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Abstract: One of the key issues with large distributed systems, such as IoT platforms, is gaining
timely access to data objects. As a result, decreasing the operation time of reading and writing
data in distributed communication systems become essential demands for asymmetric system. A
common method is to replicate the data objects across multiple servers. Replica placement, which
can be performed statically or dynamically, is critical to the effectiveness of distributed systems in
general. Replication and placing them on the best available data servers in an optimal manner is an
NP-complete optimization problem. As a result, several heuristic strategies for replica placement in
distributed systems have been presented. The primary goals of this research are to reduce the cost
of data access time, reduce the number of replicas, and increase the reliability of the algorithms for
placing replicas. In this paper, a discretized heuristic algorithm with artificial individuals and a hybrid
imitation method were developed. In the proposed method, particle and gray-wolf-based individuals
use a local memory and velocity to search for optimal solutions. The proposed method includes
symmetry in both local and global searches. Another contribution of this research is the development
of the proposed optimization algorithm for solving the data object replication problem in distributed
systems. Regarding the results of simulations on the standard benchmark, the suggested method
gives a 35% reduction in data access time with about six replicates. Furthermore, the standard
deviation among the results obtained by the proposed method is about 0.015 which is lower than the
other methods in the same experiments; hence, the method is more stable than the previous methods
during different executions.

Keywords: distributed systems; replica placement; data access time; artificial gray wolf optimization;
local best; stability

1. Introduction

Quick access to data objects is a major issue when building large, dispersed systems, such
as cloud computing. In a distributed system, retrieving data takes a longer time. Therefore,
reducing the operation time of reading and writing data in distributed systems has become a
key concern for the designers of these systems. The problem can be solved by using multiple
copies of the data on several servers, which will enable quicker access to the data from faraway
locations. Replication in this usage refers to the practice of making identical copies of the same
data on numerous servers. In general, the placement of replicas, which can be carried out
statically or dynamically, is essential to the efficiency of distributed systems.

One of the largest problems with distributed systems is reducing the amount of time
needed to access data objects. The primary goals are to reduce costs and speed-up access to
data services. The cloud computing system is an example of a distributed system, which
consists of several independent computers that users can access as one big system. Data
replication is one successful technique to alleviate the data access time in large distributed
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systems. The main objectives of data replication in distributed systems are to increase
the dependability and efficiency of the system. The quantity of copies (replicas) that are
stored on servers has a crucial role in replica placement. Determining the number and
location of data replicas in distributed systems is one of the most challenging problems
(replica-placement problem). In general, it is best to choose the number of replicas of
data objects among many servers in a way that lowers the overall cost of operations. The
generation of a minimum number of data replicas, their placement on efficient servers
that are easily available, and lowering the system’s overall cost of data processing are the
study’s research objectives. As a result, several heuristic methods for efficiently placing
replicas in distributed systems have been presented. Inadequate performance of existing
methods in large distributed systems such as cloud and IoT systems, the need for more
data servers and, as a result, more memory consumption, inadequate dependability and
reliability of the obtained results by the previous methods, and falling in the local optima
are the main demerits of the previous methods.

In this study, a discrete and swarm-based technique that combines modified particle
swarm optimizer and gray wolf optimizer algorithms (PSGWA) was suggested to handle
the problem of data-replica placement and replacement in distributed systems. In the
PSGWA, each individual (agent) was implemented as a particle-wolf with the local and
global best memory. The local search was implemented by the gray wolf optimization
algorithm (GWO or GWA), and the global search was implemented based on the PSO
algorithm’s imitation. The individuals were divided into a few subgroups of wolves. Each
subgroup searches the best solution in the related solution spaces. Each wolf has a local
best memory. The best Alpha is selected as the global best of the total population. After
combining the subgroups into the main population, each wolf behaves as a particle and
imitates the global best individual using its velocity, local best, and position. Each solution
explains how to organize data that is replicated over several servers, with the algorithm’s
main goal being to reduce the cost of data access activities. When compared to other
methods now in use, the PSGWA method can reduce the cost of the replica-placement
problem due to the algorithm’s performance in static scenarios. The principal contributions
of this method are as follows:

• In the proposed method, artificial individuals (agents) were developed in such a way
that each individual includes local memory to save the visited local best location and
velocity; it behaves like a particle (in the PSO) and a gray wolf at the same time. The
artificial individuals are divided into subgroups, and each subgroup searches in a
separate part of the overall solution space using the GWO imitation strategy. After
local searches, the subgroups merge into one population. The best Alpha is selected as
the global best of the created main population.

• In the suggested method, the global search is performed using the velocity, local best,
and global best of the individuals. The global search was implemented using the PSO
imitation strategy. The location and velocity of each individual were imitated using the
global best, similar to the particle swarm algorithm. The introduced discrete swarm-
based algorithm can be used to solve the discrete optimization problem efficiently.

• Another contribution of this research is the development of the proposed discrete
and hybrid algorithm (PSGWA) for solving the data object replication problem in
distributed systems. Data replicas should be stored on servers that reduce data
access time.

