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Abstract: In 26 + 1 space–time dimensions, we introduce a gravity theory whose massless spectrum
can be acted upon by the Monster group when reduced to 25 + 1 dimensions. This theory generalizes
M-theory in many respects, and we name it Monstrous M-theory, or M2-theory. Upon Kaluza–Klein
reduction to 25 + 1 dimensions, the M2-theory spectrum irreducibly splits as 1 ⊕ 196,883, where 1 is
identified with the dilaton, and 196,883 is the dimension of the smallest non-trivial representation
of the Monster. This provides a field theory explanation of the lowest instance of the Monstrous
Moonshine, and it clarifies the definition of the Monster as the automorphism group of the Griess
algebra by showing that such an algebra is not merely a sum of unrelated spaces, but descends
from massless states for M2-theory, which includes Horowitz and Susskind’s bosonic M-theory as
a subsector. Further evidence is provided by the decomposition of the coefficients of the partition
function of Witten’s extremal Monster SCFT in terms of representations of SO24, the massless little
group in 25 + 1; the purely bosonic nature of the involved SO24-representations may be traced back
to the unique feature of 24 dimensions, which allow for a non-trivial generalization of the triality
holding in 8 dimensions. Last but not least, a certain subsector of M2-theory, when coupled to a
Rarita–Schwinger massless field in 26+ 1, exhibits the same number of bosonic and fermionic degrees
of freedom; we cannot help but conjecture the existence of a would-be N = 1 supergravity theory in
26 + 1 space–time dimensions.

Keywords: M-theory; Monster group; Monstrous Moonshine

1. Introduction

The Monster group M, the largest of sporadic groups, was predicted to exist by Fischer
and Griess back in the mid-1970s [1]. M is the automorphism group of the Griess algebra,
as well as the automorphism group of the Monster vertex operator algebra (VOA) [2,3].
Conway and Norton defined Monstrous Moonshine as the observation that the Fourier
coefficients of the j-function decompose into sums of dimensions of representations of M
itself [4] and this was proven by Borcherds using generalized Kac–Moody algebras [5].
In the language of conformal field theory (CFT), Monstrous Moonshine is the statement
that the states of an orbifold theory, which is the D = 25 + 1 bosonic string theory on
(R24/Λ24)/Z2 (where Λ24 is the Leech lattice [6–8]), are organized in representations of the
Monster group, with a partition function equivalent to the j-function [9–11]. Witten also
found the Monster group in three-dimensional pure gravity [12], for AdS3, where the dual
CFT is expected to be that of Frenkel, Lepowsky and Meurman (FLM) [3]. A Monster SCFT
and fermionization of the Monster CFT were also defined and studied [9,13]

Eguchi, Ooguri and Tachikawa later noticed that the elliptic genus of the K3 surface
has a natural decomposition in terms of dimensions of irreducible representations of the
largest Mathieu group M24 [14], and this was named Umbral Moonshine [15,16], which
generalizes the Moonshine correspondence for other sporadic groups [17].
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With Witten’s proposal [18] that M-theory unifies all of the ten-dimensional string
theories with N = 1 supergravity in D = 10 + 1 space–time dimensions, Horowitz and
Susskind argued [19] that there exists a bosonic M-theory in D = 26 + 1 that reduces to
the bosonic string in 25 + 1 upon compactification. As the Monster group has a string
theoretic interpretation in D = 25 + 1 [11,20,21], it is also natural to consider its action on
fields from D = 26 + 1; support for this is found from bosonic M-theory’s M2-brane near
horizon geometry AdS4 × S23, discussed by Horowitz and Susskind as an evidence for
a dual 2 + 1 CFT with global SO24 symmetry [19]. By observing that the automorphism
group of the Leech lattice Λ24, the Conway group Co0 [6,8], is a maximal finite subgroup
of SO24, and its Z2 quotient Co1 ' Co0/Z2 is a maximal subgroup of the Monster [3,6], it
is possible to realize some Monstrous symmetry as a finite subgroup of R-symmetry in
26 + 1 dimensions [22].

In the present paper, we introduce an Einstein gravity theory coupled to p-forms in
26+ 1 space–time dimensions, which contains the aforementioned bosonic string theory [19]
as a subsector. We name such a theory Monstrous M-theory, or shortly M2-theory, because
its massless spectrum (with gauge fields mod Z2) has the same dimension (196,884) as the
Griess algebra and upon dimensional reduction can be acted upon by the Monster group
M itself. When reducing to 25 + 1, a web of gravito-dilatonic theories, named Monstrous
gravities, is generated, in which the decomposition 196,884 = 196,883 ⊕ 1, which first hinted
at Monstrous Moonshine [4], entails the fact that the dilaton scalar field φ in 25 + 1 is a
singlet of M itself. As such, the irreducibility under M is crucially related to dilatonic
gravity in 25 + 1 space–time dimensions. The existence of a “weak” form of the SO8-triality
for SO24, which we will name λ-triality, gives rise to a p (>0)-parametrized tower of “weak”
trialities involving p-form spinors in 24 dimensions, which we will regard as massless p-
form spinor fields in 25 + 1 space–time dimensions. Such “weak” trialities are instrumental
to providing most of the Monstrous gravity theories with a fermionic (massless) spectrum
such that the spectrum is still acted upon by the Monster M.

All this gives an elegant description of the Monster’s minimal non-trivial representa-
tion 196,883 in relation to the total number of massless degrees of freedom of Monstrous
gravities in D = 25 + 1; as such, this also elucidates the definition of M as the automor-
phism group of the Griess algebra (the degree two piece of the Monster VOA), which
was considered to be artificial in that it was thought to involve an algebra of two or more
unrelated spaces [3,6,23].

The plan of the paper is as follows. We give motivation for Monstrous M-theory
by lifting the M2-brane from D = 10 + 1 to D = 26 + 1 and breaking the Poincaré
symmetry in its near-horizon geometry, which results in an SO24 R-symmetry, that has
the Conway group Co0 as a maximal finite subgroup. We then reduce the near-horizon
geometry of the M2-brane in D = 26 + 1 and relate the holography to Witten’s BTZ
black hole [12] with Monstrous symmetry. Next, in Section 3 we briefly review the triality
among the 8-dimensional representations of the Lie algebra d4, and then, in Section 3.1
we introduce some “weak” generalization for the Lie algebra d12, which we will name
λ-triality, giving rise to the ψ-triality, as discussed in Section 3.2. As it will be seen in the
treatment below, the “weakness” of the aforementioned trialities relies on the reducibility
of the bosonic representations involved. Then, in Section 4 we introduce and classify
non-supersymmetric, gravito-dilatonic theories, named Monstrous gravities, in 25 + 1 space–
time dimensions, whose massless spectrum (also including fermions in most cases) has a
dimension of 196,884, namely the same dimension as the Griess algebra [2,3]. A purely
bosonic uplift to 26 + 1 space–time dimensions is discussed in Section 5; in this framework,
we introduce the Monstrous M-theory, also named M2-theory, and we discuss its possible
Lagrangian in Section 5.1. Moreover, Section 5.2 discusses a subsector of the M2-theory
which displays the same number of bosonic and fermionic massless degrees of freedom in
26 + 1; in Section 5.2.1, this allows us to conjecture a Lagrangian and local supersymmetry
transformations for the would-be N = 1 Einstein supergravity theory in 26 + 1 space–time
dimensions. Then, Section 6 presents a cohomological construction of both the e8 root
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lattice and the Leech lattice Λ24 (respectively determining optimal sphere packing in 8 and
24 dimensions [6]), and all this is again related to M-theory (i.e., N = 1 supergravity) in
D = 10+ 1 and to the aforementioned would-beN = 1 supergravity in 26+ 1, respectively.
Before concluding the paper, in order to provide further evidence for a consistent higher-
dimensional field theory probed by M, we decompose the first coefficients of the partition
function of Monster CFT, firstly put forward by Witten [12], in terms of dimensions of
representations of SO24, namely of the massless little group in 25+ 1 space–time dimensions;
an interesting consequence of the aforementioned “weak” trialities characterizing SO24 is
that the relevant SO24-representations can be reduced to be only the p-form ones, ∧p, for
suitable values of p and with non-trivial multiplicities. Final comments are then contained
in the conclusive Section 8. An Appendix A, detailing the Chern–Simons Lagrangian terms
for M2-theory, concludes the paper.

2. Evidence for Monstrous M-Theory
2.1. Bosonic M-Theory in D = 26 + 1

Horowitz and Susskind conjectured there exists a strong coupling limit of bosonic
string theory that generalizes the relation between M-theory and superstring theory, called
bosonic M-theory [19]. The main evidence for the existence of such a D = 26 + 1 theory
comes from the dilaton and its connection to the coupling constant, with the dilaton entering
the action for the massless sector of bosonic string theory as

S =
∫

d26x
√
−ge−2φ

[
R + 4∇µφ∇µφ− 1

12
HµνρHµνρ

]
, (1)

in a way similar to type IIA string theory, as if representing the compactification scale of a
Kaluza–Klein reduction from D = 26 + 1 space–time dimensions with 324→ 299 + 24 + 1
graviton decomposition. However, while in type IIA string theory, the existence of a vector
boson in the string spectrum implies an S1 compactification, in closed bosonic string theory,
there is no massless vector. For this reason, an S1/Z2 orbifold compactification of bosonic
M-theory was proposed as its origin [19]. The bosonic string is then a stretched membrane
across the interval; the orbifold breaks translation symmetry, and thus the massless vector
does not appear. An orbifold construction was also used to eliminate the 24 vector in the
Monster CFT partition function [3,9], which suggests a D = 26+ 1 origin in light of bosonic
M-theory [19]. In fact, the original FLM theory is bosonic string theory on (R24/Λ24)/Z2,
and thus it can be regarded as certain compactification of bosonic M-theory. It is the
sporadic SCFT constructions [9,12,17,24] with SO24 spinors and twisted sector states that
require a generalization of bosonic M-theory with fermions.

Bosonic M-theory contains a three-form gauge field C(3) for its M2-brane, which, if one
of its indices is reduced along the compact direction, becomes the familiar two-form B(2) of
bosonic string theory [19]. If all components of C(3) are evaluated in the 26 dimensions, a
(massless) 3-form (2024) results. In the present work, we will consider the case in which the
D = 25 + 1 massless 1-form (24) and 3-form (2024) persist, and actually they give rise to
the so-called λ-triality, which is the generalization of SO8-triality up to SO24 in a “weaker”,
namely, reducible, way (“Weak” triality was suggested by Eric Weinstein in 2016, at the
Advances in Quantum Gravity conference (San Francisco)), of the form

24
∧1
⊕ 2024,

∧3
2048

λ
, 2048′

λc
, (2)

relating three 2048-dimensional representations of SO24 (with the subscript “c” denoting
spinor conjugation).

2.2. Lifting the M2-Brane to D = 26 + 1 and the Leech Lattice

In D = 10 + 1, the presence of the M2-brane breaks the Poincaré symmetry from
SO10,1 to SO2,1 ⊗ SO8, with SO8 being the R-symmetry. The near-horizon geometry of
the M2-brane is given by AdS4 ⊗ S7. From D = 26 + 1 bosonic M-theory, the Poincaré
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symmetry breaks from SO26,1 to SO2,1 ⊗ SO24, where theR-symmetry is enhanced to SO24,
and the near-horizon geometry is AdS4 ⊗ S23 [19]. By dimensional reduction, one can
obtain a AdS3 ⊗ S23 background (i.e., a generalized black string geometry), and make
contact with Witten’s three-dimensional BTZ black hole [12] by noting that the Conway
group Co0, the automorphism group of the Leech lattice Λ24, is a maximal finite subgroup
of SO24. Geometrically, the 196,560 norm, four Leech vectors form a discrete S23 with
symmetry given by the Conway group Co0 [6,8]. (It is interesting to observe that 196,560
is not the dimension of a unique irreducible representation of Co0, but rather it can be
decomposed as a sum of dimensions of irreducible representations of Co0 [25]. Remarkably,
such a decomposition can be made purely in terms of irreducible representations of SO24
which all survive (and stay irreducible) under the maximal reduction SO24 → Co0, namely:
196,560 = 2× 95,680⊕ 4576⊕ 2× 276⊕ 3× 24, which, by constraining the cardinality of
299 (massless graviton in 25 + 1) not to exceed 1 (we will do this throughout the whole
present paper), can also be rewritten as 196,560 = 2× 95,680⊕ 4576⊕ 299⊕ 276⊕ 2×
24⊕ 1.) The quotient Co0/Z2 yields the simple Conway group Co1 [6], where 21+24.Co1 is
a maximal subgroup of the Monster group M itself.

