [0, 1], F is referred to as a fuzzy subset
of S .

The fuzzy subset can also be defined as the following.

Definition 2 ([39]). A Fuzzy subset of S is a pair ((I, FI), where FI : S → [0, 1] is known as the
membership function of the fuzzy set (I, FI) and I = {x ∈ S : 0 < FI(x) ≤ 1} = sup(I, FI) is
called the support of fuzzy set (I, FI).

Definition 3 ([39]). Fuzzy subsets (I1, FI1) and (I2, FI2) of S are equal if and only if I1 = I2,
whereas (I1, FI1) ⊆ (I2, FI2) if and only if FI1(η) ≤ FI2(η), η ∈ S .

Definition 4 ([28]). The fuzzy subordination of analytic functions f and g is denoted by f ≺F g (or
f(v) ≺F g(v) ) if:

f(v0) = g(v0) and F(f(v)) ≤ F(g(v)), v ∈ D,
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where D ⊂ C and v0 are a fixed point in D.

Remark 1. One of the following function Fi : C → [0, 1], (i = 1, 2, 3, 4), may be used as an
example.

F1(v) =
|v|

1 + |v| , F2(v) =
1

1 + |v| , F3(v) = |sin|v||, F4(v) = |cos|v||.

Remark 2. The notions of classical subordination and the fuzzy subordination coincides when
D = Ω in Definition 4.

After the authors of [40] established the idea, numerous prominent researchers
in [41–43] have contributed to this topic by employing the fuzzy subordination connected
to specific operators. We mention here a few recent contributions that are published in
the same direction [32,44–49]. In many diverse areas of study, including engineering,
biological systems with memory, electric networks, computer graphics, physics, turbulence,
etc., the operators connected to fuzzy differential subordination have a wide range of
applications. Using the Caputo–Fabrizio fractional derivative in the context of biological
systems, Baleanu et al. [50] proposed a novel study on the mathematical modeling of the
human liver. Additionally, Srivastava et al. [51] examined the analysis of the transmission
dynamics of the dengue infection in terms of the fractional calculus. The authors in [52] used
a new integral transform to study the Korteweg–de Vries equation, where the fractional
derivative is proposed in the Caputo sense. This equation was developed to represent
a broad spectrum of physical behaviors of the evolution and association of nonlinear
waves. One can refer to [30,35,53] for more applications. Now, by using the concepts of the
q-difference operator and the fuzzy subordination, we define the following classes:

Let T be the class of analytic functions ϕ(v) which are univalent convex functions in
Ω with ϕ(0) = 1 and <(ϕ(v)) > 0 in Ω and where ϕ(Ω) is symmetric with respect to the
real axis. Now, for ϕ(v) ∈ T and q ∈ (0, 1) with F : C→ [0, 1], 0 6= η ∈ C, s ≥ 0 and b ∈ N,
we define the following.

Definition 5. Let f ∈ X , ϕ ∈ T, 0 ≤ α ≤ 1 and q ∈ (0, 1). Then, f ∈ FMq(α; ϕ) if and only if

(1− α)
vDqf(v)

f(v)
+ α

Dq
(
vDqf(v)

)
Dqf(v)

≺F ϕ(v).

Moreover, let us denote

FMq(0; ϕ) = FSTq(ϕ), FMq(1; ϕ) = FCq(ϕ).

A function f ∈ X is in FSTq(ϕ) and FCq(ϕ) if and only if

vDqf(v)

f(v)
≺F ϕ(v) and

Dq
(
vDqf(v)

)
Dqf(v)

≺F ϕ(v),

respectively.

Special cases:
(i) For q→ 1−, we have the class FMq(α; ϕ) = FMα(ϕ) introduced in [36].
(ii) For q → 1− and α = 0, we have the class FMq(α; ϕ) = FS∗(ϕ) studied by Shah

et al. [36].
(iii) If q → 1− and α = 1, then we have the class FMq(α; ϕ) = FC(ϕ) introduced by

Shah et al. [36].
Here, some new classes are defined by applying the q-linear operator given by (8):
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Definition 6. Let f ∈ X , ϕ ∈ T, 0 ≤ α ≤ 1, q ∈ (0, 1), λ > −1, b > −1 and s be real. Then,

f ∈ FMλ,s
q,b (α; ϕ) if and only if RJλ,s

q,b f(v) ∈ FMq(α; ϕ).

