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Abstract: Projector theory can serve as a powerful tool to perform the symmetric computation of
molecular systems. The work of William Harter has long demonstrated the effectiveness of this
theory in molecular spectroscopy; however, it seems its usefulness has not been realized by many in
the field. We have described this methodology and have considered the D3 symmetry system and
the tetrahedral symmetry of methane molecules as concrete examples where the computed rotation
tensors and vibrational wavefunction were derived for some symmetry states.
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1. Introduction
In some sense, we have a closed‑form solution of the Schrodinger equation for the

hydrogen molecule, but, beyond this, there are no closed‑form solutions for any other
molecule. However, with the aid of numerical techniques, we can solve the molecular
problem with a great degree of accuracy. As more and more larger molecules are consid‑
ered, techniques tend to have limitations. Many clever approaches result in all sorts of
approximation schemes, which work well for some systems but not for others. Paousek
and Aliev [1] have shown that the general molecular Hamiltonian to is given by,

Hi =
Ne

∑
j=1

(
ℏ2

2me
p2

j

)
+

N

∑
i=1

(
ℏ2

2m
P2

i

)
− V, (1)

where pi

( .
xj,

.
yj,

.
zj

)
is the momentum of electrons and Pi

( .
xi,

.
yi,

.
zi
)
is the momentum of

the nuclei. It does not lend itself to a description of the stationary states of a polyatomic
molecule. Although the Hamiltonian is of a simple form, the numerical integration of the
Hamiltonian in terms of the space‑fixed coordinates of the atomic nuclei and electrons is
extremely difficult, even for the simplest of molecular systems [2–4].

A classical description of such a system of atomic nuclei and electrons sometimes re‑
veals translation and rotation motion in space. The atomic nuclei can vibrate around the
configuration given by the electronic structure of the molecule, and the electron also can
move around the atomic nuclei. As a result, a quantum mechanical description of these
motions should yield vibrational, rotational, and electronic energy levels and the corre‑
sponding wave function of the Schrodinger equation for this system. The task, however,
of getting the information from a full Schrodinger wave equation is almost impossible,
therefore, other techniques must be explored [1–4].

One approach is to develop a classical model of its translation, overall rotation, the
vibration of the atomic nuclei, and the electronic motions. This is achieved by replac‑
ing the laboratory or the space‑fixed coordinates of the atomic nuclei and electrons with
new coordinate systems suitable for describing the individual types of motion mentioned
above [3,4]. TheHamiltonian is developed in the newcoordinates xj, yj, zj(j = 1, 2, . . . , Ne),
which are the coordinates of the electrons concerning a moving x,y,z axis system fixed to
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a molecule. The Euler angles θ, ϕ, χ define the orientation of the x,y,z axis system with
respect to the X, Y, Z axis system. The coordinates Q1, Q2, . . . , Q3N−6 are the vibrational
displacement vectors of the system atomic nuclei for the x, y, z axis system [1–5]. Next, we
make the Born–Oppenheimer approximation (BOA) to obtain a Hamiltonian for the elec‑
tronic state and a Hamiltonian for vibrational–rotational states for given electronic states.
Furthermore, Born–Oppenheimer‑like approximations allow for the separation of the vi‑
brational motions from the rotational motion [1–8].

The BOA allows the molecular Hamiltonian to be separated into the electronic part
and its rovibrational Hamiltonian. The rovibrational Hamiltonian is given by

Hrv = AJ2
x + BJ2

y + CJ2
z︸ ︷︷ ︸

H0
r

+ ∑
k

P2
k +

1
2

2N−6

∑
k=1

λkQ2
k︸ ︷︷ ︸

H0
v

+ V, (2)

where
A =

1
2Ix

, B =
1

2Iy
, C =

1
2Iz

, (3)

and H0
r is the rotational Hamiltonian, and H0

v is a harmonic oscillator Hamiltonian. The
wavefunction for the molecule is given by,

Ψ = ψe

(
r0

jα

)
ψ0

e (Q1, Q2, . . .)ψ0
r (ϕθχ). (4)

Here, we can exploit the spatial symmetry of the molecule in the molecular system.
A symmetry operation is a geometrical action that leaves the position of the atoms un‑
changed. There are five types of geometry operations: Identity (1), reflection (σ), rotation
(Cα), rotation–reflection (Sα), and inversion (i). Each symmetry operation, excluding the
identity, is associated with a symmetry element [1–4,8,9]. The symmetry operation is the
actual action, while the symmetry element is the point, line, or plane aboutwhich the action
occurs. Therefore, our goal in this paper is to illustrate how symmetry analysis can calcu‑
late genuine vibrations and classify the spectra according to the point group irreps. Thus,
spectral decomposition is a powerful tool that will aid in determining the eigenvectors and
the eigenvalues if the symmetry group is known. Harter [3,8] has detailed descriptions of
the procedure for such a computation. We will outline how to utilize this method to per‑
form calculations on a tetrahedral molecule. The key in this approach is to determine the
projectors associated with the particular group symmetries.

2. Commuting Observable and Symmetry Projectors
Symmetry groups are classified into two categories: Abelian and Non‑Abelian. The

neat thing aboutAbelian groups is thatwe canwrite all the class operators as a combination
of a single set of idempotent projectors. However, this is not the case for Non‑Abelian
groups. For the very simple fact that every group operator does not commute. All is not
lost because we can find a set of mutually commuting operators. We describe how to do
this by following the procedure outlined by Harter [3,8]. Moreover, similar approaches
have been described in [4,7,9–18].

A. Class algebra and all‑commuting operator. Wecreate the class structure of the group.
This allows us to create communicative algebra. Each class sum commutes with each
other and with every operator in the entire group algebra. In other words, the cg’s
are mutually commuting with respect to themselves and all‑commuting with respect

to the whole group.
◦

G
∑

g=1
hgh−1 = ngcg. Harter [3,8] showed that an all‑commuting

operator C = Cg g that is, one that commutes with all h in the group, is a combination
of class sums cg. All commutation (C h = h C) implies,
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C =

◦
G

∑
g=1

cgg =
1
◦G

◦G

∑
h=1

h

( ◦G

∑
g=1

cgg

)
h−1 =

◦G

∑
g=1

cgngcg (5)

B. Characters and all‑commuting projectors. We construct the projectors by solving the
minimal equation of the group,

Pα =

∏
γ ̸=α

(
ci − cγ

g 1
)

∏
γ ̸=α

(
cα

s − cγ
s
) (6)

where Pα are called the All‑Commuting Class Idempotent (ACCI), and cα
s and cγ

s are eigen‑
values from the minimal equation. We can expand the original class operators in terms of
all commuting idempotent [3] i.e.,

cj = ∑
α

cα
j P

α (7)

where cα
j is the eigenvalue such that cjPα = cα

j P
α. By knowing the character table of the

group, (5) can be obtained from,

Pα =
ℓα

∑
m=1

Pα
m =

ℓα

◦G
=

ℓα

∑
m=1

Dα
mm(g)g =

ℓα

◦G

ℓα

∑
m=1

χα(g)g (8)

Next, we acquire the inverse of (7), which must satisfy the completeness and spectral
decomposition relation, i.e.,

1 = ∑
α

Pα and g =
n=1

∑
k=0

Dkn (g)Pkn (9)

Thewaywe performed the spectral decompositionwill depend onwhether the group
is Abelian or Non‑Abelian. For Abelian grouping, an element g must satisfy a minimal
equation gn = 1 where there exists n orthogonal idempotents

{
p1, p2, . . . , pn}. We must

choose another element h of the group that would yield
{

q1, q2, . . . , qn}. Both sets must
satisfy the completeness and the spectral decomposition equation,

n

∑
j=1

pj = 1 =
m

∑
j=1

qj (10)

We then multiply (9) by pj, which may result in the splitting of pj into a sum of oper‑
ators pjqk,

pj = p1q1 + p2q2 + . . . + pjqk = . . . + P2 + P2 + . . . + Pr r ≤ m. (11)

This set of nonzero terms
{
P1,P2, . . . , Pn} will also satisfy orthonormality and com‑

pleteness relations. Therefore, the spectral decomposition of g and h,

g = ∑
j=1

Dj(g)Pj and h = ∑
j=1

Dj(h)Pj (12)

C. Maximal sets of commuting operators (MSOCO). These are the independent oper‑
ators of the group that can be diagonalized at once. They are not unique since there
are numerous sets of operators that compete to be part of a specialized set called an
MSOCO (Maximal Set of Commuting Operators or Observables (MSOCO) [3,8]. The
number of operators is the rank of the group. As an example, shown in [8], the rank
of D3 turns out to be four. Furthermore, the set diagram of D3 in Figure 1 shows the
class sum algebra of all‑commuting operators at the center of the diagram.
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Commented [M1]: new figure 1 was inserted  Figure 1. D3 Algebra and sub‑algebras [8]. This describes the Maximal Set of Commuting Operators
(MSOCO). The operators in the blue shaded region at the center are referred to as all‑commuting
operators. The other operators in the other shaded regions are temporary remaining non‑unique
members of MSOCO. When choosing an operator in one of these other regions, we split PE idempo‑
tent in a particular manner.