The set of norm four (i.e., minimal) Leech vectors is composed of three types of
elements [3]:

Λ4 = Λ1
4 ∪Λ2

4 ∪Λ3
4, (3)

|Λ4| = |Λ1
4|+ |Λ2

4|+ |Λ3
4| = 97,152 + 276× 4 + 98,304 = 196,560. (4)

Later, we show how to naturally recover these three types of elements from the field
content of a Monstrous M-theory in D = 26 + 1. Moreover, the assignment permits a Z2
identification, that reduces 196,560 to 98,280, which can occur via an orbifold. Therefore,
by carefully mapping D = 25 + 1 fields descending from Monstrous M-theory to the three
types of norm four Leech vectors, and assigning the remaining fields to the degree two
piece of the Monster VOA (the Griess algebra), the construction of the Moonshine module
by FLM allows an action of the Monster M [3].

2.3. Superalgebras and Central Extensions
2.3.1. From 10 + 1 . . .

Recalling some off-shell SO10,1 representations and their Dynkin labels (In an odd
number of dimensions (i.e., for bn), the rank-2 symmetric bi-spinor is equivalent to the n-
form representation (if this is interpreted as an n-brane, its Hodge dual is the (n− 3)-brane).
In 10 + 1 dimensions n = 5, whereas in 26 + 1 dimensions n = 13),

11
∧1

:
(
1, 04);

32
(0-form) spinor λ

:
(
04, 1

)
;

55
∧2

:
(
0, 1, 03);

462
rank-2 symm. on spinor

' (11
5 )
∧5

:
(
04, 2

)
,

(5)

the central charges that extend the N = 1, D = 10 + 1 superalgebra (i.e., the M-theory
superalgebra) can be computed from the anticommutator of the 2

11−1
2 ≡ 32 Majorana spinor

supercharge,

32⊗s 32
32×33/2=528

= 11
1-form Pµ

⊕ 55
M2
⊕ 462

M5
, (6)

with Hodge duality : 2
M2
→ 4→ 11− 4 = 7→ 5

M5
, (7)

thus yielding (here α, β = 1, . . . , 32, whereas µ-indices run 0, 1, . . . , 10){
Qα, Qβ

}
=
(

ΓµC−1
)

αβ
Pµ +

1
2

(
Γµ1µ2 C−1

)
αβ

Z(2)
[µ1µ2]
M2

+
1
5!

(
Γµ1 ...µ5 C−1

)
αβ

Z(5)
[µ1 ...µ5]

M5

. (8)
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The M-theory superalgebra has a higher dimensional origin. In fact, the central
extensions in D = 10 + 1 in the right-hand side of (8) can be obtained by a Kaluza–Klein
time-like reduction of the (1, 0) minimal chiral superalgebra in D = 10 + 2, whose central
extensions read as (cfr. (3.6) of [26] with n = 0; µ̂-indices here run 0̊, 0, 1, . . . , 10){

Qα, Qβ

}
=

1
2

(
Γµ̂1µ̂2 C−1

)
αβ

Z(2)
[µ̂1µ̂2]

+
1
6!

(
Γµ̂1 ...µ̂6 C−1

)
αβ

Z(6)
[µ̂1 ...µ̂6]

. (9)

By splitting µ̂ = 0̊, µ, one indeed obtains

Z(2)
µ̂1µ̂2

→

 Z(2)
µ10̊
∼ Pµ;

Z(2)
µ1µ2 ;

(10)

Z(6)
µ̂1 ...µ̂6

→

 Z(5)
µ1 ...µ50̊

∼ Z(5)
µ1 ...µ5 ;

Z(6)
µ1 ...µ6 → εµ1 ...µ11 Z(6)

ν6 ...ν11 ηµ6ν6 . . . ηµ11ν11 ∼ Z(5)
µ1 ...µ5 ,

(11)

and therefore (9) yields to (8).
From the right-hand side of (8), in terms of on-shell SO9 representations,

44
g

:
(
2, 03) bosons;

84
M2 (3-form pot. ∧3)

:
(
02, 1, 0

)
bosons;

128
gravitino (1-form spinor) ψ

:
(
1, 02, 1

)
fermions,

(12)

one obtains the field content of the massless multiplet of M-theory (i.e., of N = 1, D =
10 + 1 supergravity), having

B
44+84

= F
128

. (13)

2.3.2. . . . to 26 + 1

Let us generalize this to D = (10 + 16) + 1 = 26 + 1 space–time dimensions. We start
some off-shell SO26,1 representations and their Dynkin labels,

27
∧1

:
(
1, 012);

8192
λ

:
(
012, 1

)
;

351
∧2

:
(
0, 1, 011);

80,730
∧5

:
(
04, 1, 08);

296,010
∧6

:
(
05, 1, 07);

4,686,825
∧9

:
(
08, 1, 04);

8,436,285
∧10

:
(
09, 1, 03);

20,058,300
rank-2 symm. on spinor

= (27
13)
∧13

:
(
012, 2

)
.

(14)

Thus, the central charges that extends the N = 1, D = 26 + 1 superalgebra can be
computed from the anticommutator of the 2

27−1
2 ≡ 8192 Majorana spinor supercharge,
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8192⊗s 8192
8192×8193/2=33,558,528

= 27
Pµ

⊕ 351
M2
⊕ 80,730

M5
⊕ 296,010

M6
⊕ 4,686,825

M9
⊕ 8,436,285

M10
⊕ 20,058,300

M13
; (15)

with Hodge duality :



2
M2
→ 4→ 27− 4 = 23→ 21

M21
;

5
M5
→ 7→ 27− 7 = 20→ 18

M18
;

6
M6
→ 8→ 27− 8 = 19→ 17

M17
;

9
M9
→ 11→ 27− 11 = 16→ 14

M14
;

10
M10
→ 12→ 27− 12 = 15→ 13

M13
,

(16)

thus yielding (here α, β = 1, . . . , 8192, whereas µ-indices run 0, 1, . . . , 26)

{
Qα, Qβ

}
=

(
ΓµC−1

)
αβ

Pµ +
1
2

(
Γµ1µ2 C−1

)
αβ

Z(2)
[µ1µ2]
M2

+
1
5!

(
Γµ1 ...µ5 C−1

)
αβ

Z(5)
[µ1 ...µ5]

M5

+
1
6!

(
Γµ1 ...µ6 C−1

)
αβ

Z(6)
[µ1 ...µ6]

M6

+
1
9!

(
Γµ1 ...µ9 C−1

)
αβ

Z(9)
[µ1 ...µ9]

M9

(17)

+
1

10!

(
Γµ1 ...µ10 C−1

)
αβ

Z(10)
µ1 ...µ10
M10

+
1

13!

(
Γµ1 ...µ13 C−1

)
αβ

Z(13)
µ1 ...µ13

M13

.

Additionally, the N = 1, D = 26 + 1 superalgebra has a higher dimensional origin. In
fact, the central extensions in D = 26 + 1 in the right-hand side of (17) can be obtained by a
Kaluza–Klein time-like reduction from the (1, 0) minimal chiral superalgebra in D = 26+ 2,
whose central extensions read as (cfr. (3.6) of [26] with n = 2; µ̂-indices here run 0̊,
0, 1, . . . , 26)

{
Qα, Qβ

}
=

1
2

(
Γµ̂1µ̂2 C−1

)
αβ

Z(2)
[µ̂1µ̂2]

+
1
6!

(
Γµ̂1 ...µ̂6 C−1

)
αβ

Z(6)
[µ̂1 ...µ̂6]

+
1

10!

(
Γµ̂1 ...µ̂10 C−1

)
αβ

Z(10)
[µ̂1 ...µ̂10]

+
1

14!

(
Γµ̂1 ...µ̂14 C−1

)
αβ

Z(14)
[µ̂1 ...µ̂14]

. (18)

By splitting µ̂ = 0̊, µ, one indeed obtains

Z(2)
µ̂1µ̂2

→

 Z(2)
µ10̊
∼ Pµ;

Z(2)
µ1µ2 ;

(19)

Z(6)
µ̂1 ...µ̂6

→

 Z(5)
µ1 ...µ50̊

∼ Z(5)
µ1 ...µ5 ;

Z(6)
µ1 ...µ6 ;

(20)

Z(10)
µ̂1 ...µ̂10

→

 Z(10)
µ1 ...µ90̊

∼ Z(9)
µ1 ...µ9 ;

Z(10)
µ1 ...µ10 ,

(21)

Z(14)
µ̂1 ...µ̂14

→

 Z(14)
µ1 ...µ130̊

∼ Z(13)
µ1 ...µ13 ;

Z(14)
µ1 ...µ14 → εµ1 ...µ27 Z(14)

ν14 ...ν27 ηµ14ν14 . . . ηµ27ν27 ∼ Z(13)
µ1 ...µ13 ,

(22)

and therefore (18) yields to (17).
We will elaborate on the possible existence of local supersymmetry in 26 + 1 further

below. For the time being, we confine ourselves to observe that Susskind and Horowitz
identified a subset of the above (central, p-brane) charges for bosonic M-theory [19], whereas
the most general set of central extensions is provided by the right-hand side of (17). We note
that the automorphic form of the fake Monster Lie algebra satisfies functional equations
generated by transformations in the group Aut(I I26,2)

+ [27], a discrete subgroup of O26,2
which can transform fields in D = 26 + 2, D = 26 + 1 and D = 25 + 1. Thus, the signature
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D = 26 + 2 has proven essential in the proof of Monstrous Moonshine, and it gives further
evidence for an M-theoretical origin. We can anticipate that Monstrous M-theory, in fact,
has its most natural origin in D = 29 + 1 or D = 28 + 2 with purely bosonic massless
states descending from 5-form and dual 23-form gauge fields, respectively of a 4-brane
and 22-brane. By dimensional reduction to D = 26 + 1, such higher 5-form and 23-form
gauge fields break up non-trivially, providing a rich structure to possibly realize a would-be
supergravity with a 98,304 Rarita–Schwinger field, as we will see in Section 5.2.

2.4. M-Branes, Horava–Witten and the Monster SCFT

The presence of an M10-brane breaks SO26,1 Poincaré symmetry to SO10,1 ⊗ SO16,
giving D = 10 + 1 Poincaré symmetry on its world volume [22]. The 8192 spinor then
factorizes as (32, 128)⊕ (32, 128′), thus isolating a hidden 128(′) spinor, which can be used
to form e8 = so16 ⊕ 128(′). Intriguingly, this may suggest an origin for Horava–Witten
theory [28,29], which requires an eleven-manifold M11 with boundary, whose boundary
points are the Z2 fixed points in M11; in this theory, a M2-brane stretched between these
fixed points yields the strongly coupled heterotic string [28,29]. On the other hand, in the
presence of the broken 8192 spinor, we see a possible reason for the E8 symmetry that arises
at the fixed points, as the hidden spinor fermions may contribute to anomalies induced via
the orbifold of the M10-brane worldvolume.