The paper is structured as follows. The second section covers the fundamental defini-
tions, and summaries of earlier studies about the replica-placement problem. The proposed
replica-placement method is explained and provided in the third section. In the fourth
section, the findings of the suggested method will be assessed with other results in terms
of data access time, number of produced replicas, and stability of results.
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2. Related Work

Replicas of a data object are extra copies of the data object located on several servers,
enabling faster remote access to the data. The technique of making exact duplicates of the
same data on other servers is known as replica placement. In general, the placement of
replicas, which can be carried out statically or dynamically, is essential to the efficiency of
distributed systems. The replica-placement issue has been addressed by several techniques
in recent years, each of which has its own specific structure, advantages, and disadvantages.
Algorithms such as random, greedy, tree-based, hot spot, and hot region algorithms are
the main replica-placement techniques in this field. This kind of algorithm distributes
M copies of data items among N servers at random while considering the majority of
client workload. This method distributes the data according to the normal distribution. To
achieve the desired output, this method should be repeated numerous times, with the best
result being selected. The ease with which this method can be put into action is one of its
main advantages, but the randomness of the algorithm makes it difficult to achieve the best
and most desired results [1].

Greedy Algorithms: The greedy placement algorithm selects a replica version and
the optimal server for the replica placement after a comparison of all N servers. After
examining the expenses associated with each customer’s access to this replica version,
the service provider with the lowest cost is selected to supply the replica version. In
the subsequent rounds, a similar process is used for the remaining versions. In the case
of discussing data access, each client is taken to be using the most recent replica. This
method’s key benefit is its fast algorithm execution while its main drawback is that it can
be challenging to discover the best data distribution strategy [1].

Tree-based Placement Algorithm: Network connectivity is likely to take the form of
a tree in distributed systems. Dynamic programming is used to implement this algorithm.
This method was initially applied to the placement of the web proxy, but it may also be ap-
plied in the future to the placement of the replica in distributed systems. A communication
interface between each of the smaller sub-trees that make up this technique’s greatest level
and the web server is provided for each one. Each client submits a request to the associated
interface, which then sends the request to the web server to communicate with it [2].

Hot Spot-based Placement Algorithm: The third strategy seeks to place several data
versions close to customers with high workloads. This approach divides data among
service providers according to the volume of work that their customers produce; M replicas
are supplied to the M service providers who are surrounded by lots of workload. The
neighborhood radius around each service provider is employed in this technique to estimate
the volume of work traffic [1]. In [3,4], a popular area-based placement technique was
published. The major goal of this algorithm is to accelerate placement processes. Using
this method, the network is initially split into numerous sections based on node delays;
each area is referred to as a cell. Then, each cell is sorted using a radix-type method. It then
selects k initial cells to act as placement agent servers. In this algorithm, the network is
divided and mapped to Euclidean space using the GNP algorithm. After determining the
typical node delay, the GNP algorithm transfers the network space to Euclidean coordinates.
The hot area algorithm selects the regions with the largest density of nodes after calculating
the node density for each coordinate of each network area.

Scaling and Work-load Aware Replica Management: This approach examined the
automatic scaling and dynamic replica-placement mechanisms. The automatic scaling
methodology based on service overhead is first recommended to reduce the overall cost
of scaling replicas and other resources. A hybrid load forecasting approach is used to
predict the workload before allocating resources. The overall cost calculation is generated
based on the workload. The optimization problem could be seen as a linear programming
problem when the constraints are considered. The best scaling method is then chosen
using the Tabu algorithm. The dynamic replica placement’s normal processing time is
decreased by using the suggested data placement technique. In comparison to the related
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strategy, the suggested replica-placement approach provides more equally distributed
storage capacity [5].

Flexible Replica-Placement Method: This work presents an adaptive replica-placement
technique in an edge computing environment to evaluate the link between user access
characteristics, the number of replicas, and the position of the replicas. To determine the
ideal position for replicas, this study devised the replica-placement method. This would
increase data accessibility and boost cloud storage performance. The technique in this
study offers the dynamic replica creation algorithm (DRC-GM), which uses the data block
as the unit of data to solve the erratic nature of user access. To meet the criteria for data
availability, DRC-GM continuously updates the number of copies to take into account the
relationship between the frequency of data access and the number of replicas. The results
of the experiments demonstrate that the DRC-GM and RP-FNSG algorithms, when applied
in an edge computing environment, can significantly enhance system performance in terms
of better prediction accuracy, quicker access response times, higher effective network, and
storage space usage, and increased data availability [6].

User-Experience-based Replica-Placement Method: It is recommended to utilize a
dynamic replica allocation technique to improve user experience and save storage expenses.
The correctness and consistency of the data are further ensured using the replica consistency
preservation technique. The suggested resource management method may significantly
lower the total cost of the rented nodes and enhance CPU utilization as the length of time
increases. For instance, the suggested method’s overall cost can be reduced by up to 32.27%
and 53.65%, in comparison to the earlier techniques. The suggested replica allocation
technique may dramatically reduce both storage overhead and data transmission delay [7].