The D3 dimension determines the number of orthogonal irreducible representations
(irreps) in the algebra (the irreps A1, A2, and E and the three all‑commuting projectors{

PA1 , PA2 , PE} of the center are uniquely defined; no others exist). A rank of four implies
another member of theMSOCO. The rank can be obtained by simply summing down the
column of the character table (13). From the first column of the character table, we are able
to tell how each irrep will split.

D3 I r, r2 i1, i2, i3
A1 1 1 1
A2 1 1 −1
E 2 −1 0

(13)

The other member of the rank‑4 MSOCO is not uniquely chosen; one choice is the
operator i3 picked in Figure 1 (other choices are shown in the figure). By choosing this
operator to be diagonal, we are selecting a particular way to “split” the PE idempotent and
build a particular set of E‑irreps. Furthermore, the number of operators needed depends
on the order of group. Thus, in the case of D3 there are six projectors needed. In general,
the number of operators needed is given by,

◦G = ∑
α

(ℓα)2 (14)

In the case of tetrahedral symmetry, the rank is 10 but only 5 irreps are possible:
A1, A2, E, T1, and T2 and total number operators is 24. However, T1 is not vibrational
mode and, thus, only 15 operators are necessary.

D. Computing irreducible projectors. To compute the irreducible projectors of a non‑
communicating group we must consider the projectors of its subgroups. The key
is finding the non‑commutative spectral decomposition of the entire Non‑Albelian
group. Unlike Abelian, Non‑Abelian will consist of nilpotent (P2 = 0) and idempo‑
tent (P2 = P) projectors. Nilpotent projectors are important for expanding operators
that do not commute. Each of the all‑commuting idempotents Pα can be split into ℓα

irreducible idempotents, i.e.,
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Pα = Pα
1 + Pα

2 + · · ·+ Pα
ℓα (15)

If ℓα = 1, then Pα remains un‑split. We use the subgroup idempotent to split Pα.
Suppose that H ⊆ G where µ and α are the irreps of H and G, respectively, such that{

Pα
1 , Pα

2 , . . . , Pµ
ℓµ

}
are projectors of H and {Pα1 ,Pα2 , . . . ,Pαn} are projectors of G, then idem‑

potent of both H and G satisfy the completeness relation,

1 =
ℓα

∑
k=1

Pµ
k and 1 =

n

∑
k=1

Pα
k , (16)

such that:

1 · 1 =

(
ℓα

∑
k=1

Pµ
k

)(
n

∑
k=1

Pα
k

)
=

n

∑
k=1

Pαi
i (17)

Hater [3] refers to this as one times one (1 · 1) trick. Thus, a single projector such that
ℓα > 1 will split as,

Pα1 = Pα1 1 = Pα1

ℓµ

∑
k=1

Pµ
k = Pα1

1 + Pα1
2 + · · ·+ Pα1

r (18)

Every subgroup will give a different splitting. For octahedral [3], the all‑commuting
idempotent PT1 splits when multiplied by six idempotents of D4:

PT1 = PT11 = PT1
(

PE
1 + PE

2 + PA1 + PA2 + PB1 + PB2
)
= PT1

1 + PT1
2 + 0 + PT1

3 + 0 + 0 (19)

Let’s consider D3 symmetry a much simpler group with rank 4 and three irreps see
(13). Of the three irreps only P3 = PE splits. Since C2 is a subgroup of D3 we use it
decompose PE into the irreducible projectors PE

xx and PE
yy shown below,

PEPx = Px PE = (1+ i3)/2
(
21 − r− r2)/3 =

(
21 − r− r2 − i1 − i2 + 2i3

)
/6 = PE

xx,

PEPy = Py PE = (1− i3)/2
(
21 − r− r2)/3 =

(
21 − r− r2 + i1 + i2 − 2i3

)
/6 = PE

yy .
(20)

Now using the (1 · 1) trick with the completeness relation gives,

1 = 1.1 =
(
PA1 + PA2 + PE

)
(Px + Py ) = PA1 + PE + PE

xx + PE
yy (21)

Next, 1 is wrapped around any operator g of the D3 algebra to give the following
generalized Spectral Decomposition of the form shown in (22),

g = 1.g.1 =
(
PA1 + PA2 + PE

xx + PE
yy

)
.g.
(
PA1 + PA2 + PE

xx + PE
yy

)
. (22)

Thus, this result in (21) in which the PA1 and PA2 are unchanged because they are
all‑commuting,

g = 1.g.1 = g.PA1 + g.PA2 + PE
xx

.g.PE
xx + PE

xx
.g.PE

yy + PE
yy

.g.PE
xx + PE

yy
.g.PE

yy (23)

The remaining four terms are the E‑projectors multiplied by irreps as seen by
comparing (24)

PE
xx

.g.PE
xx = DE

xx(g) PE
xx , PE

xx
.g.PE

yy = DE
xy(g) PE

xy,

PE
yy

.g.PE
xx = DE

yx(g) PE
yx, PE

yy
.g.PE

yy = DE
yy(g) PE

yy.
(24)

(23) is the form of a generalized non‑commutative spectral decomposition of an entire
Non‑Abelian group. D3’s decomposition differs from the commutative C6. D3 has two
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nilpotent projectors PExy andPEyx alongwith four ordinary (idempotent) projectorsPA1 ,PA2 ,
PExx, and PEyy. Other Non‑Abelian groups have other numbers of these two kinds of P’s.

All commutative groups can be reduced to orthogonal idempotents that satisfy simple
orthogonality relations given in [4],

Pi Pj = δij Pi = Pj Pi. (25)

A more general formulation spectral decomposition comes from writing (12) as,

g = 1g1 =

(
ℓα

∑
k=1

Pµ
k

)
g

(
n

∑
k=1

Pα
k

)
= ∑

µ
∑
m

∑
n

Dµ
mn(g)Pn

mn (26)

and (25) replaced by the generalized projector orthonormality relation for non‑
commutative projectors,

Pµ
jkPν

mn = δµνδmnPµ
jn (27)

To obtain generalized projectors, the decomposition (26) must be inverted. The result
which will be proved below is the famous Wigner–Weyl projection formula,

Pµ
mn =

ℓµ

◦G ∑
g

Dµ∗
mn(g)g. (28)

where oG= 6 is the order of the groupD3 and ℓm is them‑irrep dimension, (ℓA1 = 1, ℓA2 = 1,
and ℓE1 = 2). Again, these numbers vary from group to group. For Abelian groups, irrep
dimensions are always one (ℓm = 1).

Let us summarize the first set of six irrep projectors which will be used in a band
theory model below,

PA1 PA2 PE
xx = PE

x 1PE
x PE

yy = PE
y 1PE

y PE
xy = DE

xy(i3)PE = PE
x i3PE

y PE
yx = DE

yx(i3)PE
yx = PE

y i3PE
x

1 1 1 2 2 0 0
r 1 1 −1 −1 −1 1
r2 1 1 −1 −1 1 −1
i1 1 −1 −1 1 −1 −1
i2 1 −1 −1 1 1 1
i3 1 −1 2 −2 0 0

1/6 1/6 1/6 1/6 1/4 1/4

(29)

The element i2 is outside of the CSOCO can be used to determine the two non‑zero
nilpotent projectors PExy and PEyx since the idempotents PExx and PEyy from (29) are or‑
thogonal. A commuting operator would permit the two projectors to annihilate [8]. The
key is to choose any operator such as r, r2, i1, or i2 outside of the CSOCO, as shown in
Figure 1. This will give all the needed projectors. At this stage, we use the projector to find
eigenvalues and eigenvectors, ∣∣∣eα

jk A
〉
=

Pα
jk|A⟩√

Nα
k

(30)