If instead we reduce directly from D = 26 + 1 on an orbifold S1/Z2, we break half the
supersymmetry and remove the 24 vector, while the 8192 spinor projects down to 4096.
This is in agreement with the Monster SCFT [9], where the fixed points of the orbifold
contain 4096 twisted states. This differs from the orbifold reduction of bosonic M-theory,
where the fixed points have no extra degrees of freedom due to the absence of chiral bosons
and fermions [19]. A D = 26 + 1 M-theory with 24 · 4096 = 98,304 Rarita–Schwinger
field would have fermionic anomalies at each orbifold fixed point that must be canceled
by vector multiplets as in the D = 10 + 1 M-theory case [28,29]. One would expect a
generalization of E8 symmetry at each fixed point that contains at least 24 · 212 = 98,304
vector multiplets for RNS twisted sector states. The Griess algebra provides such minimal
degrees of freedom, and thus could possibly be used to cancel anomalies at the fixed points.
Another possibility is the Leech algebra, which we introduce in a later section.

It was shown that bosonic M-theory can reduce to the bosonic string in D = 25 + 1
by reduction along S1/Z2 [19], and thus the Monster CFT in its relation to D = 25 + 1
bosonic string theory on (R24/Λ24)/Z2 can trace its origin back to 26 + 1 space–time
dimensions. This suggests that the Monster CFT describes states on the boundary of
AdS3 ⊗ S23, originating from the M2-brane near-horizon geometry AdS4 ⊗ S23, where the
transverse directions are discretized and given by the Leech lattice Λ24. In going from
D = 26 + 1 to D = 25 + 1, the 324 graviton breaks as 324 = 299 ⊕ 24 ⊕ 1, where the
orbifold removes the translation symmetry, and hence eliminates the 1-form 24 [19] from
the closed string spectrum [19].

Recall, that a holomorphic CFT for the Leech lattice Λ24 has partition function

ZLeech(q) =
ΘΛ24

η24 =
1
q
+ 24 + 196, 884q + 21, 493, 760q2 + 864, 299, 970q3 +O(q4) (23)

= J(q) + 24, (24)

where J(q) = j(q)− 744, and j(q) is the j-function [9]. FLM used a Z2-twisted version of the
Leech theory to remove the unwanted 24 states that contribute to the constant term in the
partition function and to obtain the appropriate finite group structure [3,9]. From a modern
perspective, this can be accomplished by a S1/Z2 orbifold reduction of D = 26 + 1 bosonic
M-theory, which has been shown to reduce to the D = 25 + 1 bosonic string [19].

A superconformal field theory (“the Beauty and the Beast”) description of the FLM
model was given by Dixon, Ginsparg and Harvey [9]. The supersymmetric extension of
the Virasoro algebra introduces moments Gn that satisfy the relations



Symmetry 2023, 15, 490 8 of 31

[Lm, Gn] =
(m

2
− n

)
Gm+n (25)

and

{Gm, Gn} = 2Lm+n +
ĉ
2
(m2 − 1

4
)δm+n,0. (26)

For integer moding of Gn (n ∈ Z), the supersymmetric extension is named the Ramond
(R) algebra, while for half-integer moding (n ∈ Z+ 1

2 ) it is named the Neveu–Schwarz (NS)
algebra [9]. The 212 ≡ 4096 twisted states of the FLM model are half-integer moded [3,9],
thus suggesting a fermionic origin. This can arise from projecting half the degrees of
freedom of the 8192 spinor from D = 26 + 1, which is expected from an orbifold reduction,
analogous to the case of D = 10+ 1 M-theory where the 32 spinor is projected to a 16 [28,29].
A S1/Z2 orbifold reduction reduces the 8192 spinor to 4096 spinor, where under SO24 one
has 4096 = 2048 ⊕ 2048′. The 2048 spinors can yield worldsheet fermions in D = 25 + 1.
Such SO24 spinors are seen in Duncan’s SCFT with Conway group symmetry [24]. These
spinors can be used to build RNS states in D = 25 + 1, that generalize the gravitino and
dilatino states of type IIA in D = 9 + 1 from 128 to 98,304 degrees of freedom.

The untwisted states of the FLM model include the 24 Ramond ground states and the
196,560/2 = 98,280 Leech lattice states, which G0 pairs with 24 × 212 = 98,304 dimension 2
Ramond fields as 98,280 + 24 = 98,304 [3,9]. In D = 26 + 1, the massless Rarita–Schwinger
(1-form spinor) field has 98,304 degrees of freedom, and thus is a candidate for the origin
of the dimension 2 Ramond fields in a SCFT. The remaining 98,280 states come from a
discretized transverse space, where in the AdS4 ⊗ S23 near-horizon geometry of the M2-
brane in D = 26 + 1 the 23-sphere is discretized by the 196,560 norm four Leech lattice
vectors. This is consistent with the Conway group Co0 being a maximal finite subgroup
of theR-symmetry group SO24. The S1/Z2 orbifold reduces the 196,560 vectors to 98,280,
while also reducing AdS4⊗ S23 to AdS3⊗ S23, and breaking the discreteR-symmetry group
Co0 down to the simple Conway group (It is interesting to observe that 98,280 is not the
dimension of a unique irreducible representation of Co1, but rather it can be decomposed
as a sum of irreducible representation of Co1 [30]. Remarkably, one finds a decomposition
only in terms of irreducible representations of Co0 which all survive (and stay irreducible)
under the maximal reduction Co0 → Co1, namely 98,280 = 80,730⊕ 17,250⊕ 299 ⊕ 1.)
Co1 ' Co0/Z2 [6], thus making contact with Witten’s holographic interpretation of the
Monster [12] with Co1 as a discrete R-symmetry.

Finally, it is here worth mentioning that the Z2A-fermionization of the Monster
CFT [13] reveals representations of the Baby Monster finite group BM in the NS and
R sectors,

ZFNS(τ) =
1
q
+

1
√

q
+ 4372

√
q + 100,628q +O(q3/2), (27)

and

ZFR (τ) = 192,512q + 21,397,504q2 +O(q3), (28)

where 4372 + 192,512 = 196,884. In terms of SO24 irreducible representations, we note
that 4372 = 276 ⊕ 2048 ⊕ 2048′, where worldsheet fermions are suggested. This implies
a D = 25 + 1 string theory with 2048⊕ 2048′ worldsheet fermions that generalizes the
D = 9 + 1 superstring with SO8 spinors. In the treatment given below, we propose a
D = 26 + 1 origin for such a string theory, supported by the fermionization of the Monster
CFT [13], which suggests a (2 + 1)-dimensional fermionic gravitational Chern–Simons
term that can live on the boundary of AdS4. Once again, given an S1/Z2 orbifold reduction
of D = 26 + 1 M-theory with fermions, one does expect anomalies, and to cancel such
anomalies may necessitate the use of the Leech lattice Λ24 at each fixed hyperplane. The
resulting D = 25 + 1 closed string theory is then very similar to the Bimonster string theory
introduced by Harvey et al. in [11].



Symmetry 2023, 15, 490 9 of 31

3. “Weak” Trialities in 24 Dimensions

By triality, denoted by T, in this paper, we refer to a property of the Lie algebra d4
(see [31]), namely a map among its three 8-dimensional irreducible representations

d4 :


∧1 ≡ 8v := (1, 0, 0, 0) (1-form);

λ ≡ 8s := (0, 0, 0, 1) (semispinor);

λ′ ≡ λc ≡ 8′s ≡ 8c := (0, 0, 1, 0) (conjugate semispinor)

(29)

among themselves:

T :
∧1

↑↓ ↘↖
λ′ � λ

. (30)

The origin of T can be traced back to the three-fold structural symmetry of the Dynkin
diagram of d4, and to the existence of an outer automorphism of d4 which interchanges
8v, 8s and 8c; in fact, the outer automorphism group of d4 (or, more precisely, of the
corresponding spin group Spin8, the double cover of the Lie group SO8) is isomorphic to
the symmetric group S3 that permutes such three representations.

Thence, through suitably iterated tensor products of representations 8v, 8s and 8c, T
affects higher-dimensional representations, as well. For instance, T maps also the three
56-dimensional irreducible representations of d4:

d4 :


∧3 ≡ 56v := (0, 0, 1, 1)

(
3-form ∧3);

ψ ≡ 56s := (1, 0, 0, 1) (1-form spinor, aka gravitino);

ψc ≡ ψ′ ≡ 56′s ≡ 56c := (1, 0, 1, 0) (conjugate gravitino)

(31)

among themselves

T :
∧3

↑↓ ↘↖
ψ � ψ′

. (32)

By gravitino, we mean the gamma-traceless 1-form spinor; indeed, in order to cor-
respond to an irreducible representation, the spinor-vector ψα

µ must be gamma-traceless:

Γµ
αβψ

β
µ = 0, (33)

where µ and α are the vector resp. spinor indices, and Γµ
αβ ≡ (Γµ)αβ denote the gamma

matrices of d4. ψ is a Rarita–Schwinger (RS) field of spin/helicity 3
2 , and, in the context

of supersymmetric theories, it is named gravitino (being the spartner of the graviton gµν).
As (30) denotes the action of triality T on (semi)spinors, (32) expresses the triality T
acting on RS fields. T plays an important role in type II string theory in 9 + 1 space–time
dimensions, in which so8 (compact real form of d4) is the algebra of the massless little group
(cfr. e.g., [32]).

3.1. λ-Triality

In certain dimensions, there may be a “weaker” variant of T, in which λ and λ′ have
the same dimension of a reducible (bosonic) representation, namely of a sum of irreducible
(bosonic) representations, of dn. In fact, for n = 12 (i.e., in d12) something remarkable takes
place; in d12, the following three representations all have the same dimension 2048:



Symmetry 2023, 15, 490 10 of 31

d12 :


λ ≡ 211 = 2048 := (011, 1);

λ′ ≡
(
211)′ = 2048′ := (010, 1, 0);

∧1 ⊕∧3 = 24⊕ 2024 = (1, 011)⊕ (02, 1, 09).

(34)

In other words, in d12 the reducible bosonic representation given by the sum of the vec-
tor (1-form) representation ∧1 and of the 3-form representation ∧3 has the same dimension
of each of the (semi)spinors λ and λ′. Analogously to the aforementioned case of d4, one
can then define a “triality-like” map, named λ-triality and denoted by T̃λ, between the
corresponding representation vector representation spaces,

T̃λ :

(
∧1 ⊕∧3)
↑↓ ↘↖
λ � λ′

(35)

It is immediately realized that a crucial difference with (30) relies on the reducibility
of the bosonic sector of the map, which we will henceforth associate with the “weakness”
of T̃λ. However, since no other Dynkin diagram (besides d4) has an automorphism group
of order greater than 2, one can also conclude that (34) and (35) cannot be realized as an
automorphism of d12, nor can it be traced back to some structural symmetry of the Dynkin
diagram of d12 itself.

3.2. ψ-Triality

As triality T of d4 (30) affects all tensor products stemming from 8v, 8s and 8c, implying
in particular (32), so the λ-triality T̃λ of d12 (35) affects all tensor products stemming from
∧1 ⊕∧3, λ and λ′; in particular, in d12, the following three representations have the same
dimension 47,104:

d12 :



ψ ≡ 47,104 := (1, 010, 1);

ψ′ ≡ 47,104′ := (1, 09, 1, 0);

2×
(
2×∧4 ⊕∧3 ⊕∧2) = 2× (2× 10,626⊕ 2024⊕ 276)

= 2×
(
2× (03, 1, 08)⊕ (02, 1, 09)⊕ (0, 1, 010)

)
.

(36)

In other words, in d12 the reducible bosonic representation given by the sum of the 4-
form ∧4, 3-form ∧3 and 2-form ∧2 representations (with multiplicity 4, 2 and 2, respectively)
has the same dimension of each of the RS field representations ψ and ψ′. Analogously to
the aforementioned case of d4, one can then define a “triality-like” map, named ψ-triality
and denoted by T̃ψ, between the corresponding representation vector spaces,

T̃ψ :
2 ·
(
2 · ∧4 ⊕∧3 ⊕∧2)

↑↓ ↘↖
ψ � ψ′

. (37)

Again, (34) and (35) cannot be realized as an automorphism of d12, nor can it be traced
back to some structural symmetry of the Dynkin diagram of d12 itself.