Replica Placement using Genetic Algorithm: This method uses the genetic algorithm
(GA) to make the best placement for the created replicas. The two inputs used in this method
are the Euclidean coordinates of the network and the required quantity of placement servers.
The first phase computes the Euclidean coordinates of the network, and the second phase
computes the density of each area, which includes the number of nodes in the target area.
After each region has been aggregated, the center of each region is selected to act as the
core of the cluster. The compatibility function for each cluster is then used to compute
the density in the subsequent phase. Two clusters are always picked out of the group of
good clusters, depending on the magnitude of the density, and the intersection operation
is performed. The final stage, which entails a random leap on the new coordinates, then
replaces the old coordinates with the new coordinates. This process is continued until there
are as many excellent clusters as there are placement servers required [8].

Consistency-based Replica Placement: This method aims to boost the availability by
sufficiently increasing the existing replicas. The two goals of reducing the distance between
dissimilar exchanges and lengthening the distance between comparable exchanges should
typically be achieved. Using Dijkstra’s approach, the separation between two sites can be
determined by measuring the bandwidth of the shortest link between them. While the plan
is put into practice, the network is fixed. The method classifies the websites by color after
compiling a list of all the files and mods on the network. The activity results in a group
of sites that contain an original file (data object) and zero to many copies (replicas) of the
original file. The method is based on selecting the file that is closest to each color, then
selecting the file that is farthest from all of the nearby colored files. The most distant file
from the closest one is then selected and replaced [9].

Constraint-based Replica Placement: In [10] a hybrid algorithm using the sealion
optimization model (SLnO) and grey wolf optimization (GWO) algorithms was proposed
for the data replication problem. Apart from this, the mining is carried out under the
defining dual constraints of (i) prioritization and (ii) cost. The prioritization falls under two
cases, queuing both high- and low-priority data, and the cost relies on the evaluation of
storage demand. The high-priority queues are optimized with the GUEES model. Finally, a
comparative validation is carried out to validate the efficiency of the adopted model. The
network usage is considered as the main performance criteria of this method. The network
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usage of the proposed model is 29.23%, 24.57%, 16.8%, and 16.85% higher than the existing
methods such as the GWO, SLnO, PSO, and HCS, respectively.

Workflow-based data replication method: In [11] a replication management system
which includes dynamic replication creator, a specialized cost-effective scheduler for data
placement, a system watcher, and some data security tools for collaborative edge and cloud
computing systems were proposed. Considering task dependency, data reliability and
sharing, the data scheduling for the workflows is modeled as an integer programming
problem. In this study, a faster meta-heuristic algorithm has been proposed to solve it. The
experimental results show that the algorithms can achieve much better system performance
than comparative traditional methods, and they can create a suitable number of data copies
and search for the higher quality replica-placement solution while reducing the total data
access costs under the deadline constraint.

Hardware-Efficient Data Replication Method: In [12] a method was proposed to
meet the requirements of low hardware overhead and high-performance using hardware-
efficient dual-source data replication and local broadcast mechanism (DRLB). DRLB alle-
viates the inherent limitations of previous data replication mechanisms and reduces the
overhead of coherence protocols. The results of experiments on DRLB indicate that it
can reduce the execution time by 16%, but only causes 0.82% of extra meta storage over-
head, which also outperforms previous state-of-the-art data replication mechanism. The
optimized version of DRLB can reduce the execution time by an average of 23%. Table 1
indicates the merits and demerits of the related methods.

Table 1. Overview of the related methods.

Technique Merits Demerits

Flexible Replica Placement [6] Lower response time, higher data
availability. Data-file types and node types have not been considered.

Experience-based Replica Placement [7]
Lower financial cost, lower storage

cost and higher performance in large
distributed systems.

collaborative resource management has not been considered.

Replica placement using GA [8] Lower run time and optimal
placement. Lower performance in large distributed systems.

Consistency-based Replica Placement [9] Higher data availability and lower
response time.

Suitable just for the network that is fixed during the execution of the
technique.

Constraint-based Replica Placement [10] Lower response time and memory
consumption. Need more internet bandwidth

Workflow-based data replication method [11] Lower data access costs under the
deadline constraint.

Data and computational
scheduler was not considered uniformly.

Priority-based replica management [13] Lower average response time and
fault tolerance capability. Suitable just for static systems.

PSO and fuzzy-based replica-placement
algorithm [14]

Higher data availability and lower
response time. Lower performance for the data writes transaction.

Replica placement with service and content
delivery networks [15] Higher stability. Local optimum probability.

Correlated data-replicas placement [16] Lower response time. Lower performance for the data writes transaction.

3. Proposed Method

In a distributed system, retrieving data may take longer and longer. Because of this,
it is now particularly challenging to reduce the amount of time needed for reading and
writing data objects in distributed systems. A typical solution to the issue is to use many
copies (replicas) of the data on many servers to make it simpler to access from the specific
distance. In this work, the PSO and GWO algorithms were combined as a new algorithm
(PSGWA) to address the replica replacement issue. The use of the PSGWA as a swarm-based
method can reduce data access in static environments as compared to other methods.