Furthermore,

f ∈ FSTλ,s
q,b (ϕ) if and only if RJλ,s

q,b f(v) ∈ FSTq(ϕ)

and
f ∈ FCλ,s

q,b (ϕ) if and only if RJλ,s
q,b f(v) ∈ FCq(ϕ).

We note that

f ∈ FCλ,s
q,b (ϕ) if and only if v

(
Dqf
)
∈ FSTλ,s

q,b (ϕ). (11)

Special cases:
(i) If s = 0 = λ, then FMλ,s

q,b (α; ϕ) = FMq(α; ϕ), FSTλ,s
q,b (ϕ) = FSTq(ϕ) and FCλ,s

q,b (ϕ) =

FCq(ϕ).
(ii) If q → 1− and λ = 0, then the classes FMλ,s

q,b (α; ϕ), FSTλ,s
q,b (ϕ) and FCλ,s

q,b (ϕ) are

reduced to the classes FMs,b
α (ϕ), FSTs

b(ϕ) and FCs
b(ϕ) introduced by Shah et al. [36].

(iii) If q→ 1− and s = 0 = λ, then FMλ,s
q,b (α; ϕ) = FMα(ϕ), FSTλ,s

q,b (ϕ) = FST(ϕ) and

FCλ,s
q,b (ϕ) = FC(ϕ), we refer to [36].

2. Main Results

The following lemma is needed to prove our investigations.

Lemma 1 ([54]). Let β, γ ∈ C with β 6= 0, and let h(v) ∈ T with

<{βh(v) + γ} > 0. (12)

If p(v) = 1 + p1v + p2v2 + ... is analytic in Ω, then

p(v) +
vDq p(v)

βp(v) + γ
≺F h(v) implies p(v) ≺F h(v),

where F : C→ [0, 1].

Theorem 1. Let 0 ≤ α ≤ 1, ϕ ∈ T, q ∈ (0, 1), λ > −1, s be real and b > −1. Then,
(i) FMλ,s

q,b (α; ϕ) ⊂ FSTλ,s
q,b (ϕ) for 0 ≤ α ≤ 1.

(ii) FMλ,s
q,b (α; ϕ) ⊂ FSTλ,s

q,b (ϕ) for α ≥ 1.

(iii) FMλ,s
q,b (α2; ϕ) ⊂ FMλ,s

q,b (α1; ϕ) for 0 ≤ α1 < α2 < 1.

Proof. (i) Let f ∈ FMλ,s
q,b (α; ϕ). We set

vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

= p(v), (13)

for analytic p(v) in Ω with p(0) = 1.
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The q-logarithmic differentiation of (13) yields:

Dq

(
vDq

(
RJλ,s

q,b f(v)
))

vDq

(
RJλ,s

q,b f(v)
) −

Dq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

=
Dq p(v)

p(v)
.

Equivalently,

Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) = p(v) +

vDq p(v)

p(v)
.

Since f ∈ FMλ,s
q,b (α; ϕ), we obtain:

(1− α)
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+ α
Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) = p(v) + α

vDq p(v)

p(v)

≺ F ϕ(v). (14)

We use Lemma 1 to obtain p(v) ≺F ϕ(v). Consequently, f ∈ FSTλ,s
q,b (ϕ).

(ii) Suppose that f ∈ FMλ,s
q,b (α; ϕ). Then,

(1− α)
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+ α
Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) = p1(v) ≺F ϕ(v).

Now,

α
Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) = (1− α)

vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+ α
Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
)

+(α− 1)
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

= (α− 1)
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+ p1(v).

This implies

Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) =

(
1
α
− 1
)vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+
1
α

p1(v)

=

(
1
α
− 1
)

p2(v) +
1
α

p1(v).

Since p1, p2 ≺F ϕ(v), we can write
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

≺F ϕ(v). This completes the proof

of (ii).
(iii) For α1 = 0, the result from part (i) is true.
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Now, we suppose that f ∈ FMλ,s
q,b (α2; ϕ). Then,

(1− α2)
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+ α2

Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) = q1(v) ≺F ϕ(v). (15)

Now, we can easily write

Jq(α1, f(v)) =
α1

α2
q1(v) +

(
1− α1

α2

)
q2(v), (16)

with

Jq(α1, f(v)) = (1− α1)
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+ α1

Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) ,

where we have used (15) and vDqf(v)

f(v)
= q2(v) ≺F ϕ(v). (16) implies our required

result.