3.3. Iso-Dimensionality among (Sets of) p-Forms: An Example

Representations with the same dimensions can also be only bosonic. Still, d12 provides
the following example of such a phenomenon (Another example is provided by the iso-
dimensionality map ∧1 ⊕∧2 ↔ S2

0 ⊕ 1, holding for any orthogonal Lie algebra. However,
since we will fix the number of graviton fields to be 1, we will not make use of such
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an iso-dimensionality map): the following two sets of representations have the same
dimension 42,504:

d12 :


∧5 ≡ 42,504 := (04, 1, 07);

4×∧4 = 4× 10,626 = 4× (03, 1, 08).
(38)

In other words, in d12 the 5-form representation ∧5 has the same dimension, namely
42,504, of four copies of the 4-form representation ∧4. Again, one can then define a map,
denoted by B, between the corresponding representation vector spaces(Of course, all
instances of iso-dimensionality among representations given by (34) and (35), (36) and
(37) and (38) and (39), hold up to Poincaré/Hodge duality (in the bosonic sector); cfr. (46)
further below. Note that other iso-dimensionality maps besides (39) may exist, but we will
not make use of them in the present paper):

B : ∧5 ↔ 4 · ∧4. (39)

4. Monstrous Dilatonic Gravity in 25 + 1

In the previous Section 3, we introduced some maps among fermionic and bosonic
representations of d12, having the same dimension but different Dynkin labels:

• The λ-triality T̃λ (34) and (35), generalizing the triality T (30) of d4 to d12;
• he ψ-triality T̃ψ (36) and (37), extending the weak triality of d12 to its Rarita–Schwinger

sector;
• The iso-dimensionality map B (38) and (39) among certain sets of bosonic (p-form)

representations of d12.

As triality T (30) of d4 plays a role in the type II string theories (which all have so8 as
the algebra of the massless little group), one might ask whether (35), (37) and (39) have
some relevance in relation to bosonic string theory [19], or in relation to more general field
theories in D = 25 + 1 space–time dimensions, in which so24 is the algebra of the massless
little group. Below, we will show that this is actually the case for a quite large class of
non-supersymmetric dilatonic (Einstein) gravity theories in 25+ 1, named Monstrous gravities,
which we are now going to introduce.

To this aim, we start and display various massless fields in D = 25 + 1 space–time
dimensions. As mentioned, each massless field fits into the following irreducible repre-
sentation (A priori, one could also consider ∧6 ≡ 134,596 (because 134,596 < 196,884—see
below), but it actually does not enter in any way in the treatment of this section) R of the
massless little group SO24 (recall that g ≡ S2

0 and φ ≡ 1 throughout):

field R Dynkin labels

g : 299
(
2, 011)

ψ : 47,104
(
1, 010, 1

)
ψ′ : 47,104′ (1, 09, 1, 0)
∧1 24 (1, 011)
λ : 2048 (011, 1)
λ′ : 2048′ (010, 1, 0)
φ : 1 (012)
∧5 : 42,504 (04, 1, 07)
∧4 : 10,626 (03, 1, 08)
∧3 : 2024 (02, 1, 09)
∧2 : 276 (0, 1, 010)

(40)

We are now going to classify field theories in 25 + 1 space–time dimensions which
share the following features:
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a They all contain gravity (in terms of one 26-bein, then yielding one metric tensor gµν)
and one dilaton scalar field φ; thus, the Lagrangian density of their gravito-dilatonic
sector reads as follows (Throughout our analysis, we rely on the conventions and
treatment given in Secs. 22 and 23 of [33]):

L = e−2φ
(

R− 4∂µφ∂µφ
)
. (41)

b The relations among all such theories are due to the λ-triality T̃λ (34) and (35), the
weak ψ-triality T̃ψ (36) and (37), as well as the bosonic map B (38) and (39) of so24
(real compact form of d12), which is the Lie algebra of the massless little group.

c By constraining the theories to contain only one graviton and only one dilaton, the total
number of degrees of freedom of the massless spectrum must sum up to

1 + 299 + 47,104 · (#ψ) + 24 ·
(

#∧1
)
+ 2048 · (#λ)

+42, 504 ·
(

#∧5
)
+ 10,626 ·

(
#∧4

)
+ 2024 ·

(
#∧3

)
+ 276 ·

(
#∧2

)
(42)

= 196,884.

Consequently, the whole set of massless degrees of freedom of such theories may
be acted upon by the Monster group M, the largest sporadic group, because 196,883 is
the dimension of its smallest non-trivial representation [1]. For this reason, the gravito-
dilatonic theories under consideration will all be named Monstrous gravities. They will be
characterized by the following split:

196,884 = 196,883⊕ 1, (43)

which is at the origin of the so-called Monstrous Moonshine [4,5]. The dilaton φ, which is a
singlet of M, coincides with the vacuum state |Ω〉 of the chiral Monster SCFT discussed
in [9,34,35]. Thus, Monstrous gravities in 25 + 1 space–time dimensions, and the presence
of a unique φ, are intimately related to the 196,883-dimensional representation of M, and
thus, they may provide an explanation of the (observation of who firstly ignited the) Monstrous
Moonshine in terms of (higher-dimensional, gravitational) field theory.

In the context of Witten’s three-dimensional gravity [12], this suggests that the 196,883
primary operators that create black holes are carrying dilatonic gravity field content. As
in [12], it is enlightening to compare the number 196,883 of primaries with the Bekenstein–
Hawking entropy of the corresponding black hole: an exact quantum degeneracy of 196,883
yields an entropy of Witten’s BTZ black hole given by ln(196,883) ' 12.19, whereas the
Bekenstein–Hawking entropy-area formula yields to 4π ' 12.57. Of course, one should not
expect a perfect agreement between such two quantities, because the Bekenstein–Hawking
entropy-area formula holds in the semi-classical regime and not in the exact quantum
one. As given in (42), 196,883 comes from gauge fields (potentials), graviton, etc., albeit
without dilaton; in this sense, the quantum entropy ln(196,883) ' 12.19 has a manifest higher-
dimensional interpretation since the BTZ black hole degrees of freedom can be expressed in
terms of massless degrees of freedom of fields in 25 + 1 space–time dimensions.

4.1. Classification

All Monstrous gravities will be classified by using two sets of numbers:

• s1, a length-5 string, providing the number of independent “helicity”-h massless
fields, with h = 2, 3

2 , 1, 1
2 , 0, respectively denoted by g (graviton), ψ (Rarita–Schwinger

field), ∧1 (1-form potential), λ [spinor field (The spinor field gets named gaugino (or
dilatino) in the presence of supersymmetry.)], and φ (dilaton); as pointed out above,
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we fix #g = #φ = 1 throughout (additionally, note that any theory with #∧1 > 1 is a
Maxwell–Einstein–dilaton theory in 25 + 1 space–time dimensions):

s1 :=
(

#g, #ψ, #∧1, #λ, #φ
)
=
(

1, #ψ, #∧1, #λ, 1
)

; (44)

• s2, a length-4 string, providing the number of independent p-form brane potentials,
for the smallest values of p, namely for p = 5, 4, 3, 2,

s2 :=
(

#∧5, #∧4, #∧3, #∧2
)

. (45)

Before starting, we should point out that the classification below is unique up to
Poincaré/Hodge duality ∗ for the p-form potentials, namely, for p = 1, . . . 5:

p-form pot.
∗←→ p′-form pot.

∧1 ∧23

∧2 ∧22

∧3 ∧21

∧4 ∧20

∧5 ∧19

(46)

as well as up to chiral/non-chiral arrangements in the fermionic sector,

#ψ chiral/non-chiral arr.s

2 (2, 0), (0, 2), (1, 1)
4 (4, 0), (0, 4), (3, 1), (1, 3), (2, 2);

(47)

#λ chiral/non-chiral arr.s

1 (1, 0), (0, 1)
2 (2, 0), (0, 2), (1, 1)
3 (3, 0), (0, 3), (2, 1), (1, 2).

(48)

Clearly, (46)–(48) are particularly relevant if the (local) supersymmetry in 25 + 1 is
considered; however, in this paper, we will not be dealing with such an interesting topic,
and we will confine ourselves to make some comments further below (in 26 + 1).

We will split the Monstrous gravity theories, sharing the features a–c listed above, in
five groups, labeled with Latin numbers: 0, 1, 2, 3, 4, specifying the number #ψ of h = 3/2
RS fields. The ψ-triality T̃ψ (36) and (37) of so24 maps such five groups among themselves.
Then, each of these groups will be split into four subgroups, labeled with Greek letters: α,
β, γ and δ, respectively characterized by the following values of #∧1 and #λ:(

#∧1, #λ
)
= (3, 0)

α
, (2, 1)

β

, (1, 2)
γ

, (0, 3)
δ

. (49)

The λ-triality T̃λ (34) and (35) of so24 allows to move among such four subgroups
(within the same group). The theories belonging to each of such four subgroups will
share the same split of the massless degrees of freedom into bosonic and fermionic ones,
respectively specified, as above, by the numbers B and F. Each of such four subgroups is a
set of a varying number of theories, which will be labeled in lowercase Latin letters: i, ii,
iii, etc. Such theories will be connected by the action of the bosonic map B (38) and (39) of
so24, and thus they will differ for the content of 5-form ∧5 and 4-form ∧4 (potential) fields.

Modulo all possibilities arising from the combinations of (46) and (48), the classification
of Monstrous gravity theories in 25 + 1 space–time dimensions is as follows.
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0 Group 0 (ψ-less theories):

α
(B|F)=(196,884|0), λ-less

purely bosonic

:



s1 s2 features
i (1, 0, 3, 0, 1) (0, 16, 12, 8) bosonic, ∧5-less

ii ′′ (1, 12, 12, 8) bosonic

iii ′′ (2, 8, 12, 8) bosonic

iv ′′ (3, 4, 12, 8) bosonic

v ′′ (4, 0, 12, 8) bosonic, ∧4-less

(50)

β
(B|F)=(194,836|2048)

:



s1 s2 features
i (1, 0, 2, 1, 1) (0, 16, 11, 8) ∧5-less

ii ′′ (1, 12, 11, 8) −
iii ′′ (2, 8, 11, 8) −
iv ′′ (3, 4, 11, 8) −
v ′′ (4, 0, 11, 8) ∧4-less

 (51)

γ
(B|F)=(192,788|4096)

:



s1 s2 features
i (1, 0, 1, 2, 1) (0, 16, 10, 8) ∧5-less

ii ′′ (1, 12, 10, 8) −
iii ′′ (2, 8, 10, 8) −
iv ′′ (3, 4, 10, 8) −
v ′′ (4, 0, 10, 8) ∧4-less

 (52)

δ
(B|F)=(190,740|6144), ∧1-less

:



s1 s2 features
i (1, 0, 0, 3, 1) (0, 16, 9, 8) ∧5-less

ii ′′ (1, 12, 9, 8) −
iii ′′ (2, 8, 9, 8) −
iv ′′ (3, 4, 9, 8) −
v ′′ (4, 0, 9, 8) ∧4-less

 (53)

1 Group 1 (#ψ = 1 theories):

α
(B|F)=(149,780|47,104), λ-less

:


s1 s2 features

i (1, 1, 3, 0, 1) (0, 12, 10, 6) ∧5-less

ii ′′ (1, 8, 10, 6) −
iii ′′ (2, 4, 10, 6) −
iv ′′ (3, 0, 10, 6) ∧4-less

 (54)

β
(B|F)=(147,732|49,152)

:


s1 s2 features

i (1, 1, 2, 1, 1) (0, 12, 9, 6) ∧5-less

ii ′′ (1, 8, 9, 6) −
iii ′′ (2, 4, 9, 6) −
iv ′′ (3, 0, 9, 6) ∧4-less

 (55)

γ
(B|F)=(145,684|51,200)