3.1. Problem Specification

In a distributed system, data objects need to be replicated on N servers to alleviate
the data access time. In this problem, the server number is S(n), and the data object
number is Object(k). Additionally, 1 < k ≤ K and 1 < n ≤ N, where C(n) and V(k) are the
corresponding capacities of service provider number n and data object number k. The cost
of communication between the service providers S(n) and S(m) will be denoted by the
integer l(nm). The cost of data transport between S(n) and S(m) servers is the same as the
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cost of communication. It is assumed in this issue that l(nm) = l (mon). Additionally, the
number of read and write requests for the Object(k) from S(n) servers is indicated by the
variables read(n, k) and write(n, k). Each data object has a primary server as P(k). P(k) is in
possession of the Object’s initial version (k). It should be noted that Object(k) cannot be
transferred to another server in its original form. The servers where Object(k) are replicated
are listed for each primary server in a list referred to as RS(k). The nearest server that
has the original or replica versions of Object(k) should be chosen for the read operation if
server S(n) wants to execute the read command on the data Object(k). To update the Object
during the write process, the relevant server sends the main server a data update request
(k). In this scenario, P(k) broadcasts a message to all servers hosting Object(k), and each
server updates the appropriate data object. The fundamental objective of the placement
challenge is to distribute the replicas across the servers to reduce the overall cost of reading
and writing operations and increasing the availability of the data objects.

In the first step of the suggested approach, the replica-placement problem can be
translated to the common traveling salesperson problem (TSP). For instance, PSGWA was
used to evaluate all methods for replicating two data objects over six different servers
when there are two data objects and six servers. In this inquiry, each data object has a
unique identification number (Kn indicates the unique id of nth data object). There are four
separate ways to replicate two data items (k1 and k2) on a server (S). Figure 1a displays
configurations for replication of two data objects over six different data servers. The
different modes are detailed below.
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First mode: k1 and k2 are not replicated on S.
Second mode: k1 is replicated on S and k2 is not replicated on S.
Third mode: k1 is not replicated on S and k2 is replicated on S.
Fourth mode: k1 and k2 are replicated on S.
The columns in the resulting graph stand in for the various server modes, while each

row in the graph corresponds to a server. Each solution path serves as a model for where
the replicas of the data objects should be stored. The fitness value of each path in the graph
depends on the objective function. The ideal path is the shortest one (in terms of fitness
function), just like the TSP. Figure 1b depicts the replica-placement process for replicating
two data items across six servers. Figure 1b shows a placement model of two data object
copies on six servers for the specified path ([2,3,1,1,3,4]). The following interpretation can
be made of the path shown in Figure 1b:
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Server 1 holds just the replica of the k1 data object.
Server 2 holds just the replica of the k2 data object.
Server 3 does not hold any replica.
Server 4 does not hold any replica.
Server 5 holds just the replica of the k2 data object.
Server 6 holds the replicas of the k1 and k2 data objects.
Indeed, the replica-placement problem finally mapped into the TSP problem. Figure 2

shows the final from of the replication graph shown on Figure 1b.
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3.2. Replica Placement Using PSGWA

In this study, a hybrid heuristic approach was introduced for solving the replica-
placement problem. The PSGWA is implemented as a discrete swarm algorithm to sort
out the replica-placement problem. The proposed PSGWA algorithm exploits the classic
GWO imitation as its local search and PSO imitation as the global search method. PSGWA
is a group-based heuristic algorithm that uses GWO [17] and PSO [18] at the same time. In
the PSGWA, each individual has wolf and particle features at the same time. Each wolf
has a limited memory for storing the visited local best position. Also, a wolf (individual)
has the velocity attribute. In PSGWA, the velocity and local best information are used for
global optimization. An intelligent agent (such as a wolf) can use sensors to understand its
surroundings and effects to change the environment. The proposed solution to the replica-
placement challenge makes up the wolf population. In the replica-placement problem, the
structure of a wolf is shown in Figure 3. Each cell’s information in a wolf array reveals
the server’s mode for that instance. The server index can be determined from the wolf
array’s index. Each wolf in the population does, in fact, display a replication path. The
path depicted in picture 1.b is the same path depicted by the wolf array in Figure 3.
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The replication array is equivalent to the wolf array. The word “food” in the approach
refers to a wolf’s fitness, and the wolf’s fitness (replication array) denotes its proximity to
the food. The overall cost of the access operation associated with the copies of the data
objects stored on several servers shows whether the replication method is appropriate. Any
replacement of a replica in the servers will have an impact on the cost and time of data
access. A best wolf means that the replica-placement mode has a shorter access time. Both
local and global searches are part of the PSGWA. The workflow of the suggested PSGWA
algorithm is seen in Figure 4. In the initial population, each wolf array is produced at
random. The fitness of each replication array is then assessed using the fitness cost function
at the following stage. The population is separated into m subgroups after sorting the
replication array according to their fitness.
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1. Initialize population size, iteration, number of subgroups, and size of subgroups;
2. Initialize the artificial search-agents with particle and gray wolf features;
3. itr = 0;
4. While (itr < iteration)
5. {
6. Partition the particle population into m subgroups;
7. Select the Alpha, Beta, and Delta of each subgroup;
8. Perform GWO local imitation in each subgroup in parallel using Equations (1)–(10);
9. Merge the subgroups in the main population;
10. Select the best Alpha of the subgroups as the global best;
11. Perform the global search by the PSO algorithm using Equations (11) and (12);
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12. Evaluate the fitness of the population using Equations (13)–(16);
13. itr = itr + 1;
14. }
15. Return final population.