Corollary 1. For λ = 0 = s, we have FMq(α; ϕ) ⊂ FSTq(ϕ). Furthermore, for q → 1−,
FMα(ϕ) ⊂ FST(ϕ), see [36].

Corollary 2. For q→ 1− and λ = 0, we have FMs
b(α; ϕ) ⊂ FSTs

b(ϕ). Moreover, for s = 0 and
α = 1, we have FC(ϕ) ⊂ FST(ϕ) and FC ⊂ FST when ϕ(v) = 1+v

1−v . We refer to [36].

Corollary 3. For s = 0 = λ, we have FMq(α; ϕ) ⊂ FCq(ϕ). Moreover, for q → 1−, we have
FMα(ϕ) ⊂ FC(ϕ). We refer to [36].

Corollary 4. For s = 0 = λ, we have FMq(α2; ϕ) ⊂ FMq(α1; ϕ). Moreover, for q → 1−, we
have FMα2(ϕ) ⊂ FMα1(ϕ), see [36].

Remark 3. If α2 = 1 and letting f ∈ FMλ,s
q,b (1; ϕ) = FCλ,s

q,b (ϕ). Then, by Theorem 1(iii), we have:

f ∈ FMλ,s
q,b (α1; ϕ), for 0 ≤ α1 < 1.

We use Theorem 1(i), to obtain f ∈ FSTλ,s
q,b (ϕ). Consequently, FCλ,s

q,b (ϕ) ⊂ FSTλ,s
q,b (ϕ).

Theorem 2. Let ϕ ∈ T, 0 ≤ α ≤ 1, q ∈ (0, 1), λ ∈ N0, s be real and b > −1. Then,
(i) FSTλ+1,s

q,b (ϕ) ⊂ FSTλ,s
q,b (ϕ).

(ii) FSTλ,s
q,b (ϕ) ⊂ FSTλ,s+1

q,b (ϕ).

Proof. (i) Let f ∈ FSTλ+1,s
q,b (ϕ) and let fλ+1,q(v) = RJλ+1,s

q,b f(v). Then,

vDqfλ+1,q(v)

fλ+1,q(v)
≺F ϕ(v).

Now, let
vDqfλ,q(v)

fλ,q(v)
= h(v) (17)

for analytic h(v) in Ω with h(0) = 1. Using (10) and (17), we obtain

vDq
(
fλ,q(v)

)
fλ,q(v)

=
(
1 + Lq

) fλ+1,q(v)

fλ,q(v)
− Lq,
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equivalently, (
1 + Lq

) fλ+1,q(v)

fλ,q(v)
= h(v) + Lq,

(
for Lq =

[λ]q
qn

)
.

The q-logarithmic differentiation yields:

vDq
(
fλ+1,q(v)

)
fλ+1,q(v)

= p(v) +
vDqh(v)

h(v) + Lq
. (18)

Since f ∈ FSTλ+1,s
q,b (ϕ), (18) implies

p(v) +
vDqh(v)

h(v) + Lq
≺F ϕ(v).

We assume that <
{

ϕ(v) + Lq
}
> 0 and we use Lemma 1 to obtain h(v) ≺F ϕ(v).

Consequently, f ∈ FSTλ,s
q,b (ϕ).

To prove part (ii), we follow a similar technique to that used in part (i) by taking
fs,b
q (v) = RJλ,s

q,b f(v) along with identity (9).

Corollary 5. For λ = 0 and q → 1− in part (ii) of the above theorem, we obtain the inclusion
relation as Theorem 2.5, proven in [36].

Theorem 3. Let ϕ ∈ T, 0 ≤ α ≤ 1, q ∈ (0, 1), λ ∈ N0, s be real and b > −1. Then,
(i) FCλ+1,s

q,b (ϕ) ⊂ FCλ,s
q,b (ϕ).

(ii) FCλ,s
q,b (ϕ) ⊂ FCλ,s+1

q,b (ϕ).

Proof. (i) Let f ∈ FCλ+1,s
q,b (ϕ). Then, by (11),

v
(

Dqf
)
∈ FSTλ+1,s

q,b (ϕ).

We use (i) of Theorem 2 to obtain:

v
(

Dqf
)
∈ FSTλ,s

q,b (ϕ)

Again, by using relation (11), we obtain

f ∈ FCλ,s
q,b (ϕ).

In similar way, one can prove part (ii) by applying part (ii) of Theorem 2 along with
the relation (11).

Corollary 6. For λ = 0 and q → 1− in part (ii) of the above theorem, we obtain the inclusion
relation as Theorem 2.6, proven in [36].