:


s1 s2 features

i (1, 1, 1, 2, 1) (0, 12, 8, 6) ∧5-less

ii ′′ (1, 8, 8, 6) −
iii ′′ (2, 4, 8, 6) −
iv ′′ (3, 0, 8, 6) ∧4-less

 (56)

δ
(B|F)=(143,636|53,248), ∧1-less

:


s1 s2 features

i (1, 1, 0, 3, 1) (0, 12, 7, 6) ∧5-less

ii ′′ (1, 8, 7, 6) −
iii ′′ (2, 4, 7, 6) −
iv ′′ (3, 0, 7, 6) ∧4-less

 (57)
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2 Group 2 (#ψ = 2 theories):

α
(B|F)=(102,676|94,208), λ-less

:


s1 s2 features

i (1, 2, 3, 0, 1) (0, 8, 8, 4) ∧5-less

ii ′′ (1, 4, 8, 4) −
iii ′′ (2, 0, 8, 4) ∧4-less

 (58)

β
(B|F)=(100,628|96,256)

:


s1 s2 features

i (1, 2, 2, 1, 1) (0, 8, 7, 4) ∧5-less

ii ′′ (1, 4, 7, 4) −
iii ′′ (2, 0, 7, 4) ∧4-less

 (59)

γ
(B|F)=(98,580|98,304)

:


s1 s2 features

i (1, 2, 1, 2, 1) (0, 8, 6, 4) ∧5-less

ii ′′ (1, 4, 6, 4) −
iii ′′ (2, 0, 6, 4) ∧4-less

 (60)

δ
(B|F)=(96,532|100,352), ∧1-less

:


s1 s2 features

i (1, 2, 0, 3, 1) (0, 8, 5, 4) ∧5-less

ii ′′ (1, 4, 5, 4) −
iii ′′ (2, 0, 5, 4) ∧4-less

 (61)

3 Group 3 (#ψ = 3 theories):

α
(B|F)=(55,572|141,312), λ-less

:

 s1 s2 features
i (1, 3, 3, 0, 1) (0, 4, 6, 2) ∧5-less

ii ′′ (1, 0, 6, 2) ∧4-less

 (62)

β
(B|F)=(53,524|143,360)

:

 s1 s2 features
i (1, 3, 2, 1, 1) (0, 4, 5, 2) ∧5-less

ii ′′ (1, 0, 5, 2) ∧4-less

 (63)

γ
(B|F)=(51,476|145,408)

:

 s1 s2 features
i (1, 3, 1, 2, 1) (0, 4, 4, 2) ∧5-less

ii ′′ (1, 0, 4, 2) ∧4-less

 (64)

δ
(B|F)=(49,428|147,456), ∧1-less

:

 s1 s2 features
i (1, 3, 0, 3, 1) (0, 4, 3, 2) ∧5-less

ii ′′ (1, 0, 3, 2) ∧4-less

 (65)

4 Group 4 (#ψ = 4 theories):

α
(B|F)=(8,468|188,416), λ-less

:
[

s1 s2 features
(1, 4, 3, 0, 1) (0, 0, 4, 0) ∧5,∧4,∧2-less

]
(66)

β
(B|F)=(6420|190,464)

:
[

s1 s2 features
(1, 4, 2, 1, 1) (0, 0, 3, 0) ∧5,∧4,∧2-less

]
(67)

γ
(B|F)=(4372|192,512)

:
[

s1 s2 features
(1, 4, 1, 2, 1) (0, 0, 2, 0) ∧5,∧4,∧2-less

]
(68)

δ
(B|F)=(2324|194,560)

:
[

s1 s2 features
(1, 4, 0, 3, 1) (0, 0, 1, 0) ∧5,∧4,∧2,∧1-less

]
(69)

The above classification contains 60 Monstrous gravity theories, from the purely
bosonic, ∧5-less, 0.α.i theory (50) to the theory with the highest F, i.e., the 4.δ theory (69).
Note that, since we have imposed #g = #φ = 1, no purely fermionic Monstrous gravity
can exist. Moreover, as far as linear realizations of (local) supersymmetry are concerned,
Monstrous gravity theories are not supersymmetric, as it is evident from B 6= F in all
cases. It is also worth remarking that all such theories (but the ones of the group 4 (66)
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and (69)) contain bosonic string theory, whose (massless, closed string) field content is
#g = #φ = #∧2 = 1 (see e.g., [19]), as a subsector.

5. Monstrous M-Theory in 26 + 1

At this point, the natural question arises as to whether the Monstrous gravities clas-
sified above can be uplifted (The possibility of an uplift/oxidation to 26 + 1 is far from
being trivial, and when possible, it uniquely fixes the content of the higher dimensional
(massless) spectrum) to 26 + 1 space–time dimensions, in which the massless little group
is SO25.

At least in one case, namely for the purely bosonic Monstrous gravity labeled by 0.α.iii,
the answer to this question is positive. The field content of such a theory is specified by the
following: s1 and s2, as from (50):

0.α.iii
(B|F)=(196,884|0)

:


s1 = (1, 0, 3, 0, 1);

s2 = (2, 8, 12, 8),
(70)

or equivalently (absent fields are not reported):

field R of so24 #
g : 299 1
∧1 24 3
φ : 1 1
∧5 : 42,504 2
∧4 : 10,626 8
∧3 : 2024 12
∧2 : 276 8

(71)

One can indeed realize that all such bosonic massless (SO24-covariant) fields in 25 + 1
can be obtained by a KK reduction of the following set of (SO25-covariant) bosonic massless
fields fields in 26 + 1:

so25 so24 fields

g
324

−→ g
299

, ∧1
24

, φ
1

∧5
53,130

−→ ∧5
42,504

, ∧4
10,626

∧4
12,650

−→ ∧4
10,626

, ∧3
2024

∧3
2300

−→ ∧3
2024

, ∧2
276

∧2
300

−→ ∧2
276

, ∧1
24

(72)

In other words, the (massless) field content (71) of the Monstrous gravity 0.α.iii in
25 + 1 can be obtained by the S1 reduction of the following (massless) field content in
26 + 1:

field R of so25 #
g : 324 1
∧5 : 53,130 2
∧4 : 12,650 6
∧3 : 2300 6
∧2 : 300 2

(73)

Therefore, we picked an Einstein gravity theory coupled to p-forms, with p = 2, 3, 4, 5,
in 26 + 1 space–time dimensions (that can be coupled to a 98,304 Rarita–Schwinger field),
whose massless spectrum contains 196, 884 degrees of freedom that may be acted upon by
the Monster group M, at least after reduction to D = 25 + 1, and after suitable assignment.
The assignment is as follows in D = 25 + 1: 98,280 = (42,504 + 4 × 10,626 + 6 × 2024) + 4 ×
276 + 24 to the norm four (i.e., minimal) Leech vectors modulo Z2, and hence 196,884 = 1 +
299 + 98,280 + 98,304 which corresponds to the Griess algebra, namely to the sum of the two
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smallest representations of M, namely the trivial (singlet) 1 and the smallest non-trivial one
196,883. Such a theory will be henceforth named Monstrous M-theory, or simply M2-theory.
Note that the disentangling of the 196,884 degrees of freedom into 196,883 ⊕ 1 occurs only
when reducing the theory to 25+ 1, in which case the dilaton φ is identified with the singlet
of M: in other words, the (observation which firstly hinted the) Monstrous Moonshine [4] is
crucially related to the S1 compactification of M2-theory down to 25 + 1 space–time dimensions.

5.1. Lagrangian(s) for Bosonic Monstrous M-Theory

A priori, the purely bosonic 196,884-dimensional degrees of freedom of the massless
spectrum of M2-theory can be realized in various ways at the Lagrangian level. Here,
within the framework defined above, we will attempt to write down a general Lagrangian
for the bosonic part of M2-theory.

We start by labeling the massless fields of M2-theory, given by (73), as follows (It is
amusing to note that the p-form (potentials) content of M2-theory follows from a pair of
5-form (potentials) of SO28, which is the massless little group in 30 dimensions. Thus, the
bosonic non-gravitational content of M2-theory descends from a pair of massless 4-branes
in D = s + t = 30,or better from a self-dual pair of massless p-form potentials in D = 30,
namely from a 5-form and its dual 23-form potentials, respectively related to massless
4-brane and its dual 22-brane in D = 30):

field label #
g : gµν 1
∧5 : C(5)A

λµνρσ 2

∧4 : C(4)i
λµνρ 6

∧3 : C(3)i
λµν 6

∧2 : C(2)A
λµ 2

(74)

The uppercase Latin indices take values 1, 2, whereas the lowercase Latin indices run
1, 2, . . . , 6. A general definition of the field strengths reads

G(3)A := dC(2)A + AA
j C(3)j;

G(4)i := dC(3)i + Bi
(AB)C

(2)A ∧ C(2)B + CijC(4)j;

G(5)i := dC(4)i + Di
AjC

(2)A ∧ C(3)j + Ei
AC(5)A;

G(6)A := dC(5)A + FA
(BCD)C

(2)B ∧ C(2)C ∧ C(2)D + GA
ij C(3)i ∧ C(3)j + HA

BiC
(4)i ∧ C(2)B,

(75)

where the uppercase bold Latin tensors are constant (all (uppercase and calligraphic) Latin
tensors introduced in (76) and (78) are constant because there is no scalar field in the
(massless) spectrum of the theory), and they are possibly given by suitable representation
theoretic projectors (Here, we will not analyze possible characterizations of such tensors
as (invariant) projectors. We confine ourselves to remark that, in a very simple choice of
covariance (namely, A = 1, 2 and i = 1, 2, . . . , 6 running over the spin-1/2 and spin-5/2
representations 2 and 6 of sl2), most of them vanish).

Then, a general Lagrangian density can be written as

L = R− 1
2 · 3!

AABG(3)A · G(3)B − 1
2 · 4!

BijG(4)i · G(4)j

− 1
2 · 5!

CijG(5)i · G(5)j − 1
2 · 6!

DABG(6)A · G(6)B + LCS-like, (76)

where the calligraphic Latin constant tensors are (symmetric and) positive definite in
order for all kinetic terms of p-forms to be consistent. A minimal, Maxwell-like choice is
AAB = DAB = δAB and Bij = Cij = δij, such that (76) simplifies down to
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L = R− 1
2 · 3!

2

∑
A=1

G(3)A
µνρ G(3)A|µνρ − 1

2 · 4!

6

∑
i=1

G(4)i
λµνρG(4)i|λµνρ

− 1
2 · 5!

6

∑
i=1

G(5)i
λµνρσG(5)i|λµνρσ − 1

2 · 6!

2

∑
A=1

G(6)A
λµνρστG(6)A|λµνρστ + LCS-like. (77)

The “topological”, “Chern–Simons-like” Lagrangian occurring in (76) and (77) is
composed by a number of a priori non-vanishing terms, such as, for instance,√

|g|LCS = εEABCDi
3 G(6)

A G(6)
B G(6)

C G(6)
D C(3)

i

+εI ijklmA
2 G(5)

i G(5)
j G(5)

k G(5)
l G(5)

m C(2)
A + . . .

+εS ijklmnp
3 G(4)

i G(4)
j G(4)

k G(4)
l G(4)

m G(4)
n C(3)

p + . . .

+εWABCDEFGHi
3 G(3)

A G(3)
B G(3)

C G(3)j
D G(3)

E G(3)
F G(3)

G G(3)
H C(3)

i + . . . (78)

where ε denotes the Ricci–Levi–Civita tensor in 26 + 1, and the full Lagrangian is shown in
Appendix A. We leave the study of the constant tensors A, . . . , H, A, . . . ,D, and E , . . . ,W
respectively in (75)–(78) (as well as others occurring in Appendix A) for further future
work.

It is immediately realized that M2-theory includes Horowitz and Susskind’s bosonic
M-theory [19] as a truncation; indeed, by setting

C(2)A = 0;
C(3)i = δi1C;
C(4)i = 0;
C(5)A = 0,

(79)

one obtains (F = dC)

L = R− 1
2 · 4!