Algorithm 1. The pseudocode of the proposed hybrid algorithm with artificial agent.
As depicted in algorithm 1, the division of the wolf’s population into subgroups is shown in
Figure 5. Each subgroup explores its local solution space and consists of the wolves Alpha,
Beta, and Delta. The local space has been searched using the suggested imitation technique
in the subgroups. The subgroups’ Alpha, Beta, and Delta have been used to conduct a
local search within each subgroup. Each wolf stores the visited best local position and the
velocity. At the end of local search in the subgroups, the least fit subgroups eventually
join the best subgroups. The wolves (search agents) of the subgroups are combined into a
new population. The best Alpha of the subgroups is chosen as the global best of the total
population. On the total population, the PSO traditional imitation algorithm is used for
global imitation. In the global imitation, the local best and velocity of each wolf, which
were calculated in the subgroups, were used. As shown in Figure 5, the Omega volves
mimic the local Alpha, Beta, and Delta (local search). At this point, just the Omega wolves
(replication arrays) are modified. Alpha, Beta, and Delta are updated in the subgroups
using equations 1–10. According to the new positions of the wolves, Alpha, Beta, and Delta
are upgraded. Each subgroup goes through this process a certain number of iterations.
If the subgroup members’ fitness has not improved, the mutation operator is used as the
subgroup’s Alpha to create more diversity. Once the local search is over, the wolves in each
subgroup are returned to the main population. In the main population the wolves behave
as particles and the swarm of particles evolves by the PSO equations (Equations (11) and
(12)). Figure 6 shows the reposition of the particles into the main population. Each member
of the group is defined by two vectors (speed and position in the search space). The new
position of the particles (wolves) is updated by vector of speed and local best. The best
position is calculated by the wolf local best (X local best) and the best position of the main
population (X global best). Based on the flowchart in Figure 4, these operations are repeated.

→
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In the replica-placement problem’s graph, one of those edges (or nodes) is removed;
the algorithm can still quickly decide the optimum new situation. Therefore, PSGWA can
immediately identify the best (shortest) path if a node is eliminated because it is no longer
necessary to start at the beginning.

Particle vk+1
i = wvk

i + c1 r1 ×
(

pbestk
i − xk

i

)
+ c1 r1 ×

(
gbestk

i − xk
i

)
(11)

Particle xk+1
i = xk

i +vk+1
i (12)

3.3. Objective Function

The total cost of the procedure related to the data object k is specified in Equation (13).
In Equation (13), AccessR(k) represents all the read operations for data object k from all of
the servers that have received read requests for Object(k). Equation (14) is used to calculate
the value of AccessR(k). In Equation (14), NS(nk) stands for the closest or least-priced server
to S(n) that has a copy of Object(k). Additionally, AccessW(k) in Equation (13) refers to all
writing to or updating operations on data object k from all servers that participated in the
update request. Equation (15) is used to calculate the value of Accessw(k). The complete set
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of running costs for the entire system for all data objects is determined using Equation (16).
The data access-time reduction is the primary task of this study. The PSGWA optimization
technique was employed in this study to find a solution to this issue. Equation (13) specifies
the fitness function for each of the issue solutions.

TOC(k) = AccessR(k) + AccessW(k) (13)

AccessR = V(k)×
(

N

∑
n=1

read(n, k)××l(n.NS(n, k))

)
(14)

AccessRw = V(k×
N

∑
n=1

write(n, k)×

l(n, p(k)) + ∑
(∀j∈RS(k),j 6=n)

l(p(k), j)

 (15)

TOC =
K

∑
k=1

TOC(k) (16)

4. Simulation Platform and Input Data

To evaluate the suggested method’s outcomes, they were compared to the results of
the GA, ACO, PSO, GWO, and PSGWA with distinct settings; all these algorithms have
been implemented along with the proposed method in MATLAB and executed in the same
hardware (intel core i7, 16GB RAM) and software (Windows 10) platforms. The developed
MATLAB code is freely available. The following are the evaluation criteria used in this study.

• Total data access operations (read and write) cost (TOC).
• The number of replica objects.
• Convergence speed of the algorithms in providing the best solution.
• Reliability of the algorithms in solving the replica-placement algorithms.
• Stability of the algorithm during different executions for a same data object.

Table 2 shows the configuration parameters of the GA, ACO, SFLA, GWO, and PSGWA
methods. The initial parameters of the GA are as follows. The initial population is 100 and
the chromosome length is a matrix 28 × k, where 28 is the number of available countries
(servers) and k is the number of data objects. The crossover probability is 0.8, and the
mutation rate is 0.2.

To compare the suggested technique, the European Union standard database (EUData)
was utilized, which comprises 28 nodes or servers and the network topology is in the form
of a full graph; in this graph (G(V, E)) are the vertices of the graph and show the countries of
the European Union (|V = 28|). In addition, E is equal to the graph’s edges and, it indicates
the cost of the network communication infrastructure. The simulations were conducted
with varying numbers of data objects (the value is between 1 and 5). Table 3 shows the
specification of the twenty-eight data-servers used in the simulations. Figure 7 depicts
the locations of the twenty-eight data servers throughout various European countries. In
the simulation experiments, servers 5, 17, 9, 22, and 11 are considered the major servers
for storing original data objects. The proposed method identifies the optimal number of
replicas for the original data objects as well as the optimal servers (locations). The volume
and location of original data objects used in the simulation are described in Table 4. Table 5
contains a list of data access requests (read and write) used in the simulations. In the
simulations, different numbers of data items (1 ≤ k ≤ 5) were used. Each data access
request contains five data objects to be accessed, with each number indicating the server.
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Table 2. Calibration parameters of different replication algorithms.