Suppose that we have the normalized eigenfunction
∣∣∣eα

j

〉
= Pα

jk |1⟩/
√

Nα
k , then the

vector product is
〈

eα
j

∣∣∣eα
j

〉
= 1 gives,

Nα
k =

〈
1
∣∣∣Pα

jkPα
jk

∣∣∣1〉 = ⟨1|Pα
kk|1⟩ (31)
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Given this and the irrep P‑operators in (29), the D3‑symmetry projected states are
obtained easily,

∣∣PA1
〉 ∣∣PA2

〉 ∣∣PE
xx
〉 ∣∣∣PE

yy

〉 ∣∣∣PE
xy

〉 ∣∣∣PE
yx

〉
1 1 1 2 2 0 0
r 1 1 −1 −1 −1 1
r2 1 1 −1 −1 1 −1
i1 1 −1 −1 1 −1 −1
i2 1 −1 −1 1 1 1
i3 1 −1 2 −2 0 0

1/
√

6 1/
√

6 1/2
√

3 1/2
√

3 1/2 1/2

(32)

The E‑matrices DE(g) =

(
DE

11 DE
12

DE
21 DE

22

)
we can derive from the projector states for

example DE(r) =

(
1
2

√
3

2√
3

2
1
2

)
; This comes about by computing the operator r acts on the

column element
∣∣PE

11
〉
and

∣∣PE
21
〉
(i.e., r

∣∣PE
11
〉
and r

∣∣PE
21
〉
),

r
∣∣PE

11
〉
= r
(
2 − r − r2 − i1 − i2 + 2i3

)
/2

√
3 =



−1
2
−1
−1
2
−1

/2
√

3

=
− 1

2

∣∣∣ PE
11⟩+

√
3

2 |PE
21⟩

2
√

3
,

(33)

r
∣∣PE

21
〉
= r
(
0 + r − r2 − i1 + i2 + 0i3

)
/2

√
3 =



1
0
−1
1
0
1

/2
√

3

=
−

√
3

2 | PE
11⟩+−1

2 |PE
21⟩

2
√

3
.

(34)

We compute the following products, DE
11 =

〈
PE

11

∣∣r∣∣PE
11
〉
, DE

21 =
〈

PE
21

∣∣r∣∣PE
11
〉
,

DE
12 =

〈
PE

12

∣∣r∣∣PE
21
〉
, and DE

22 =
〈

PE
12

∣∣r∣∣PE
21
〉
. In general,〈

Pα
ij |g|P

β
kl

〉
= Dα

ik(g)δ
αβδjl , (35)

and
g
∣∣∣Pα

ij

〉
= ∑lα

k=1Dα
ki(g)

∣∣∣Pα
kj

〉
(36)

Thus, from (33)–(36) we found all reduce regular representation for our D3 example
as shown by (37),

g = 1 r r2 i1 i2 i3
DA1(g) = 1 1 1 1 1 1
DA2(g) = 1 1 1 −1 −1 −1

DE
x2 y2

(g) =
(

1 .
. 1

) (
−1/2 −

√
3/2√

3/2 −1/2

) (
−1/2

√
3/2

−
√

3/2 −1/2

) (
−1/2 −

√
3/2

−
√

3/2 1/2

) (
−1/2

√
3/2√

3/2 1/2

) (
1 .
. −1

) (37)

Each bra or ket is an operation of P‑operator on the “first” state |1⟩. Note the use of
conjugation:P†

m n = Pn m.
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3. Rovibrational Hamiltonian and Wavefunctions
In (2), we write down the rovibrational Hamiltonian for a molecular system. This is

synonymous with that described by Bunker and Jensen [4]. Bunker and Jensen [4] showed
that invoking the harmonic oscillator approximation leads to the rigid‑rotor harmonic os‑
cillator Hamiltonian for a rotational–vibrational motion. Consequently, our Hamiltonian
is given by,

H =
1
2∑

α

µe
αα J2

α + ∑
α

∑
i

[
(pα

2)
2

2
+

(
ωαqα

2

)2

2

]
, (38)

where
∂H
∂pα

i
=

.
qα

i = pα
i (39)

This is then treated as a quantum oscillator, as em‑modes are quantized to give quan‑
tum field theory. The quantum theory of vibrational modes has the same traditional clas‑
sical roots as quantum field theory. We will use canonical variables, which are defined by

qα
j =

〈
eα

j

∣∣∣m|x⟩, pα
j =

〈
eα

j

∣∣∣m∣∣ .
x
〉

(40)

Next, we write the canonical variables in ordinary coordinates.

XlQ = ⟨lQ|x⟩. (41)

Using the completeness relation gives

XlQ = ⟨lQ|x⟩ = ∑
α

∑
〈

lQ
∣∣∣eα

j

〉〈
eα

j

∣∣∣m|x⟩

= ∑
α

∑
l

〈
lQ
∣∣∣eα

j

〉
qα

j

, (42)

where
qα

j = ∑
Q=A1,E,T2

∑
l

〈
eα

j

∣∣∣m|lQ⟩⟨lQ|x⟩. (43)

We can then write annihilation and creation operators in terms of symmetry coordi‑
nates since

aα
i =

[√
ωαqα

i +
i√
ωα

pα
i

]
/
√

2ℏ, (44)

aα†

i =

[√
ωαqα

i −
i√
ωα

pα
i

]
/
√

2ℏ. (45)

We can consider how to symmetrize the wavefunction for the rovibrational Hamilto‑
nian. Dijon group [19,20] define a compact form that can be expressed as,∣∣∣ΨΓ,γ

rν

〉
=
[∣∣∣ΨΓ1

rot

〉
×
∣∣∣ΨΓ2

vib

〉]Γ

γ
. (46)

We consider the form for the vibration and rotation as describe by ref. [9,10],∣∣∣ΨΓ1
rot

〉
= ∑J

k=−Js
J
k;Γ,γ|Jkm⟩ (47)

|Jkm⟩ = D J
mk(αβγ)/

√
8π2

2j + 1
(48)

where
D J

m k(g) =
√
(J − m)!(J + m)!

√
(J − k)!(J + k)!×

∑
n
(−1)

n(
cos β

2

)2J+m−k−2n(
sib β

2

)k−m+2n
e−i(mα+kγ)

(J+m−n)!(k−m+n)!n!(J−k−n)!

(49)
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and sJ
k;Γ,γ or similarly in spherical harmonics by Wormer [21]

|l, m, G, λ, i⟩ = fλ

|G| ∑
g∈G

D(λ)
(

g−1
)

ij
gYlm (50)

A. Rotational Wavefunction

To
∣∣∣ΨΓ1

rot

〉
, we must consider the overall external symmetry O3. This then correlated

with the internal symmetry Γ1. Knowing Γ1 gives a correlation induced between the irrep
Γ1 and that of O3. The characters of R3 are given by,

TraceDℓ(ω00) =
sin
(
ℓ+ 1

2

)
ω

sin ω/2
(51)

We derive the character of O3 from its outer product in relation to R3 in (51).

Trace D(ω00) =

O3
1

ω = 0◦

r, r2

ω = 120◦

R2

ω = 180◦

R, R3

ω = 90◦

i

ω = 180◦

I

ω = −180◦

Ir, Ir2

ω = 120◦

IR2

ω = 180◦

IR, IR3

ω = 90◦

Ii

ω = 180◦

0+ 1 1 1 1 1 1 1 1 1 1

0− 1 1 1 1 1 −1 −1 −1 −1 −1

1+ 3 0 −1 1 −1 3 0 −1 1 −1

1− 3 0 −1 1 −1 −3 0 1 −1 1

2+ 5 −1 1 −1 1 5 −1 1 −1 1

2− 5 −1 1 −1 1 −5 1 −1 1 −1

3+ 7 1 −1 −1 −1 7 1 −1 −1 −1

3− 7 1 −1 −1 −1 −7 −1 1 1 1

4+ 9 0 1 1 1 9 0 1 1 1

4− 9 0 1 1 1 −9 0 −1 −1 −1

5+ 11 −1 −1 1 −1 11 −1 −1 1 −1

5− 11 −1 −1 1 −1 −11 1 −1 1 1

6+ 13 1 1 −1 1 13 1 1 −1 1

(52)

The frequency f Γ1(J) of the irreducible representation of Γ1 subduced to R3 is
given by:

f Γ1 =
1
◦G ∑

classes cg

χ
Γ∗

1
g

◦cgTrace Dℓ(g) (53)

where Γ1 is the irrep label of the point group of the composite rigid body. With Γ1 = Td
the Equation (53) and we can use character table (54) to find the induced representation,

Td 1
(
r1 . . . r2

1 . . .
) (

R2
1 . . .

) (
IR1 . . . IR3

3 . . .
)

(Ii1 . . .)