F2, (80)

which is the Lagrangian of the bosonic string theory discussed by Susskind and Horowitz
in [19].

Finally, we observe that a Scherk–Schwarz reduction of the Lagrangian (76) to 25 + 1
would provide a quite general Lagrangian for the 0.α.iii Monster (dilatonic, Einstein)
gravity; we leave this task for further future work.

5.2. B = F in 26 + 1

Remarkably, a certain subsector of M2-theory, when coupled to an h = 3/2 Rarita–
Schwinger field, exhibits B = F, which is a necessary condition for (linearly realized,
conventional) supersymmetry to hold. Such a subsector is given by the following (Analo-
gously to what observed in Section 5.1, it is amusing to observe that the bosonic content
of the B = F sector of 26 + 1 M2-theory (which we are tempted to conjecture to be N = 1,
D = 26 + 1 supergravity; see further below) derives from a single 5-form potential, cor-
responding to a massless 4-brane, in D = 30, complemented by a “transmutation” of the
2-form potential 300 of so25 into the rank-2 symmetric traceless tensor (graviton) 324 of
so25, namely by the replacement of a massless string (1-brane) with a massless graviton in
D = 26 + 1):

field R of so25 #
g : 324 1
∧5 : 53,130 1
∧4 : 12,650 3
∧3 : 2300 3
∧2 : 300 0

(81)
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Thus, when coupled to a an h = 3/2 RS field ψ (fitting the 98,304 irreducible repre-
sentation of so25, with Dynkin labels

(
1, 010, 1

)
), the resulting theory has (Again, bosonic

M-theory [19] trivially is a subsector of (the purely bosonic sector of) such a theory in
26 + 1)

B = F = 98,304. (82)

By recalling (72) and observing that the massless RS field branches from 26 + 1 to
25 + 1 as

98,304
ψ︸ ︷︷ ︸

so25 repr.

= 47,104
ψ
⊕ 47,104′

ψ′
⊕ 2048

λ
⊕ 2048′

λ′︸ ︷︷ ︸
so24 reprs.

, (83)

the subsector of M2-theory with B = F = 98,304 gives rise to the following massless
spectrum, when reduced to 25 + 1:

field R of so24 #
g : 299 1
ψ : 47,104 2 ≡ (ψ⊕ ψ′)
∧1 : 24 1
λ : 2048 2 ≡ (λ⊕ λ′)
ϕ : 1 1
∧5 : 42,504 1
∧4 : 10,626 4
∧3 : 2024 6
∧2 : 276 3

(84)

By recalling the treatment of Section 4, one can recognize (84) as a subsector (in
which (82) holds) of the Monstrous gravity 2.γ.ii in (60), simply obtained by decreasing
#∧2 from 4 to 3.

Other subsectors of Monstrous gravity theories in 25 + 1 exist such that B = F. Below,
we list some of them:

s1 s2 B = F
0. γ.i− iv (0, 0, 1, 1, 0) (0, 0, 1, 0) 2048

2.


α.i− ii
β.i− ii
γ.i− ii
δ.i− ii

(0, 2, 0, 0, 0) (1, 4, 4, 4) 94,208

2.
{

γ.ii
δ.ii

(0, 2, 1, 1, 0)
(1, 2, 0, 1, 1)

(1, 4, 5, 4)
(1, 4, 5, 3)

96,256

(85)

Note that, among the B = F subsectors in 25 + 1 reported above, only (84) and the
second in the last line of (85) (i.e., the subsector of the 2.δ.ii Monstrous gravity) contain
gravity.

5.2.1. N = 1 Supergravity in 26 + 1?

As pointed out, B = F is a necessary but not sufficient condition for (linearly realized,
local, conventional) supersymmetry to hold. It is thus tantalizing to conjecture that the
theory in 26 + 1 with massless spectrum (81) and one Rarita–Schwinger field ψ is actually a
N = 1 supergravity theory.

Inspired by M-theory (throughout our treatment, we refer to the conventions used in
Section 22 of [33]) (i.e., N = 1 supergravity) in 10 + 1, and exploiting a truncation of the
purely bosonic Lagrangians discussed in Section 5.1 (the capped lowercase Latin indices
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run ı̂ = 1, 2, 3 throughout), one can write down a tentative Lagrangian for the would-be
N = 1 supergravity in 26 + 1:

L = R− 1
2 · 4!

3

∑̂
ı=1

G(4)ı̂ · G(4)ı̂ − 1
2 · 5!

3

∑̂
ı=1

G(5)ı̂ · G(5)ı̂ − 1
2 · 6!

G(6) · G(6) + LCS-like

−a
i
2

ψµΓµνρ∇ν

(
ω + ω̃

2

)
ψρ

+
3

∑̂
ı=1

bı̂ψµΓ[µΓ(4)Γν]ψν ·
(

G(4)ı̂ + G̃(4)ı̂
)

(86)

+
3

∑̂
ı=1

cı̂ψµΓ[µΓ(5)Γν]ψν

(
G(5)ı̂ + G̃(5)ı̂

)
+dψµΓ[µΓ(6)Γν]ψν ·

(
G(6) + G̃(6)

)
,

where
Γ(4) · G(4)ı̂ = ΓαβγδG(4)ı̂|αβγδ, etc. (87)

and, upon truncation of (75) respectively (78),

G(4)ı̂ := dC(3)ı̂ + Cı̂ ̂C(4) ̂;
G(5)ı̂ := dC(4)ı̂ + Eı̂C(5);
G(6) := dC(5) + Gı̂ ̂C(3)ı̂ ∧ C(3) ̂;

(88)

√
|g|LCS-like = εEı̂G(6)G(6)G(6)G(6)C(3)ı̂

+εGı̂ ̂k̂l̂m̂n̂ p̂G(4)ı̂G(4) ̂G(4)k̂G(4)l̂G(4)m̂G(4)n̂C(3) p̂

+εHı̂ ̂k̂l̂G
(6)G(6)G(4)ı̂G(4) ̂G(4)k̂C(3)l̂

+εIı̂ ̂k̂l̂m̂G(6)G(5)ı̂G(5) ̂G(4)k̂G(4)l̂C(3)m̂

+εJı̂G(6)G(6)G(6)G(5)ı̂C(4) ̂

+εKı̂G(6)G(6)G(6)G(4)ı̂C(5) (89)

+εLı̂ ̂k̂l̂m̂G(6)G(5)ı̂G(4) ̂G(4)k̂G(4)l̂C(4)m̂

+εMı̂ ̂G(6)G(6)G(5)ı̂G(5) ̂C(5)

+εNı̂ ̂k̂l̂G
(6)G(4)ı̂G(4) ̂G(4)k̂G(4)l̂C(5)

+εOı̂ ̂k̂l̂m̂n̂G(5)ı̂G(5) ̂G(5)k̂G(5)l̂G(4)m̂C(3)n̂

+εPı̂ ̂k̂l̂m̂n̂G(5)ı̂G(5) ̂G(5)k̂G(4)l̂G(4)m̂C(4)n̂.

Moreover,
G̃(4)ı̂ := G(4)ı̂ + eı̂ψΓ(2)ψ;
G̃(5)ı̂ := G(5)ı̂ + fı̂ψΓ(3)ψ;
G̃(6) := G(6) + gψΓ(4)ψ

(90)

are the would-be supercovariant field strengths, and

∇µ(ω)ψν := ∂µψν + hωab
µ Γabψν (91)
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is the covariant derivative with

ω̃ab
µ : = ωab

µ + ilψαΓabαβ
µ ψβ; (92)

ωab
µ : = ωab

µ (e) + Kab
µ ; (93)

Kab
µ : = i

[
mψαΓabαβ

µ ψβ + n
(

ψµΓbψa − ψµΓaψb + ψ
bΓµψa

)]
. (94)

We can therefore formulate the following.

Conjecture

The Lagrangian (86) should be invariant under the following local supersymmetry
transformations with parameter ε (a Majorana spinor):

δεea
µ = − i

2
ε̄Γaψµ; (95)

δεψµ = p∇µ(ω̃)ε +
3

∑̂
ı=1

qı̂

(
Γαβγδ

µ + rı̂Γβγδδα
µ

)
εG̃(4)ı̂

αβγδ

+
3

∑̂
ı=1

sı̂

(
Γαβγδρ

µ + tı̂Γβγδρδα
µ

)
εG̃(5)ı̂

αβγδρ + u
(

Γαβγδρσ
µ + vΓβγδρσδα

µ

)
εG̃(6)

αβγδρσ; (96)

δεC
(3)ı̂
µνρ = wı̂ ε̄Γ[µνψρ]; (97)

δεC
(4)ı̂
µνρσ = xı̂ ε̄Γ[µνρψσ]; (98)

δεC
(5)
µνρστ = yε̄Γ[µνρρψτ]. (99)

To prove (or disprove) the invariance of the Lagrangian (86) (with definitions (87)
and (94)) under the local supersymmetry transformations (95) and (99), and thus fixing the
real parameters a, . . . , y as well as the tensors C, E, G and E , G, seems a formidable task,
which deserves to be pursued in a separate paper.

Under dimensional reduction to 25 + 1, one would then obtain a would-be type IIA
N = (1, 1) supergravity theory, with massless spectrum (84); as observed above, this would
correspond to a suitable truncation of the Monstrous gravity 2.γ.ii in (60), in which #∧2

decreases from 4 to 3. Again, we leave the investigation of this interesting task for further
future work.

6. Cohomological Construction of Lattices: From e8 to the Leech Lattice

Let us consider the following (commutative) diagram, starting from the Lie algebra e8,

a8 ⊕∧3 ⊕∧3

↗ ↘
e8 b4 ⊕ g⊕∧3 ⊕ ∗∧3

↘ ↗
d8 ⊕ λ

(100)

where g ≡ S2
0, as above, denotes the D = 10 + 1 graviton representation (which is related

to “super-Ehlers” embeddings in [36]), and ∗ stands for the Hodge dual (∗∧p := ∧D−p).
Thus, the number #e8 of roots of the e8 root lattice reads

#e8
240

= dim e8
248

− 8 = (dim b4 − 4)
32

+ (dim g− 4
40

) + dim(∧3 ⊕ ∗∧3

84·2
). (101)

Therefore, the number #e+8 of positive roots of e8 is

#e+8 =
1
2

(
(dim b4 − 4)

32
+ (dim g− 4

40
)

)
+ dim∧3

84
= 120. (102)
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Note that it also holds that

1
2

(
(dim b4 − 4)

32
+ (dim g− 4

40
)

)
= dim b4. (103)

It should be also remarked that 120 = (10
3 ), i.e., it matches the number of degrees of

freedom of a massless 3-form potential in 11 + 1 space-dimensions; indeed, a massless
3-form in 11 + 1 (corresponding to ∧3 of the little group SO10) gives rise to a massless
3-form and a massless 2-form in 10 + 1 (corresponding to ∧3 ⊕∧2 ' ∧3 ⊕ b4 of the little
group SO9).

The case of e8 is peculiar, because the closure (as well as the commutativity) of the
diagram (100) relies on the existence of the “anomalous” embedding:

d8 ⊃ b4;
16 = 16 ≡ λ,

(104)

where λ is the spinor representation.
By replacing b4 and ∧3, respectively, as follows,

b4 → b12; (105)

∧3 → ∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3, (106)

one can define the “Leech algebra” L24 in analogy with e8 (albeit with D = 26 + 1 graviton
g), through the following diagram:

a24 ⊕
(
∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3)

⊕
(
∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3

)
↗ ↘

L24
b12 ⊕ g⊕

(
∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3)

⊕
(
∗
(
∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3))

↘ ↗
?