Algorithms Parameters Value

Genetic Algorithm
(GA)

Number of chromosomes 250

Length of chromosome 28 * k

Number of iterations 100

Cross-mutate rate 0.7

Mutation rate 0.05

Ant Colony Optimization
(ACO)

Number of ants 150

Initial pheromone (τ) 1

Q parameter 1

Pheromone power weight (α) 1

Number of iterations 100

Evaporation rate (ρ) 0.05

Shuffle Frog Leaping
Algorithm (SFLA)

Memeplex Size 12

Number of Memeplexes 8

Memplex size 6

FLA iterations (Beta) 7

Number of iterations 100

Gray Wolf Optimizer (GWO)

Population size 40

a Values between [0, 2] (using
Equation (1))

C Variable (using Equation (3))

A Variable (using Equation (2))

r1, r2 Random values between [0–1]

Particle-based Gray Wolf
Algorithm (PSGWA)

Population size 30

Particle.W 0.8

Particle.C1 and Particle.C2 1.8

a values between [0, 2] (using
Equation (1))

C Variable (using Equation (3))

A Variable (using Equation (2))

r1, r2 Random values between [0–1]

Number of Subgroups 3

Size of Subgroups 10

Local Iteration 30
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Table 3. Specification of the servers shown in Table 3.

Server Num. Server Name Country Capacity of Server in
Gigabytes

1 ‘FI’ Finland 10,021

2 ‘SE’ Sweden 21,451

3 ‘EE’ Estonia 21,110

4 ‘LV’ Lithonia 30,000

5 ‘LT’ Lithuania 32,002

6 ‘DK’ Denmark 34,555

7 ‘PL’ Poland 46,111

8 ‘CZ’ Czech 48,121

9 ‘SK’ Slovakia 42,121

10 ‘HU’ Hungary 10,001

11 ‘AT’ Austria 10,021

12 ‘RO’ Romania 21451

13 ‘IT’ Italy 21,110

14 ‘SL’ Slovenia 30,000

15 ‘BG’ Bulgaria 32,002

16 ‘GR’ Greece 34,555

17 ‘CY’ Cyprus 46,111

18 ‘MT’ Malta 48,121

19 ‘PT’ Portugal 42,121

20 ‘ES’ Spain 10,001

21 ‘FR’ France 34,555

22 ‘DE’ Germany 46,111

23 ‘LU’ Luxembourg 48,121

24 ‘BE’ Belgium 42,121

25 ‘NL’ Netherlands 10,001

26 ‘GB’ Great Britain 34,555

27 ‘IE’ Ireland 46,111

28 ‘HR’ Croatia 48,121

Table 4. The volume and location of original data objects used in the simulation.

Data Object K1 K2 K3 K4 K5

Volume in
Gigabytes 0.1 0.15 0.16 0.18 0.2

Primary
Hosted
Server

Server 5
(Lithuania)

Server 17
(Cyprus)

Server 9
(Slovakia)

Server 22
(Germany)

Server 11
(Austria)
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Results

In the replica-placement problem in distributed systems, there are k data objects that
must be replicated on N servers. In this case, S(n) represents the server’s nth instance, while
Object(k) represents data object k. Five series of trials using GA, ACO, SFLA, GWO, PSO, and
PSGWA were conducted to establish the ideal position for the replicas. In the initial round of
tests, one data object was replicated on twenty-eight servers. To compare the outcomes, data
access time (TOC) and the number of replicas produced for the data object were employed.
Similar studies have been performed to identify where the best clones of two, three, four, and
five data objects may be found. Each method replicates the data objects over many servers.
As a result, the data access time and replica count for each algorithm differ. Figure 8 depicts
the results of the first experiment. For this experiment, the map of Europe was replicated
among twenty-eight servers (Figure 7). During the first stage of this experiment, twenty-eight
servers were employed to host copies of data objects generated by various algorithms. Fifty-six
read and write operations on the replicas were then performed to calculate the overall data
access time (TOC). For the data objects, different algorithms may use a varied number and
distribution of servers. As a result, overall access time is determined by the number and
location of copies. A similar experiment was conducted with varying quantities of data objects.
The suggested strategy aims to discover the best replica location; in this placement, the TOC
is at its lowest level. Figure 8 shows the best TOCs obtained by GA, ACO, SFLA, GWO, PSO,
and PSGWA. When k = 5, the TOC of the 56 data access operations (given in Table 6) in the
replicas created by the GA, ACO, SFLA, GWO, PSO, and PSGWA are respectively 0.6651,
0.8022, 0.8163, 0.8241, 1.0578, and 0.93066 s.
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Table 5. The read and write requests used in the simulation.