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
T1 3 0 −1 1 −1
T2 3 0 −1 −1 1

(54)
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Therefore, we give the correlation between R3 and Td as (55),

Td ↑ O3
S4 ↑ O3

A1
{4}

A2{
14} E{

22} T1{
2, 12} T2

{3, 1}
Jp = 0+ 1 . . . .

0− . 1 . . .
1+ . . . 1 .
1− . . . . 1
2+ . . 1 . 1
2− . . 1 1 .
3+ . 1 . 1 1
3− 1 . . 1 1
4+ 1 . 1 2 1
4− . 1 1 1 2
5+ . . 1 2 1
5− . . 1 1 2
6+ 1 1 1 1 2
6− 1 1 1 2 1
7+ 1 . 1 2 2
7− . 1 1 2 2

(55)

We construct symmetrize rotational wave function as follows∣∣∣∣Γ1
γ

〉
= PΓ1

γ f

∣∣∣∣ J
mk

〉/√
NΓ1 =

1√
NΓ1

∑
Rl

DΓ1
γ f (Rl)Rl

∣∣∣∣ J
mk

〉
(56)

Rl

∣∣∣∣ J
m k

〉
= ∑

Rl

D J
n J(αβγ)

∣∣∣∣ J
n k

〉
(57)

We must compute how J split under a subduction R3 ⊃ Γ1. For instance, if
Γ1 = Td, which is tetrahedral symmetry, and that we the splitting at J = 2, then the split is

(E, T2). We build the corresponding wavefunction
(∣∣∣∣ 2

−2

〉
,
∣∣∣∣21
〉

,
∣∣∣∣20
〉

,
∣∣∣∣21
〉

,
∣∣∣∣22
〉)

and(∣∣∣∣E1
〉

,
∣∣∣∣E2
〉

,
∣∣∣∣T2

1

〉
,
∣∣∣∣T2

2

〉
,
∣∣∣∣T2

3

〉)
as outlined by Harter [3] for octahedral symmetry. From

(56) we have, ∣∣∣∣Ee
〉

= PE
e f

∣∣∣∣ J
m k

〉
/
√

NE, (58)∣∣∣∣T2
t

〉
= PΓ1

tu

∣∣∣∣ J
m k

〉
/
√

NT2 . (59)

The local symmetry of C2 =
{

1, R2
3
}
has a projector P02 ,

P02

∣∣∣∣ 2
2

〉
=

1
2

(
1 + R2

3

)∣∣∣∣ 2
2

〉
(60)

We need the tetragonal (Td ⊃ D2d ⊃ C2) projectors Pα
ij of Td and only those for which

j = 02. Thus, we find the induced representation D02(C2) ↑ Td of Td by performing a
correlation between the character tables of Cv and Td:

C2 1 R2
3

02 1 1
1 1 −1

(61)
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Using columns 1 and IiI of Td table from (54) gives,

02(C2) ↑ Td 02 12

A1 1 .
A2 . 1
E 1 1
T1 1 2
T2 2 1

(62)

Td ↑ D2d A1 A2 B1 B2 E
A1 1 . . . .
A2 . . 1 . .
E 1 . 1 . .
T1 . . . 1 1
T2 . 1 . . 1

(63)

It is clear from (62) that 02 correlates with the tetrahedral component E and T2. There‑

fore, we have DE(P02
)
=

(
1 .
. 1

)
and DT2

(
P02
)
=

. . .
. . .
. . 1

. This tells us that we must

use the third row of the tetragonal D‑matrix for T2 symmetry irrep, however, in the case
of E symmetry irrep, it said both the first and third could be used. Therefore, consider
D2d and repeat correlation with Td symmetry group, as shown by (63). We find that A1
correlates with E and A2 correlates with T2. Both suggest that the last rows in E and T2
D‑matrices are needed (57), depending on the D‑function of R3 and symmetry irreps coset
leaders. Let’s choose the following coset leaders. We canwrite each coset leader in terms of
its Euler angle rotation. Figure 2. shows the Euler machine designed and built by Harter
to perform these operations [3,14]. There are sequenced pivot bearings connecting each
frame to its neighbor. One of the three Euler angles (α, β, γ) is displayed on each bearing’s
indicator and dial.
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Harter [3] showed that the ordered rotation sequence of lab‑based operations orients
the body into position relative to the lab, i.e.,

R(α00)R(0β0)R(00γ) = R(αβγ). (64)

There are steps wemust perform to find R(αβγ). As shown in Figure 3, α is a rotation
around the z‑axis, β around y‑axis, and γ rotation around z‑axis. The first move is to zero
the azimuth angle R(−ϕ00)with the z‑crank, and, then, zero the polar angle R(0 − θ0)with
the crank, finally the ω rotation is given by the z crank R(ω00). To complete this operation,
we return ω to its original position by doing the reserve operation R(ϕ00) R(0θ0). This
allows us to create the expression between Euler rotations and Darboux rotations,

R(ϕ00) R(0θ0)R(ω00) R(0 − θ0) R(−ϕ00) = R(α00) R(0ββ0)R(00γ) (65)
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We obtain the Euler angles from Darboux angles [2] as described by (66):

cos(α + γ/2)cos(β/2) = cos(ω/2),

sin(α + γ/2)cos(β/2) = sin(ω/2)cos(θ),

cos(α − γ/2)sin(β/2) = sin(ω/2)sin(θ)sin(ϕ),

sin(α − γ/2)sin(β/2) = sin(ω/2)sin(θ)cos(ϕ).

(66)

Here we find all following for our coset leaders written in their polar form:

R1 = R(−π/2π/2π/2), R3
1 = R(−π/2π/2π/2), R2 = R(0π/20),

R3
2 = R(0 − π/20), R3

3 = R(0π π/2),

R3 = R(00π/2), i1 = R(0π/4π), i2 = R(ππ/4π), i3 = R(π/4π/2π), i4 = R(−π/4π/2π),

i5 = R(3π/2π/4π), i6 = R(π/2π/4π)

(67)

We could have also us the follow alternative sets of cosets leaders:

1 = R(000), R2
1 = R(−π/2π/2π), R2

2 = R(0π/2π), R2
3 = R(0π/2π),

r1 = R(−π/3π/32π/3), r2 = R(π/3π/3 − 2π/3), r3 = R(π/3 − π/3 − 2π/3),

r4 = R(−π/3 − π/32π/3), r2
1 = R(−π/3π/3 − 2π/3), r2

2 = R(π/3 − π/32π/3), r2
3

= R(π/3 − π/32π/3), r2
4 = R(−π/3π/3 − 2π/3)

(68)

By using (66) we found the Euler representation (56) leading cosets:
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R1 = R(−π/2π/2π/2), R3
1 = R(−π/2π/2π/2), R2 = R(0π/20),

R3
2 = R(0 − π/20), R3

3 = R(3π/40π/4),

R3 = R(π/403π/4), i1 = R(0π/2π), i2 = R(3π/4π/20), i3 = R(π/4π/23π/4), i4 = R(3π/4π/2π/4),

i5 = R(π/2π/2π/2), i6 = R(π/2π/2π/2),

(69)

Thus, we proceed with the example by finding the representation components of
D2

m2(αβγ) for each coset leader by taking only the first column of the D2
m2(αβγ)

matrix (49), therefore,

D2
m2(αβγ =



e−i2(α+γ)
(

1+cosβ
2

)2

e−i(α+2γ)(
1+cosβ

2 )sinβ

e−i2γ
√

3
8 (sinβ)2

ei(α−2γ)(
1−cosβ

2 )sinβ

e2i(α−γ)
(

1−cosβ
2

)2

(70)

We evaluate (70) for the coset leaders, and we have

D2(R3 =


1
0
0
0
0

, D2(R3
3 =


0
0
0
0
1

, D2(R1 =

−

1/4
−i/2√

3/8
i/2
1/4

, D2(R3
1 =

−

1/4
i/2√
3/8

−i/2
1/4

D2(R2 =


1/4
1/2√
3/8

1/2
1/4

, D2(R3
2 =


1/4
−1/2√

3/8
−1/2
1/4

, D2(i3 =



1
4

1−i
2
√

2

−i
√

3
8

−1+i
2
√

2
1
4

, D2(i4 =



1
4

− 1−i
2
√

2

i
√

3
8

1−i
2
√

2
1
4

D2(i1 =


1/4
1/2√
3/8

1/2
1/4

, D2(i2 =


1/4
−1/2√

3/8
−1/2
1/4

, D2(i5 =


1/4
i/2

−
√

3/8
−i/2
1/4

, D2(i6 =


1/4
−i/2

−
√

3/8
i/2
1/4

(71)