(107)

The question mark in (107) occurs because there is no analogue of the “anomalous” embed-
ding (104) for L24. Thus, it holds that

#L24
196,560

= dimL24
196,584

− 24

= (dim b12 − 12
288

) + (dim g− 12
312

) + dim(∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3 + ∗
(
∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3

)
2×(53,130+3×12,650+3×2300)

) (108)

= 196,560,

where #L24 denotes the number of minimal, non-trivial vectors (of norm 4) of the Leech
lattice Λ24. Therefore, the Z2-modded number of minimal, non-trivial vectors of Λ24 is

#L+
24 =

1
2

(
(dim b12 − 12

288
) + (dim g− 12

312
)

)
+ dim( ∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3

53,130+3×12,650+3×2300
) = 98,280, (109)

which is the number entering the construction of the smallest non-trivial representation of
the Monster group M (cfr. [37]). Note that it also holds that

1
2

(
(dim b12 − 12

288
) + (dim g− 12

312
)

)
= dim b12. (110)

It should moreover be also remarked that 98,280 = (28
5 ), i.e., it matches the number of

degrees of freedom of a massless 5-form potential in D = 29 + 1 space-dimensions; indeed,
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it can be checked that a massless 5-form potential in D = 29 + 1 (corresponding to ∧5

of the little group SO28) gives rise to 1 massless 5-form, 3 massless 4-forms, 3 massless
3-forms and 1 massless 2-form in 26 + 1 (corresponding to

(
∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3)⊕ ∧2 '(

∧5 ⊕ 3 · ∧4 ⊕ 3 · ∧3)⊕ b12 of the little group SO25).
Equations (102) and (109) define a cohomological construction of the 8-dimensional

e8 root lattice and of the 24-dimensional Leech lattice Λ24, respectively, based on the
analogy between the following:

• M-theory in 10 + 1 space–time dimensions, with SO9 massless little group and mass-
less spectrum given by 128 (gravitino ψ) = 84 (3-form potential ∧3) ⊕ 44 (graviton
g ' S0

2); this corresponds to D0-branes (supergravitons) in BFSS M(atrix) model,
carrying 256 = 128(B) + 128(F) KK states [38].

• The would-be N = 1 supergravity in 26 + 1 space–time dimensions, with SO25
massless little group and massless spectrum given by 98,304 (would-be gravitino
ψ) = 3× 2300⊕ 3× 12,650⊕ 53,130 (set of massless p-forms which is the “(26 + 1)-
dimensional analogue” of the 3-form in 10 + 1) ⊕ 324 (graviton g ' S0

2); this would
correspond to D0-branes (i.e., the would-be “supergravitons”) in the would-be BFSS-
like M(atrix) model, carrying 196,608 = 98,304(B) + 98,304(F) KK states.

There are many analogies, but the big difference is (local) supersymmetry in D = 26+ 1
(and possibly in D = 25 + 1), whose nature is at present still conjectural.

The “Leech algebra” L24 encodes dim su25 = 624 = 324 + 300, and 2 × 97,980 =
2× (3× 2300 + 3× 12,650 + 53,130) = 195,960 to get 624 + 195,960 = 196,584. Removing
the 12 + 12 = 24 Cartans gives 196,560, which is the number of minimal Leech vectors.
It is thus tempting to conjecture “Monstrous supergravitons” as D0-branes, as L24 “sees”
98, 304 of the bosonic KK states. On the other hand, the Monster M acts on almost all of
these, albeit seeing only 299 + 1 of the 324 graviton degrees of freedom from 324 + 300,
giving 299 + 1 + (300 + 97,980) = 299 + 1 + 98,280 of the Griess algebra [1,6].

Therefore, the relation between the “Leech algebra” L24 and the Griess algebra is realized in
field theory by the relation between M2-theory and its subsector (81) coupled to one RS field (the
would-be gravitino) in D = 26 + 1, discussed in Section 5.2.

6.1. 26 + 1 −→ 10 + 1 through Vinberg’s T-Algebras

How can one relate M-theory in D = 10 + 1 with M2-theory in D = 26 + 1?
The dimensional reduction 26+ 1 −→ 10+ 1 may have a non-trivial structure: one can

proceed along a decomposition proved by Wilson [8], characterizing the aforementioned
number of minimal Leech vectors as

196,560 = 3× 240× (1 + 16 + 256). (111)

Therefore, we identify 1 + 16 + 256 = 273 with the (Hermitian part of) Vinberg’s T-algebra
and 240 with E8 fibers (in (112), the Greek subscripts discriminate among so16-singlets) [26,39]:

T8,2
3 =

 1α 16 128
∗ 1β 128′

∗ ∗ 1γ


written in a so16 covariant way

, (112)

with spin factor lightcone coordinates 1α and 1β removed, thus yielding 128 + 128 + 16 +
1 = 273 degrees of freedom. The spin factor 1α ⊕ 1β ⊕ 16 of T8,2

3 (112) enjoys an enhance-
ment from so16 (massless little algebra in 17 + 1) to so17,1 Lorentz algebra (so17,1 would
be the Lorentz symmetry of the 18-dimensional string theory suggested by Lorentzian
Kac–Moody algebras [40]), and der

(
T8,2

3

)
= mcs(so17,1) = so17 [41]. Breaking the so25 Lie

algebra of massless little group in 26 + 1 with respect to so17, as well as its 4096 spinor
(both encoded in the so-called “Exceptional Periodicity” algebra f34 [42]), one obtains the
decomposition
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f34 := so25 ⊕ 4096 = so17 ⊕ so8 ⊕ (17, 8v)⊕ (256, 8s)⊕ (256, 8c). (113)

As so8 acts on S7, one can take the 240 roots as forming a discrete 7-sphere, and the
273 is constructed as 17 + 256 = 273 by picking one of the 256 spinors. This gives a discrete
form of the maximal Hopf fibration:

S7 ↪→ S15 → S8, (114)

and the three maps yield three charts of the form 196,560 = 3 · 240 · 273 (cfr. (111)) in a
discrete Cayley plane [7,22,26]. Through the super-Ehlers embedding [36]

e8(8) = sl9(R)⊕ 84⊕ 84′ = so9 ⊕ 44⊕ 84⊕ 84, (115)

we can identify each discrete S7 fiber of 240 E8 roots with the M2- and M5-brane gauge
fields of D = 10 + 1 M-theory, as well as with little group (so9) and graviton (44) degrees
of freedom, albeit with all 4 + 4 Cartans removed. This is understood with so9 ⊂ so25
acting isometrically on the S8 base. From this perspective, the reduction from D = 26 + 1
to D = 10 + 1 occurs first along three charts, and gauge and gravity data are encoded in
discrete S7 chart fibers therein.

This picture is further supported by noting that the Conway group Co0 is a maxi-
mal finite subgroup of SO24, and that Co0 can be generated by unitary 3× 3 octonionic
matrices [8] of F4 type [7]. In general, the stabilizer subgroup of 3× 3 unitary matrices
over the octonions O lies in SO9 ⊂ F4 through Peirce decomposition; since there are three
independent primitive idempotents in the exceptional Jordan algebra JO3 , there are three
such embedded copies of SO9, providing three charts for the reduction 26 + 1 −→ 10 + 1.

6.2. 10 + 1 −→ 3 + 1 through S7 Fiber

As it is well known, a remarkable class of M-theory compactifications is provided
by G2 compactifications to D = 3 + 1, where the internal manifold with G2 holonomy is
characterized by its invariant 3-form (which comes from an octonionic structure) [43]. In the
26 + 1 framework under consideration, a compactification down to 3 + 1 dimensions can
involve a 23-sphere S23, which in turn can be fibrated with an OP2 base and S7 fibers. Since
S7 is the quintessential G2 manifold [44], this provides a natural 26+ 1 −→ 10+ 1 −→ 3+ 1
pattern of reduction along a G2 manifold from Monstrous M-theory.

7. Further Evidence for M2-Theory: Monster SCFT and Massless p-Forms in 25 + 1

In order to conclude the present investigation of higher-dimensional gravity theories
which can exhibit the Monster group as symmetry of their massless spectrum, we reconsider
Witten’s MonsterN = 1 SCFT dual to three-dimensional gravity [12]. We will show that the
coefficients of its partition function enjoy rather simple interpretations as sums of degrees
of freedom of massless fields in D = 25 + 1 space–time dimensions, namely as sums of
dimensions of suitable representations of the corresponding massless little group SO24.
This fact provides further evidence of how a purely bosonic theory of gravity and massless
p-forms in 25 + 1 space–time dimensions can be probed by the Monster group M in terms
of its lowest dimensional representations.

We start and recall the partition function of Witten’s N = 1 Monster SCFT (cfr. (3.35)
of [12]):

K(q) = q−1/2 + 276q1/2 + 2048q1 + 11,202q3/2 + 49,152q2

+184,024q5/2 + 614,400q3 + 1,881,471q7/2 +O(q4), (116)

= q1/2Z2B(q), (117)

where Z2B(q) is the 2B McKay–Thompson series (cfr. (C.1) of [13]). The coefficients of
K(q), which in [12] have been related to the (smallest) representations of the Monster group
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M [30], also admit a rather simple (in generally not unique, especially for large coefficients)
interpretation in terms of representations of SO24, thus strengthening the evidence for
the existence of a gravitational field theory probed by the lowest-dimensional, non-trivial
representation(s) of M itself. Indeed, a tedious but straightforward computation yields the
following result:

276 =
∣∣∧2
∣∣

276
;

2048 = |λ|
2048

;

11, 202 =
∣∣∧1
∣∣

24
+ 2
∣∣∧2
∣∣

276
+
∣∣∧4
∣∣

10,626
;

49,152 = |λ|
2048

+ |ψ|
47,104

;

184,024 = |λ|
2048

+ |ψ|
47,104

+
∣∣∧2
∣∣

276
+
∣∣∧6
∣∣

134,596
;

614,400 = 2 |λ|
2048

+ 2 |ψ|
47,104

+
∣∣∣ψ(2)

∣∣∣
516,096

;

1,881,471 = 23|φ|
1
+ 2
∣∣∧1
∣∣

24
+ 4
∣∣∧2
∣∣

276
+
∣∣∧3
∣∣

2024
+
∣∣∧4
∣∣

10,626
+ 3

∣∣∧5
∣∣

42,504
+ 2

∣∣∧6
∣∣

134,596
+ 2

∣∣∧8
∣∣

735,471
,

(118)

where ψ(p) denotes the p-form spinor representation of SO24, and we have used the notation
ψ(0) ≡ λ, ψ(1) ≡ ψ (cfr. Section 3).

Remarkably, the degrees of freedom of p-form spinors ψ(p) can always be expressed only in
terms of the degrees of freedom of p-form fields: for the first cases, i.e., for p = 0, 1 and 2, by
recalling λ-triality (34) (which in turn implies ψ-triality (36)), it holds that

p = 0
(λ-triality (34))

:
∣∣∣ψ(0)

∣∣∣
2048

=
∣∣∣∧1
∣∣∣

24

+
∣∣∣∧3
∣∣∣

2024

; (119)

p = 1
(ψ-triality (36))

:
∣∣∣ψ(1)

∣∣∣
47,104

= 2
∣∣∣∧2
∣∣∣

276

+ 2
∣∣∣∧3
∣∣∣

2024

+ 4
∣∣∣∧4
∣∣∣

10,626

= 2
∣∣∣∧2
∣∣∣

276

+ 2
∣∣∣∧3
∣∣∣

2024

+
∣∣∣∧5
∣∣∣

42,504

; (120)

p = 2
(ψ(2)-triality)

:
∣∣∣ψ(2)

∣∣∣
516,096

= 14|φ|
1
+ 8
∣∣∣∧1
∣∣∣

24

+
∣∣∣∧2
∣∣∣

276

+ 5
∣∣∣∧3
∣∣∣

2024

+ 3
∣∣∣∧4
∣∣∣

10,626

+ 3
∣∣∣∧5
∣∣∣

42,504

+
∣∣∣∧7
∣∣∣

346,104

. (121)

Thus, by using (119) and (121), the sums on the right-hand sides of (118) can be
expressed only in terms of p-form bosonic fields, as follows:

276 =
∣∣∧2
∣∣

276
;

2048 =
∣∣∧1
∣∣

24
+
∣∣∧3
∣∣

2024
;

11,202 =
∣∣∧1
∣∣

24
+ 2
∣∣∧2
∣∣

276
+
∣∣∧4
∣∣

10,626
;

49,152 =
∣∣∧1
∣∣

24
+ 2
∣∣∧2
∣∣

276
+ 3
∣∣∧3
∣∣

2024
+
∣∣∧5
∣∣

42,504
;

184,024 =
∣∣∧1
∣∣

24
+ 3
∣∣∧2
∣∣

276
+ 3
∣∣∧3
∣∣

2024
+
∣∣∧5
∣∣

42,504
+
∣∣∧6
∣∣

134,596
;

614,400 = 16|φ|
1
+ 8
∣∣∧1
∣∣

24
+ 7
∣∣∧2
∣∣

276
+ 2
∣∣∧3
∣∣

2024
+ 3

∣∣∧5
∣∣

42,504
+
∣∣∧6
∣∣

134,596
+
∣∣∧7
∣∣

346,104
;

1,881,471 = 23|φ|
1
+ 2
∣∣∧1
∣∣

24
+ 4
∣∣∧2
∣∣

276
+
∣∣∧3
∣∣

2024
+
∣∣∧4
∣∣

10,626
+ 3

∣∣∧5
∣∣

42,504
+ 2

∣∣∧6
∣∣

134,596
+ 2

∣∣∧8
∣∣

735,471
.