Remark 4. From Theorem 1, Theorem 2 and Theorem 3, we can extend the inclusions as the
following.

FMλ+1,s
q,b (α; ϕ) ⊂ FSTλ+1,s

q,b (ϕ) ⊂ FSTλ,s
q,b (ϕ) ⊂ ... ⊂ FSTs

q,b(ϕ).

FCλ+1,s
q,b (ϕ) ⊂ FCλ,s

q,b (ϕ) ⊂ ... ⊂ FCs
q,b(ϕ).
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Theorem 4. Let a function f ∈ X . Then, f ∈ FMλ,s
q,b (α; ϕ) if and only if there exists g ∈ FSTλ,s

q,b (ϕ)

such that

f(v) =

[
1
α

]
q

[∫ v

0
τ

1
α−1
(
g(τ)

τ

) 1
α

dqτ

]α

, (α 6= 0). (19)

Proof. Let f ∈ FMλ+1,s
q,b (α; ϕ). Then, by Definition 6,

(1− α)
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+ α
Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) ≺F ϕ(v). (20)

By some simple calculations in (19), we obtain:

vDqf(v).(αf(v))
1
α−1 = (g(v))

1
α (21)

We use the linear operator given by (8) in (21), and then take q-logarithmic differenti-
ation to obtain:

(1− α)
vDq

(
RJλ,s

q,b f(v)
)

RJλ,s
q,b f(v)

+ α
Dq

(
vDq

(
RJλ,s

q,b f(v)
))

Dq

(
RJλ,s

q,b f(v)
) =

vDq

(
RJλ,s

q,b g(v)
)

RJλ,s
q,b g(v)

. (22)

From (20) and (22), we conclude our required result.

Corollary 7. For λ = 0 and q→ 1−, we obtain Theorem 2.7, proven in [36].

Theorem 5. Let f ∈ FMλ,s
q,b (α; ϕ). Then,

Fm,q(v) =
[m + 1]q

vm

∫ v

0
tm−1f(t)dqt (23)

is in FSTλ,s
q,b (ϕ).

Proof. Let f ∈ FMλ,s
q,b (α; ϕ). If we set, for Fλ

m,q(v) = RJλ,s
q,b
(

Fm,q(v)
)
,

vDq

(
Fλ

m,q(v)
)

Fλ
m,q(v)

= q(v), (24)

for analytic q(v) in Ω with q(0) = 1.
Simple calculations (23) imply that

Dq
(
vmFm,q(v)

)
[m + 1]q

= vm−1f(v).

This implies

vDqFm,q(v) =

(
1 +

[m]q
qm

)
f(v)−

[m]q
qm Fm,q(v). (25)

From (24), (25) and (8), we obtain

q(v) =

(
1 +

[m]q
qm

)
v
(
fλ,q(v)

)
Fλ

m,q(v)
−

[m]q
qm ,
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where Fλ
m,q(v) = RJλ,s

q,b
(

Fm,q(v)
)

and fλ,q(v) = RJλ,s
q,b (f(v)). We take q-logarithmic differ-

entiation:
vDq

(
fλ,q(v)

)(
fλ,q(v)

) = q(v) +
vDqq(v)

q(v) + Lq
,

(
for Lq =

[m]q
qm

)
. (26)

Since f ∈ FMλ,s
q,b (α; ϕ) ⊂ FSTλ,s

q,b (ϕ), (26) implies

q(v) +
vDqq(v)

q(v) + Lq
≺F ϕ(v).

Now, we apply Lemma 1 to conclude q(v) ≺F ϕ(v). Consequently,
vDq(Fλ

m,q(v))
Fλ

m,q(v)
≺F

ϕ(v). Hence, Fm,q ∈ FSTλ,s
q,b (ϕ).

Corollary 8. For λ = 0 and q→ 1−, we obtain Theorem 2.8, proven in [36].

3. Conclusions

We successfully defined and studied the class of fuzzy q-Mocanu-type functions
associated with the family of linear operators. The main results of our work are the
generalization of various classical results in terms of the fuzzy subordination and q-theory.
In this article, we studied the concepts of a fuzzy differential subordination associated
with q-theory. First, we introduced the q-linear operator by combining two well-known
q-operators and then, by using this operator, we defined various subclasses of analytic
functions. For the newly defined classes, we investigated certain inclusion results and
integral properties. As corollaries, some well-known conclusions were also mentioned.
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