Now, we use Equation (54) through (71) to determine our orbital states (72).∣∣∣∣ T2
1

〉
=

(
−
∣∣∣∣ 2
−1

〉
−
∣∣∣∣ 2

1

〉)
/
√

2∣∣∣∣ T2
2

〉
= i
(∣∣∣∣ 2

−1

〉
+

∣∣∣∣ 2
2

〉)
/
√

2∣∣∣∣ T2
3

〉
=

(
−
∣∣∣∣ 2
−2

〉
+

∣∣∣∣ 2
2

〉)
/
√

2∣∣∣∣ E
1

〉
=

∣∣∣∣ 2
0

〉
∣∣∣∣ E

2

〉
=

(∣∣∣∣ 2
−2

〉
+

∣∣∣∣ 2
2

〉)
/
√

2

(72)



Symmetry 2023, 15, 496 14 of 29

By applying spherical harmonics, we have,

n2

〈
θϕ

∣∣∣∣ 2
2

〉
= n2Y2

2 (θϕ) =
√

3
8 e2iϕsin2θ =

√
3
8 (x + iy)2/r2

n2

〈
θϕ

∣∣∣∣ 2
1

〉
= n2Y2

1 (θϕ) =
√

3
8 eiϕsin2θ =

√
3
8 (x + iy)/r2

n2

〈
θϕ

∣∣∣∣ 2
0

〉
= n2Y2

0 (θϕ) =
(
3cos2θ − 1

)
/2 =

(
2z2 − x2 − y2)/2r2

n2

〈
θϕ

∣∣∣∣ 2
−1

〉
= n2Y2

−1(θϕ) = −
√

3
2 e−iϕsinθcosθ = −

√
3
2 (x − iy)z/r2

n2

〈
θϕ

∣∣∣∣ 2
−2

〉
= n2Y2

−2(θϕ) =
√

3
8 e−2iϕsin2θ =

√
3
8 (x − iy)2/r2

(73)

By combining (72) and (73), we acquire the same result for the rotational tensor given
in [3].

B. Vibrational Wavefunction

Consider the vibration Hamiltonian expanded in terms of raising a† and lowering
a operators,

H = ∑
α

∑
i

(
αα†

i αα
i +

1
2

)
. (74)

Suppose ε is an eigenstate of H then

H|ε⟩ = ε|ε⟩, (75)

as such:

| ε⟩ =
∣∣∣∣∣ · · · nα

i · · · nβ
j · · ·

〉
= · · ·

(
aα†

i

)nα
i · · ·

(
aβ

j

)nβ
j |0 · · ·⟩/

√
N . (76)

Furthermore, νi is the spectroscopy notation for Γ, such that in methane ν1 for A1, ν2
for E, ν3 for T2, ν4 for T2 . There, E label (2ν2) has a triple degenerate:∣∣∣· · · nE

1 , nE
2 · · · (2ν2)

〉
= |· · · 2, 0 · · · (2ν2)⟩, |· · · 1, 1 · · · (2ν2)⟩, |· · · 0, 2 · · · (2ν2)⟩. (77)

(77) is exactly the same as Alvarez‑Bajo et al. [10], i.e., |V;v⟩, therefore, we can say∣∣∣V; Ψp, Γ2, γ2
vib

〉
= ∑

v
Dp, Γ2, γ2

v |V; v⟩p (78)

4. Concrete Example: Symmetry Analysis of Methane
The chemical formula for methane is CH4.; there are four hydrogen atoms bonded

to one carbon atom. The ground state methane (CH4) molecule has Td symmetry, i.e.,
tetrahedral point group symmetry. Imagine a cube that has four hydrogen atoms placed
at four of its corners laying diagonally at equal distances with a carbon atom at the center.
These atoms are connected to each other via springs. Thus, the tetrahedral symmetry is
shown in Figure 4.

The position of Hydrogen atoms or Y atoms will be represented with symmetry coor‑
dinates. Figure 4. shows a set of bases for the Y atoms. We will use these base sets to do
the symmetry analysis of XY4. The vibrational modes will be calculated, and they can be
simulated on a computer to understand the dynamics of XY4 molecules better.
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Furthermore, 𝜈௜ is the spectroscopy notation for Γ, such that in methane 𝜈ଵ for 𝐴ଵ, 𝜈ଶ for 𝐸, 𝜈ଷ for 𝑇ଶ, 𝜈ସ for 𝑇ଶ . There, E label (2𝜈ଶ) has a triple degenerate: |⋯ 𝑛ଵா, 𝑛ଶா ⋯ (2𝜈ଶ)⟩ = |⋯ 2,0 ⋯ (2𝜈ଶ)⟩, |⋯ 1,1 ⋯ (2𝜈ଶ)⟩, |⋯ 0,2 ⋯ (2𝜈ଶ)⟩.  (77)

(77) is exactly the same as Alvarez-Bajo et al. [10], i.e, |V; v⟩, therefore, we can say 

2 2 2 2, , , ,; ;p p
vib v p

v
V D V vγ γΓ ΓΨ =   (78)
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the X atom. Bases set of Y atoms in Figure 4. are labeled by set selected symmetry opera-
tors in Figure 5, 

H

H

H

H

C

Figure 4. Diagrammatic illustration of a CH4 molecule. This molecule has a tetrahedral symmetry.
CH4 belongs to a general class of molecules represented by XY4.

There are twelve bases stated describing the Y atom in XY4 and three bases stated for
the X atom. Bases set of Y atoms in Figure 4. are labeled by set selected symmetry operators
in Figure 5,{

|A⟩, |r1 A⟩,
∣∣∣r2

1 A
〉

,
∣∣∣R2

1 A
〉

, |r4 A⟩,
∣∣∣r2

2 A
〉

,
∣∣∣R2

2 A
〉

, |r2 A⟩,
∣∣∣r2

3 A
〉

,
∣∣∣R2

3 A
〉

, |r3 A⟩,
∣∣∣r2

3

〉}
(79)
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r1A
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1A
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2A

r2A
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R2
2
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r4A

r3A
R3
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r4

2A

C1

C2

C3
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Figure 5. Symmetry coordinates for the XY4 molecule. Displayed on each of the atoms are the
symmetry bases.

The symmetry operations for an object with Td symmetry is given by the following in
Figure 6.
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Figure 6. Symmetry operations for the Td point group. 24 symmetry operations are displayed for
four different axes of rotations.

Although (a) and (b) make up Td point symmetry, the symmetry operations of (a)
moves the four Y atoms to the same place that the symmetry operations in (b) would. Con‑
sequently, the symmetry operation in (a) and (b) of the two cosets of twelve in Td base
vectors of the X atom are,

{|C1⟩, |C2⟩, |C3⟩} (80)

The eigenvectors are then obtained from the group projectors Pα
jk. When the particular

symmetry is known, the eigenvectors or near‑eigenvectors
∣∣∣eα

jk A
〉
are very easily found,

∣∣∣eα
jk A
〉
=

Pα
jk|A⟩√

Nα
k

(81)

There exists a local symmetry of Cν = {1, σ} that preserves each coordinate vector
|rA⟩ so (σ|rA⟩ = |rA⟩). It has a projector P02 ,

P02 =
1
2
(1 + σ)|A⟩. (82)

Thus, it spans an induced representation D02(Cν) ↑ Td of Td. The full Td labeled orbit
is given by a 12‑dimensional induced representation D02(Cν) ↑ Td . The character tables
of Cν,

Cv 1 σ

02 1 1
1 1 −1

(83)

Td 1
(
r1 . . . r2

1 . . .
) (

R2
1 . . .