(122)

Thus, the first coefficients of the partition function (116) and (117) of the N = 1
Monster SCFT [12] can be decomposed as sums of the dimensions of purely bosonic, p-
form representations of SO24; since this latter is the massless little group in D = 25 + 1
space–time dimensions, the above results imply that, at least for the first coefficients, the
coefficients of the partition function of N = 1 Monster SCFT can be expressed in terms of degrees
of freedom of massless, purely bosonic, p-form fields in 25 + 1 space–time dimensions.
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The purely bosonic nature of such degrees of freedom is ultimately due to the λ-
triality (34) (or, equivalently, (119)), which is the generalization of the triality T, discussed
at the start of Section 3 from 8 to 24 dimensions. To the best of our knowledge, no other
examples of such a generalized, “weak” triality are known in other dimensions, so 24
stands out as a very peculiar number in this respect.

Note how all the purely bosonic decompositions (122) share a common feature: for
each p > 0, the decompositions (122) exhibit the lowest possible multiplicity of p-form
fields, constrained to correspond to a number of degrees of freedom which is strictly smaller
than the dimensions of the subsequent (p + 1)-form field: namely, the condition

#∧p ·|∧p| 6
∣∣∣∧p+1

∣∣∣ (123)

holds in (122) for all p’s appearing.

8. Final Remarks

Monstrous M-theory, Monstrous dilatonic gravities and Monstrous Moonshine
We have shown that in 26 + 1 space–time dimensions, there exists a Monstrous M-

theory, or simply M2-theory, whose massless spectrum (73) contains 196,884 degrees of
freedom that may be acted upon by the Monster group M after reduction to D = 25 + 1,
because it corresponds to the sum of the two smallest representations of M, namely the
trivial (singlet) 1 and the non-trivial one 196,883. A subsector of M2-theory yields Horowitz
and Susskind’s bosonic M-theory [19]. Crucially, the disentangling of the 196,884 degrees of
freedom into 196,883 ⊕ 1 occurs only when reducing M2-theory down to 25 + 1, obtaining
the massless spectrum (71), in which the dilaton φ is identified with the singlet of M : in
other words, the (initial observation giving rise to) Monstrous Moonshine [4] is crucially related
to the KK compactification of M2-theory down to a certain Monstrous dilatonic gravity (namely, the
theory 0.α.iii within the classification carried out in Section 4.1) in 25 + 1 space–time dimensions.

Remarkably, such a Monstrous dilatonic theory in 25 + 1 contains a subsector given by
the massless excitations of the closed and open bosonic string in 25 + 1, namely a graviton,
an antisymmetric rank-2 field, a dilaton, and a 1-form potential. Actually, by generalizing
the triality T of SO8 (massless little group of string theory in 9 + 1) to SO24 (massless little
group of bosonic string theory in 25 + 1), such a dilatonic (Einstein) gravity theory can
be shown to be part of a web of some 60 gravito-dilatonic theories, collectively named
Monstrous gravity theories, whose coarse-grained classification is given in Section 4.1.

The relation between SO8 and SO24 (which at present is the unique dimension enjoying
a kind of generalization of T) can be interpreted in terms of the Conway group (The Conway
group Co0 is the full automorphism of the Leech lattice Λ24; however, it is not a simple
group, nor is it contained in the Monster. In fact, its quotient by its center Z2, namely
the Conway simple group Co1 ∼ Co0/Z2 is contained in M. This means the Monster’s
maximal finite subgroup Co1 has the Z2 action built in, which acts on only half the minimal
Leech vectors 196, 560/2 = 98, 280.) Co0, which is a maximal finite subgroup of SO24 itself;
as shown by Wilson [8], Co0 is generated by unitary 3× 3 octonion matrices, namely by F4
matrices [7]. Interestingly, SO9 can be maximally embedded into F4 in three possible ways,
each one providing the manifestly T-invariant breaking

f4 → so9 = so8 ⊕ 8v ⊕ 8s ⊕ 8c; (124)

in this sense, no triality is needed for so24, but rather just the threefold nature of the
(symmetric) embedding SO9 ⊂ F4. In turn, the “anomalous” embedding [45]

f4 ⊕ 273 ↪→ so26 (125)

allows one to reduce from 26 + 1 to lower dimensions in a non-trivial way, namely along
the chain 26 + 1 → 25 + 1 → 10 + 1 → 3 + 1.This, as remarked in [22], confirms and



Symmetry 2023, 15, 490 27 of 31

strengthens Ramond and Sati’s argument that D = 10 + 1 M-theory has hidden Cayley
plane OP2 fibers [46].

The Moonshine decomposition (43),

196,884 = 196,883⊕ 1 (126)

always holds in Monstrous gravities, due to the very existence of the dilatonic scalar field
φ in their spectrum. In particular, the dilaton φ is a singlet of M. Monstrous gravities in
25 + 1 space–time dimensions, and the presence of a unique φ, are intimately related to the
representation 196,883 of M, and thus they may provide an explanation of the (initial observation
giving rise to) Monstrous Moonshine in terms of (higher-dimensional, gravitational) field theory.

Black hole entropy in 2 + 1
Along the lines of Witten’s investigation of three-dimensional gravity [12], the present

paper suggests that the quantum entropy ln(196,883) ' 12.19 has a manifest higher-dimensional
interpretation since the BTZ black hole degrees of freedom can be expressed in terms of
massless degrees of freedom of fields in 25 + 1 space–time dimensions.

Local SUSY in 26 + 1?
Remarkably, a certain subsector of the spectrum of M2-theory, given by (81), when

coupled to one massless Rarita–Schwinger field ψ in 26 + 1, gives rise to a theory which
has the same number of bosonic and fermionic massless degrees of freedom, namely

B = F = 98, 304, (127)

for a total of 196,608 degrees of freedom. We have been therefore tempted to ask ourselves
to ask whether this subsector of M2-theory, when coupled to a RS field ψ, may actually enjoy
(local) supersymmetry in 26 + 1 space–time dimensions, thus giving rise to a would-be
N = 1, D = 26 + 1 supergravity theory. In this line of reasoning, we have conjectured a
“M-theory-inspired” Lagrangian density, as well as the corresponding local supersymmetry
transformations in 26+ 1. The invariance of such a Lagrangian under those supersymmetry
transformations is still conjectural, and to prove (or disprove) it seems quite a formidable,
though absolutely worthy, task, and we leave it for further future work.

At any rate, the reduction of the bosonic sector (81) of such a would-be N = 1
supergravity from 26 + 1 to 25 + 1 yields a suitable subsector of the Monstrous gravity
labeled by 2.γ.ii in the classification of Section 4.1, simply obtained by letting #∧2 : 4 −→ 3.
In light of this, we cannot help but point out a certain mismatch, essentially amounting
to the 276 degrees of freedom of a massless 2-form in 25 + 1, between the total (bosonic
+ fermionic) degrees of freedom of the would-be N = 1 supergravity in 26 + 1 (98,304 +
98,304 = 196,608) and the (purely bosonic) 196,884 degrees of freedom of M2-theory: 196,884
− 196,608 = 276. In this sense, “monstrousity” and (would-be) “supersymmetry” in 26 + 1
(as well as, predictably, in 25 + 1) space–time dimensions exhibit a slight disalignment,
though being tightly related.

Leech lattice and Griess algebra
All this suggests that the Monster group M has its origin in a gravity theory in 26 + 1

dimensions, as its definition as the automorphism of the Griess algebra [1,3,23] is clarified
by showing that such an algebra is not merely a sum of unrelated spaces, but related to the
massless spectrum of Monstrous gravities in 25 + 1, which in at least one case (namely, the
0.α.iii theory, whose massless spectrum is given by (70) and (71)) oxidates up to M2-theory
in 26 + 1. The spectrum of M2-theory dimensionally reduced to 25 + 1 contains a subsector
given by the massless excitations of the closed and open bosonic string in 25 + 1, namely a
graviton, an antisymmetric rank-2 field, a dilaton, and a 1-form potential. Therefore, the
relation between the “Leech algebra” L24 and the Griess algebra is realized in field theory by the
relation between M2-theory and its subsector (81) coupled to one RS field (the would-be gravitino)
in 26 + 1, discussed in Section 5.2.

On the other hand, the discussion of the analogies between the e8 root lattice and
the Leech lattice Λ24 seems to suggest that M-theory in 10 + 1 and the would-be N = 1
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supergravity in 26+ 1 are tightly related to the lattices e8 respectively Λ24, which determine
the optimal lattice packings in D = 8 respectively 24.

Developments
Many directions for further future developments stem from the present work, which

is a preliminary investigation of higher-dimensional structures in space–time, which reflect
themselves in large-dimensional, yet finite, group theoretical structures. Below, we list a
few possible developments.

• It would be interesting to explore the implications of the characterization of the M as
acting on the whole massless spectrum of M2-theory in 26 + 1 space–time dimensions.

• One could further study the maps discussed in Section 3; as pointed out above, no
other Dynkin diagram (besides d4) has an automorphism group of order greater than
2, and thus, such maps cannot be realized as an automorphism of d12, nor they can be
traced back to some structural symmetry of the Dynkin diagram of d12 itself.

• Additionally, one could study the Lagrangian structure of M2-theory, as well as of its
Scherk–Schwarz reduction to 25 + 1.

• Further evidence may be gained by investigating whether the dimensions of represen-
tations of finite groups, such as the Baby Monster group BM, the Conway group Co0
and the simple Conway group Co1 ' Co0/Z2, can all be rather simply interpreted as
sums of dimensions of representation of SO24 or SO25 itself, and study the decomposi-
tion of the (smallest) coefficients of the partition functions of the SCFT derived from
the Monster SCFT.

• Further study may concern the double copy structure of Monster dilatonic gravities in
25 + 1, as well as of M2-theory, and its possibly supersymmetric subsector, in 26 + 1.

• The investigation on the existence of local SUSY in 26 + 1, and the determination of
the corresponding Lagrangian and SUSY transformations is of the utmost relevance,
of course.

• Last but not least, it would be interesting to study the massive spectrum of (massive
variants of) Monstrous gravities and of M2-theory.

We would like to conclude with a sentence by John H. Conway, to whom this paper is
dedicated, on the Monster group [47]: “There’s never been any kind of explanation of why it’s
there, and it’s obviously not there just by coincidence. It’s got too many intriguing properties for it
all to be just an accident.”
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Appendix A. Chern–Simons Lagrangian Terms for Monstrous M-Theory

The full Lagrangian from Equation (78) is given by
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√
|g|LCS = εEABCiDE
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