Request Number Read Request Array 28 × 5 Write Request Array 28 × 5

1 5, 3, 3, 0, 1 1, 1, 0, 2, 1

2 0, 4, 1, 1, 1 0, 5, 2, 0, 2

3 1, 2, 7, 6, 0 1, 1, 1, 0, 0

4 4, 3, 8, 0, 6 0, 1, 0, 1, 0

5 0, 6, 11, 2, 1 0, 2, 0, 1, 0

6 9, 0, 4, 0, 9; 0, 0, 0, 0, 0

7 3, 5, 2 1, 10 0, 0, 0, 0, 0

8 1, 4, 2, 0, 1 0, 0, 1, 0, 0

9 3, 5, 0, 8, 0 0, 0, 0, 1, 0

10 2, 3, 2, 4, 5 0, 1, 1, 0, 1

11 2, 1, 1, 8, 0 0, 0, 0, 1, 0

12 2, 0, 7, 4, 9 0, 1, 2, 0, 0

13 1, 1, 2, 4, 0 0, 0, 0, 0, 0

14 1, 1, 4, 1, 0 1, 2, 1, 0, 0

15 0, 4, 3, 0, 7 0, 1, 0, 2, 0

16 1, 1, 2, 2, 1 0, 1, 0, 1, 0

17 3, 6, 5, 4, 5 0, 0, 0, 0, 2

18 6, 0, 4, 0, 6 0, 1, 0, 1, 0

19 0, 4, 2, 3, 0 0, 0, 1, 0, 4

20 5, 3, 4, 0, 3 0, 1, 2, 4, 0

21 2, 10, 2, 6, 0 0, 0, 2, 0, 0

22 5, 4, 4, 0, 2 1, 0, 0, 1, 4

23 3, 0, 2, 3, 1 0, 0, 1, 0, 0

24 2, 7, 9, 0, 5 0, 3, 0, 0, 3

25 1, 4, 3, 3, 5 0, 0, 0, 2, 0

26 3, 6, 2, 10, 5 1, 0, 0, 1, 1

27 6, 0, 4, 0, 6 0, 0, 3, 0, 0

28 0, 4, 4, 3, 0 0, 2, 0, 0, 2

Table 6. The slopes of the trendline produced for different algorithms.

Algorithm Slopes of the Trendline

PSGWA 0.04215
PSO 0.2705

GWO 0.0518
SFLA 0.0518
ACO 0.1132
GA 0.0877
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The proposed method provides lower data success time than the other algorithms.
The comparable results have been obtained when there are four data objects for replication;
the total data access time to the replicas produced for the four data objects by PSGWA, PSO,
GWO, SFLA, ACO, and GA are respectively 0.6663, 0.76035,0.79147, 0.76898, 0.94575, and
0.92816 s. Overall, the TOC of the produced replicas by the proposed PSGWA is lower
than the TOC of the other algorithms. As shown in Figure 8, PSO and GWO have similar
performance in the replica-placement problem in terms of the TOC criterion. The PSGWA
exploits the merits of both algorithms and then performs better than the GWO and PSO.
The suggested PSGWA has a lower TOC than the other methods in all benchmarks. Figure 9
depicts the reduction in data access time achieved by various algorithms. In all benchmarks,
the suggested PSGWA outperforms the previous algorithms in terms of TOC reduction. In
the small benchmarks (k = 1), all methods (excluding PSGWA) perform similarly in terms
of TOC reduction. In all benchmarks, there are significant disparities in the TOC of various
algorithms. The TOC is decreased by 48% when the suggested technique is used for one
data object. This figure is 37%, 36%, 37%, 37%, and 31% for the GA, ACO, SFLA, GWO, and
PSO algorithms, respectively. In the large benchmarks (k = 5), PSGWA provides 31% TOC
reduction that is better than the other algorithms. Regarding the TOC reduction criterion,
the proposed PSGWA has a higher performance than the other algorithms. Figures 8 and 9
show how poorly the ACO algorithm worked when confronted with a large number of
data objects. The ACO has performance overhead in some benchmarks. Regarding the
results of the conducted simulations, PSGWA provides the lowest data access time. The
amount of TOC reduction by the PSGWA is higher than the other algorithms.