) (
IR1 . . . IR3

3 . . .
)

(Ii1 . . .)
A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
T1 3 0 −1 1 −1
T2 3 0 −1 −1 1

(84)
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and Td and using columns 1 and Ii1 of Td table gives (63). However, by considering the
sub‑group chain Td ⊃ C3ν ⊃ Cν, we find the symmetry characteristic of the energy levels
in XY4 as shown by Figure 5. We start with the C3ν character table:

C3v 1
(
r, r2) (σ1, σ2, σ3)

A1 1 1 1
A2 1 1 −1
E 2 −1 0

(85)

Then, we determine the correlation Td ⊃ D3 : Td ↑ D3 between the Td character table
(60) and the C3ν character table (85),

Td ↑ C3v A1 A2 E
A1 1 . .
A2 . 1 .
E . . 1
T1 . 1 1
T2 1 . 1

(86)

Next, we obtain the correlation between C3ν and Cv,

D3 ↑ Cv 02 12
A1 1 .
A2 . 1
E 1 1

(87)

⇒ D02 ↑ Td = A1 ⊕ E ⊕ T1 ⊕ 2T2.⊕ (88)

From (79)–(88), we construct the following energy level correlation diagram (see Fig‑
ure 7), which shows symmetry splitting for the subgroup chain Td ⊃ C3ν ⊃ Cν. This gives
the eigenvectors: ∣∣∣eα

j

〉
= Pα

ij |A⟩ = l
0G ∑

g
Dα∗

ij (g)|gA⟩

where α = A1 , E, T1, T2

, (89)



∣∣∣eA1
1

〉
= 1

24 ∑
g

DA1
11 (g)|gA⟩,∣∣∣eE

j

〉
= 1

24 ∑
g

DE
j1(g)|gA⟩, j = 1, 2,∣∣∣eT1

j

〉
= 1

8 ∑
g

DT1
j1 (g)|gA⟩, j = 1, 2, 3,∣∣∣eT2

j

〉
= 1

8 ∑
g

DT2
j1 (g)|gA⟩ , j = 1, 2, 3,

∣∣∣eT2
j

〉
= 1

8 ∑
g

DT2
j3 (g)|gA⟩, j = 1, 2, 3

(90)

Irrep matrix DΓ1 are determined from irrep idempotent PΓ1
j by constructing the nor‑

malize element PΓ1
j gPΓ1

j . In Appendix A we list the trigonal and tetrahedral bases 3 × 3

and 2 × 2 matrices. We demonstrate in Section 2 how to compute DΓ1 for 2 × 2 matri‑
ces, however, for more details consult red. 3. In (89) the element of DΓ1 are used to find
the eigenvectors.
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∣∣eA1
〉 ∣∣eE1

〉 ∣∣eE2
〉 ∣∣∣eT1

11

〉 ∣∣∣eT1
12

〉 ∣∣∣eT1
13

〉 ∣∣∣eT2
11

〉 ∣∣∣eT2
12

〉 ∣∣∣eT2
13

〉 ∣∣∣eT2
31

〉 ∣∣∣eT2
32

〉 ∣∣∣eT2
33

〉
|1⟩ 1 2 0 2 0 0 3 0 0 0 0 2

|r1⟩ 1 −1 1 −1 −3 0 3 0 0 0 3 −1∣∣r2
1
〉

1 −1 −1 −1 3 0 3 0 0 0 −3 −1∣∣R2
1
〉

1 2 0 0 2 1 −1 −1 −1 1 −2 0

|r4⟩ 1 −1 1 1 −1 1 −1 2 0 1 1 1∣∣r2
2
〉

1 −1 −1 −1 −1 1 −1 −1 −1 1 1 −1∣∣R2
2
〉

1 2 0 0 2 −1 −1 −1 −1 1 2 0

|r2⟩ 1 −1 1 −1 1 −1 −1 −1 1 1 −1 −1∣∣r2
3
〉

1 −1 −1 1 1 −1 −1 2 0 1 −1 1∣∣R2
3
〉

1 2 0 −2 0 0 −1 2 0 0 0 −2

|r3⟩ 1 −1 1 1 3 0 −1 −1 −1 0 −3 1∣∣r2
4
〉

1 −1 −1 1 −3 0 −1 −1 −1 0 3 1

2
√

3 2
√

6 2
√

2 4 4
√

3
√

6 6 2
√

6 2
√

2
√

6 4
√

3 4

(91)



Symmetry 2023, 15, 496 19 of 29

The T1 and T2 eigenvectors are written in the trigonal bases (see Appendices A.4–A.6)
and are related to the subgroup chain Td ⊇ D2d ⊇ Cv by the unitary transformation,

T =


1√
2

−1√
2

0
1√
6

1√
6

−2√
6

1√
3

1√
3

1√
3

 (92)

Applying the transformation to the irrep matrices of the Td ⊃ C3ν ⊃ Cν chain gives
the irrep matrices for the Td ⊇ D2d ⊇ Cv chain (see Appendices A.1–A.3). As a result, we
find the eigenvectors in a new bases which is given by,

∣∣eA1
〉 ∣∣eE1

〉 ∣∣eE2
〉 ∣∣∣eT1

11

〉 ∣∣∣eT1
12

〉 ∣∣∣eT1
13

〉 ∣∣∣eT2
11

〉 ∣∣∣eT2
12

〉 ∣∣∣eT2
13

〉 ∣∣∣eT2
31

〉 ∣∣∣eT2
32

〉 ∣∣∣eT2
33

〉
|1⟩ 1 2 0 1 −1 0 1 0 0 0 0 1

|r1⟩ 1 −1 1 0 1 −1 0 1 0 1 0 0∣∣r2
1
〉

1 −1 −1 −1 0 1 0 0 1 0 1 0∣∣R2
1
〉

1 2 0 1 1 0 1 0 0 0 0 −1

|r4⟩ 1 −1 1 0 −1 1 0 −1 0 −1 0 0∣∣r2
2
〉

1 −1 −1 −1 0 −1 0 0 −1 0 −1 0∣∣R2
2
〉

1 2 0 −1 −1 0 −1 0 0 0 0 −1

|r2⟩ 1 −1 1 0 1 1 0 1 0 −1 0 0∣∣r2
3
〉

1 −1 −1 1 0 −1 0 0 −1 0 1 0∣∣R2
3
〉

1 2 0 −1 1 0 −1 0 0 0 0 1

|r3⟩ 1 −1 1 0 −1 −1 0 −1 0 1 0 0∣∣r2
4
〉

1 −1 −1 1 0 1 0 0 1 0 −1 0

2
√

3 2
√

6 2
√

2 2
√

2 2
√

2 2
√

2 2 2 2 2 2 2

(93)

In Figure 8, we display all the genuine vibrations of XY4. Now,we consider the energy
eigenvalues using those bases for XY4 molecule.

4.1. Solving the Equation of Motion
From the Td symmetry projection operators, we can construct the eigenstates and use

them to partially solve the equation of motion (94),

m
∣∣ ..x〉 = −F|x⟩ (94)

The number of elements we need for the force matrix is considerably less than
(15)2 = 225 due to symmetry considerations. Only 18 elements are needed for the force ma‑
trix. Because of the non‑genuine vibration of the T2 mode, it will acquire in general (82),
which simplifies to a block matrix form (96). To compute the F‑matrix we must obtain
the component ⟨i|F|j⟩ by computing the product of the projections of each spring on the
coordinate axis xi = ⟨i|x⟩ and xj = ⟨j|x⟩ for all spring and summing products.

− F1 = ⟨1|F|1⟩⟨1|x⟩+ ⟨1|F|2⟩⟨2|x⟩+ ⟨1|F|3⟩⟨3|x⟩+ . . . , (95)

which implies a force matrix given by,
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T
2

T
2

A
1

E

ωE =
j
m γ

ω A1 =
j 4γ + 1( )
m

ω + =
j
mℜ0 +

j
m ℜ1

2 −
2 ′ℜ

3






ω − =
j
mℜ0 −

j
m ℜ1

2 −
2 ′ℜ

3






Figure 8. The XY4 vibrational modes and spectra. Eachmode shows themovement of X atoms and Y
atoms and their corresponding energies. A1 is the squeezing mode. Two T2 modes for the H atoms,
one for the C atom, and two vibrational modes are mixed with one translation mode. The E‑mode is
similar to a breathing mode.

|A⟩

|C1⟩


|1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩ |12⟩ |13⟩ |14⟩ |15⟩

k + j
3

k
2 + j

3
k
2 + j

3
k
2 • k

2
k
2

k
2 • • • • −j

3
−j
3

−j
3

4j
3 • •

 (96)

|A⟩

|C1⟩

|1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩ |12⟩ |13⟩ |14⟩ |15⟩
m • • • • • • • • • • • • • •
• • • • • • • • • • • • M • •

 (97)

Notice in the force matrix, only the first column must be written down. Thus, with
our eigenvectors applied to this first row we obtain the eigenfrequencies:

(ωα)2 =
〈
m−1F

〉
= 1

m ∑
g
⟨A|F|gA⟩Dα

ij(g)

where α = A1 , E, T1, T2

(98)
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A1 mode ωA1 =

√
4k + j

m
(99)

E‑mode ωE =

√
2k
m

. (100)

T1 mode has an eigenfrequency of zero corresponding to a pure classical rotation.
Since XY4 is spherically symmetric, the following rotational Hamiltonian can describe T1
modes (see Figure 9),

Hr =
J2

2I
. (101)
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JH
I

= .  (101) 
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Figure 9. The T1 modes of XY4 is a pure rotation.

4.2. Non‑Genuine Vibration
There are two T2 modes for the H atoms and one for the C atom. Thus, there are

six eigenfrequencies since the dimension of T2 is three (see Figure 8). The T2 are not all
genuine vibrations, but two vibrational modes are mixed with one translation mode. By
using the above T2 eigenvectors and the |C⟩ bases to transform each Q matrix where Q = F
or Q = m, we acquire a block diagonal form,

〈
T2
j1

∣∣∣∣Q∣∣∣∣T2
j1

〉 〈
T2
j1

∣∣∣∣Q∣∣∣∣T2
j3

〉 〈
T2
j1

∣∣∣∣Q∣∣Cj
〉

〈
T2
j3

∣∣∣∣Q∣∣∣∣T2
j1

〉 〈
T2
j3

∣∣∣∣Q∣∣∣∣T2
j1

〉 〈
T2
j3

∣∣∣∣Q∣∣Cj
〉

〈
Cj
∣∣Q∣∣∣∣T2

j1

〉 〈
Cj
∣∣Q∣∣∣∣T2

j3

〉 〈
Cj
∣∣Q∣∣Cj

〉

 (102)

Note, there are nine eigenvalues and one for each j = 1, 2, 3 three 3× 3 Γ‑matrices, since
by symmetry each 3 × 3 matrix is the same. By solving one of them we determine all nine
eigenvalues of three triply degenerate levels. (103) gives the matrix element calculation
for (102), 〈

T2
j1

∣∣∣∣Q∣∣∣∣T2
j1

〉
= ⟨A|PT2

j1 QPT2
j1 |A⟩ = ∑

g
⟨A|Q|gA⟩DT2

11(g), (103)

〈
T2
j3

∣∣∣∣Q∣∣∣∣T2
j3

〉
= ∑

g
⟨A|Q|gA⟩DT2

33(g), (104)

〈
T2
j1

∣∣∣∣Q∣∣∣∣T2
j3

〉
=

〈
T2
j3

∣∣∣∣Q∣∣∣∣T2
j1

〉
= ∑

g
⟨A|Q|gA⟩DT2

13(g), (105)

〈
T2
j3

∣∣∣∣Q∣∣Cj
〉
=

〈
T2
j1

∣∣∣∣Q∣∣Cj
〉
= ⟨A|QPT2

1j

∣∣Cj
〉
, (106)〈

T2
j3

∣∣∣∣Q∣∣Cj
〉
=

〈
T2
j1

∣∣∣∣Q∣∣Cj
〉
= ⟨A|QPT2

1j

∣∣Cj
〉
, (107)〈

Cj
∣∣Q∣∣Cj

〉
=
〈
Cj
∣∣Q∣∣Cj

〉
. (108)
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First, we consider Q = F in (102) to give the force matrix as2(γ + 1/3) 1
3

−2
3

1
3

1
3

−2
3

−2
3

−2
3

4
3

, γ =
k
j
. (109)

Next, by making Q = m in (103) through (107) and Q = M to give,

Q = mass ⇒

m • •
• m •
• • M

. (110)

As a result, we have the following acceleration matrix,

j
m

2(γ + 1/3) 1
3

−2
3

1
3

1
3

−2
3

−2
3 α −2

3 α 4
3 α

, γ =
k
j
, α =

m
M

; (111)

We solved the eigenvalue equation,

λ

(
λ2 − 2

(
γ +

1
2
+

2
3

α

)
λ +

2γ

3
(4α + 1)

)
= 0. (112)

Solving (112), we have following eigenvalues

λ0 = 0;

λ± = ℜ0 ±
√(

ℜ2
1 −

2ℜ′
3

) , (113)

where ω± =
√

j
m λ±

ℜ0 = γ + 2
3 α + 1

2

ℜ0 = γ + 2
3 α + 1

2

ℜ′ = γ − 4
3 α + 1

6

(114)

The corresponding eigenvectors can be written as

|λ0⟩ =

0
2
1

 (115)

|λ+⟩ =

 (ℜ1+
√

Ω)
4α

− 1
2α

1

, (116)

|λ−⟩ =

−(ℜ1+
√

Ω)
4α

− 1
2α

1

, (117)

where Ω =
(
ℜ2

1 −
2ℜ′

3

)
. (118)

This procedure could be carried out using 2 × 2 matrices instead of 3 × 3 matrices
since one of the T2 modes is a pure translation. By excluding that mode, we only need to
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solve a 2 × 2 matrix. For the translation, both the X atom and the four Y atoms should
move by the same amount. As a result, we have,∣∣∣∣T2

j
Trans

〉
= 2

∣∣∣∣T2
j3

〉
+

∣∣∣∣Cj
〉

. (119)

We illustrate
∣∣∣∣T2

j
Trans

〉
in Figure 10 where the translation of H atoms or the Y atoms

and X‑atom for states that are in the |C1⟩ direction.
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Figure 10. A T2 translation mode resulting from the non‑genuine T2 mode. The motion of the Y
atom is displayed in the left‑most box, and the X atom is in the second box (middle), which combine
to give the right‑most box.

The translational mode and two vibrational modes of T2 are now isolated (see Figure 10).
This was achieved by taking linear combinations of the T2 modes.

A T2 mode that is orthogonal to (95) must be a genuine vibration, i.e.,∣∣∣∣T2
j

vib
〉

= 2M
∣∣∣∣T2
j3

〉
− 4m

∣∣∣∣Cj
〉

. (120)

(120) gives the genuine vibration from the non‑genuine vibrations. We illustrate (120)
pictorially in Figure 11.
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Figure 11. The genuine mode for

∣∣∣∣∣T21 vib(ω−) . The movement of the Y‑atoms are opposite to the

movement of the X‑atoms.

We just need to find the overlap matrix between the next T2 mode, namely
∣∣∣∣T2
j1

〉
, and∣∣∣∣T2

j1
vib
〉

, i.e.,


〈

T2
j1

∣∣∣∣Q∣∣∣∣T2
j

vib
〉 〈

T2
j1

∣∣∣∣Q∣∣∣∣T2
j

vib
〉

〈
T2
j

vib
∣∣∣∣Q∣∣∣∣T2

j1

〉 〈
T2
j

vib
∣∣∣∣Q∣∣∣∣T2

j
vib
〉
 =

j
m

(
2(γ+ 1

3 )
3

2(M+4m)
3

1
6M

(M+4m)
3M

)
, (121)

with eigenvalues,

ω± =

√√√√ j
m
ℜ0 ±

j
m

√(
ℜ2

1 −
2ℜ′

3

)
, (122)

and the eigensolution ∣∣∣eT2
j (±)

〉
= ε±

∣∣∣∣T2
j1

〉
+

∣∣∣∣T2
j

vib
〉

, (123)
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where ε± = 6M

(
ℜ1 ±

√
ℜ2

1 −
2
3
ℜ′

)
. (124)

Figure 12 shows how the frequency of vibration is affected as the ratio of the spring cou‑
pling increases.
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Figure 12. CH4 vibration spectra with increasing spring ratio. The plot shows eigenvalues ω as
function of the ratio k/j.

For the CH4 molecular parameters values m = 1, M = 12, k = 0.6, and j = 2.66, (113)
gives the following acceleration, [

2.97 28.37
0.04 1.18

]
. (125)

where we found the eigenvalues to be ω+ = 3.44; ω− = 0.72 and the eigenvectors of the
vibration for the T2 mode are,∣∣∣eT2

j (+)
〉
=

∣∣∣∣ T2
j1

〉
+ 0.02

∣∣∣∣ T2
j

vib
〉

∣∣∣eT2
j (−)

〉
= −

∣∣∣∣ T2
j1

〉
+ 0.08

∣∣∣∣ T2
j

vib
〉 (126)

Table 1 shows the observed with the computed in units of cm−1. A1 mode, and two
T2 modes compare with observed frequency. We obtain computed frequency by using the

force constants of j, k 5.495 aJ
.

A−2, and 0.124 aJ
.

A−2, respectively. However, the E‑mode does
not compare well.

Table 1. Frequency comparison.

XY4 Irreps Observed (cm−1) Computed (cm−1)

A1 2914.2 3179.8
E 1526.0 647.0
T1 3020.3 3023.3
T2 1306.3 1258.1

In the analysis of XY4, we see that only the T2 moves the X atom. This means there is
a coupling between the X and Y atoms through the j spring. It is evident that this is the case
since the T2 modes repel each other, as shown in Figure 12. In Figure 12, there is a clustering
of (E, T2) modeswhich ismore pronouncedwhen the strength of the j spring andmass ratio of
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X and Y atom increases. For better results with the XY4 molecule, we would need to consider
bending forces for a more precise agreement.

5. Conclusions
It is possible to define every molecule according to its symmetry, or lack thereof, which

can be expressed in terms of symmetry elements. The Projection Operator Technique utilizes
the extended character table which includes each symmetry operation separately. We have
demonstrated the power of the projector method to perform molecular calculations. As an
example, a CH4 molecule was considered for its tetrahedral symmetry, and our compute fre‑
quencies A1 and the two T2′s modes were in range of the observed values. By exploiting a
molecule’s symmetry, it is not necessary to solve the Schrödinger equation in detail.
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Appendix A.
If you perform a geometric symmetry operation on a particle located at position x,y,z and

then apply one of the geometrical symmetry operations R, what are the new coordinates of
the particle? x,

y′

z′

 = [D(R)]

x
y
z

 (A1)

where the matrices D(R) for each point group operation R. In the tetrahedral symmetry R
is given by Figure 6. Moreover, assuming a fixed convention of rotating particles through
an angle −2π/n in the direction of u by defining Cn(u) as a rotation of the particle (active
operation) and determining the sign of the rotation by using the right‑hand thumb rule, we
find that the new coordinates for the particle are given as functions of the old coordinates. The
irrep matricesD(R)may be derived from the irreducible idempotents PT1

j by constructing the

guarded elements PT1
i gPT1

j , normalizing them, and using the elementary operation relation

PT1
i gPT1

j = DT1
ij (g)PT1

ij . For example, let’s consider the irrep DT1u which represents the effects
of Oh transformation on Cartesian unit vectors {x̂ = x̂1, ŷ = x̂2, ẑ = x̂3}. The effect of Ir1
transformed the unit vector x1 as

Ir1|x1⟩ = −|x2⟩ (A2)

which gives the corresponding T1u irrep component

DT1
ij (r1) = ⟨x2|Ir1|x1⟩ = −1 (A3)

The octahedral group algebra can be simplified by considering carefully the subgroups
of O. In addition, there are more idempotent splittings and wave solutions associated with
octahedral symmetry. Moreover, D4 and T are subgroups of O. Splitting with idempotents
leaves two subchoices. One is free to use D4 ⊃ C4. Both tetragonal and trigonal base D
matrices are present as derive in ref. [3].
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Appendix A.1. T1‑Mode Tetragonal Base D‑Matrix: O ⊃ D4 ⊃ D2

1 =

1 . .
. 1 .
. . 1

, R2
1= =

1 . .
. −1 .
. . −1

R2
2 =

−1 . .
. 1 .
. . −1

R2
3 =

−1 . .
. −1 .
. . 1


r1 =

 . . 1
1 . .
. 1 .

r2 =

 . . −1
1 . .
. −1 .

r3 =

 . . −1
−1 . .

. 1 .

r4 =

 . . 1
−1 . .

. −1 .


r2

1 =

 . 1 .
. . 1
1 . .

r2
4 =

 . −1 .
. . −1
1 . .

 r2
3 =

 . −1 .
. . 1

−1 . .

 r2
2 =

 . 1 .
. . −1

−1 . .


i4=

 . −1 .
−1 . .

. . −1

i3 =

 . 1 .
1 . .
. . −1

R3 =

 . −1. .
1 . .
. . 1

R3
3 =

 . 1. .
−1 . .

. . 1


i1 =

 . . 1
. −1 .
1 . .

i2 =

 . . −1
. −1 .

−1 . .

R2 =

 . . 1
. 1 .

−1 . .

R3
2 =

 . . −1
. 1 .
1 . .


i5 =

−1 . .
. . −1
. −1 .

i6 =

−1 . .
. . 1
. 1 .

R1=

1 . .
. . −1
. 1 .

R3
1 =

1 . .
. . 1
. −1 .


Appendix A.2. T2‑Mode Tetragonal Base D‑Matrix

1 =

1 . .
. 1 .
. . 1

, R2
1= =

1 . .
. −1 .
. . −1

R2
2 =

−1 . .
. 1 .
. . −1

R2
3 =

−1 . .
. −1 .
. . 1


r4 =

 . . 1
1 . .
. 1 .

r3 =

 . . −1
1 . .
. −1 .

r2 =

 . . −1
−1 . .

. 1 .

 r1 =

 . . 1
−1 . .

. −1 .


r2

4 =

 . 1 .
. . 1
1 . .

r2
1 =

 . −1 .
. . −1
1 . .

 r2
2 =

 . −1 .
. . 1

−1 . .

 r2
2 =

 . −1 .
. . 1

−1 . .


i4=

 . −1 .
−1 . .

. . 1

i3 =

 . 1 .
1 . .
. . 1

R3 =

 . −1. .
1 . .
. . −1

R3
3 =

 . 1. .
−1 . .

. . −1


i1 =

 . . −1
. 1 .

−1 . .

i2 =

 . . 1
. 1 .
1 . .

R2 =

 . . −1
. −1 .
1 . .

R3
2 =

 . . 1
. −1 .

−1 . .


i5 =

1 . .
. . −1
. −1 .

i6 =

1 . .
. . 1
. 1 .

R1=

−1 . .
. . −1
. 1 .

R3
1 =

−1 . .
. . 1
. −1 .


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Appendix A.3. E‑Mode Tetragonal Base D‑Matrix

1 =

[
1 .
. 1

]
R2

1= =

[
1 .
. 1

]
R2

2 =

[
1 .
. 1

]
R2

3 =

[
1 .
. 1

]
i4=

[
1 .
. −1

]
R3 =

[
1 .
. −1

]
R3

3 =

[
1 .
. −1

]
i3 =

[
1 .
. −1

]
r1 =

[
−1
2

−
√

3
2√

3
2

−1
2

]
r2 =

[
−1
2

−
√

3
2√

3
2

−1
2

]
r3 =

[
−1
2

−
√

3
2√

3
2

−1
2

]
r4 =

[
−1
2

−
√

3
2√

3
2

−1
2

]

i5 =

[
−1
2

−
√

3
2

−
√

3
2

1
2

]
R2 =

[
−1
2

√
3

2√
3

2
1
2

]

i1 =

[
−1
2

√
3

2√
3

2
1
2

]
i2 =

[
−1
2

√
3

2√
3

2
1
2

]
R2 =

[
−1
2

√
3

2√
3

2
1
2

]
R1 =

[
−1
2

√
3

2√
3

2
1
2

]

r2
1 =

[
−1
2

√
3

2
−
√

3
2

−1
2

]
r2

2 =

[
−1
2

−
√

3
2√

3
2

−1
2

]
r2

3 =

[
−1
2

−
√

3
2√

3
2

−1
2

]
r2

4 =

[
−1
2

−
√

3
2√

3
2

−1
2

]

i5 =

[
−1
2

−
√

3
2

−
√

3
2

1
2

]
i6 =

[
−1
2

√
3

2√
3

2
1
2

]
R3

2 =

[
−1
2

√
3

2√
3

2
1
2

]
R3

1 =

[
−1
2

√
3

2√
3

2
1
2

]

Appendix A.4. T1‑Mode Trigonal Base D‑Matrix: O ⊃ D3 ⊃ C2

1 =

1 . .
. 1 .
. . 1

, R2
1=

 .
√

3
3

√
6

3√
3

3
−2
3

√
2

3√
6

3

√
2

3
−1
3

R2
2 =

 . −
√

3
3

−
√

6
3

−
√

3
3

−2
3

√
2

3
−
√

6
3

√
2

3
−1
3

R2
3 =

−1. . .
. −1

3

√
8

3

.
√

8
3

−1
3


i4=

1 . .
. −1 .
. . −1

R3 =

 .
√

3
3

√
6

3√
3

3
2
3

−
√

2
3√

6
3

−
√

2
3

1
3

R3
3 =

 .
√

3
3

√
6

3
−
√

3
3

2
3

−
√

2
3

−
√

6
3

−
√

2
3

1
3

i3 =

−1 . .
. −1

3

√
8

3

.
√

8
3

1
3


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Appendix A.5. T2‑Mode Trigonal Base D‑Matrix
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Appendix A.6. E‑Mode Trigonal Bases D‑Matrix
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