The suggested method’s TOC criterion grows approximately linearly with the number
of data objects. A statistical technique known as interpolation is used to approximate an un-
known TOC value when the value of K is bigger than five. Interpolation is a technique used
to estimate the performance of replica-placement algorithms in huge datasets. Interpolation
is possible by using extra known values in the same sequence as the unknown value. If
there is a consistent trendline throughout the acquired data points, the performance of the
replica-placement algorithms can be predicted. Figure 10 depicts the trendlines derived by
several algorithms over the TOC. The trendlines represent the behavior of the algorithms
for various data objects. The performance of the proposed strategy is indicated by the
slots of the constructed trendlines. The TOC decreases as the slot decreases. The PSGWA’s
behavior is linear, as illustrated in Figure 10. Table 6 displays the trendlines’ slope for the
various algorithms. The PSGWA trendline slope is around 0.0421. The PSGWA has the least
trendline slope. The highest slope is associated with the PSO. Indeed, the TOC value of
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PSO increases more steeply for larger data and it can be used for the considerable number
of data objects in distributed systems such as clouds and IoT.
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The number of replicas produced by the replica-placement algorithms is another
evaluation criterion. The higher the number of produced replicas, the higher storage cost.
Figure 11 displays the number of replicas produced by various algorithms for various
numbers of data objects. The number of produced replicas by the GA, ACO, SFLA, GWO,
PSO, and PSGWA are respectively 5, 6, 5, 5, 5, and 4 when k = 1. In the large benchmark
(k = 5), the number of produced replicas is 24, 30, 8, 12, 9, and 7, respectively. In most
of benchmarks, the number of replicas produced by the PSGWA is lower than the other
algorithms. Overall, the suggested method can achieve larger time savings with fewer
replications. The size of required storage by the PSGWA is lower than the other algorithms
in the replica-placement problem. The largest time reduction with a limited number of
replicas indicates the higher efficiency of the PSGWA over the other algorithms. As shown
in Figure 11, in the PSGWA, the rate of increase in the number of replicas increases linearly
and with a lower slope than other algorithms; it means that the PSGWA will also have
higher performance in the larger number of data objects.
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numbers of data objects in the best cases.

The other performance criterion of the heuristic algorithms is the convergence criterion.
Another set of experiments was run to evaluate the convergence of the replica-placement
algorithms. Figure 12 depicts the convergence of various strategies in establishing the
appropriate number and location (servers) for a single data object replica. As seen in
Figure 12, the proposed strategy has a much faster rate of convergence than the other
methods. The PSGWA identifies the optimum servers for the replicas of one data object
before ten iterations. In this test (K1), four copies were produced among specified servers,
resulting in a 48% TOC reduction. In terms of TOC reduction and convergence speed,
Figure 12 shows how the PSGWA outperforms the PSO, GWO, SFLA, ACO, and GA. In the
second experiment, the performance of different algorithms was evaluated in replacing
two data objects. Figure 13 depicts the convergence of the algorithms when two data
objects must be replicated and stored in the proper servers. The results confirm the better
performance of the proposed PSGWA in terms of convergence and TOC. The PSGWA
algorithm can discover the best replica location in this benchmark experiment before the
fifth iteration. The proposed method obtained 44% TOC reduction with only five replicas.
Figure 14 shows the convergence speed of different algorithms when there are three data
objects for replication over the twenty-eight servers. In this experiment, the value of TOC
obtained by the proposed method is lower than the TOC obtained by the other algorithms.
As shown in Figure 14, the differences among the TOC of different algorithms are close to
each other. The convergence speeds and obtained TOCs by different algorithms are shown
in Figure 15. In this benchmark (k = 4), the PSGWA identifies the optimum servers for four
data objects’ replicas before the 20th iteration. PSGWA results in a 33% TOC reduction
with seven replicas when there are four data objects. In this benchmark, PSO and SFLA
have similar performance (23% TOC reduction). GWO, as other algorithm, provides a 20%
reduction in the data access time. The required number of data servers is lower than the
other algorithms. In the other experiments, the performance of the different algorithm has
been evaluated with five data objects. Figure 16 shows the performance of the algorithms
when there are five data objects for replication. As shown in Figure 16, PSGWA reduces the
TOC by 31% with only seven data replicas. In this benchmark, PSO, GWO, and SFLA have
similar performance. PSGWA have higher convergence speeds than the other algorithms.
GWO contributes 18% TOC reduction by creating twelve replicas. After the proposed
method, the PSO requires a lower number of data servers for managing the five data objects
than the GWO, ACO, SFLA, and GA.
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12.5, 19.75, and 14.25. Overall, the proposed method manages the data with fewer copies 
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Figure 16. The convergence of different replica-placement algorithms to optimal solutions for one
data object (k = 5).

Figure 17 shows the average TOC obtained by different algorithms. The average values
of TOC provided by GA, ACO, SFLA, GWO, PSO, and PSGWA are respectively 0.6286,
0.7469, 0.7249, 0.7209, 0.8201, and 0.7790. Indeed, the average value of TOC in PSGWA is
lower than the value of TOC in other algorithms. The PSGWA provides lower data access
time than the other algorithms. Figure 18 shows the average value of TOC reduction by
different algorithms. The average TOC reduction by GA, ACO, SFLA, GWO, PSO, and
PSGWA are 35%, 25%, 28%, 30%, 18%, and 21%. Indeed, the proposed PSGWA provides
35% TOC reduction on average. Finally, as shown in Figure 19, the average number of
replicas produced by GA, ACO, SFLA, GWO, PSO, and PSGWA are as 6.25, 7.2, 8.2, 12.5,
19.75, and 14.25. Overall, the proposed method manages the data with fewer copies and
provides the greatest reduction in data access time. Regarding the results, PSGWA has
a significantly higher TOC reduction, faster convergence, and fewer produced replicas
(smaller storage spaces) than the other methods.
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The collected results were examined in terms of deviation value to assess the stability of
the replica-placement algorithms. Ten runs of each algorithm were examined to evaluate the
range of possible outcomes variations. Figures 20 and 21 depict the range of variations between
ten results (TOC) from ten executions. PSGWA has the lowest TOC with the lowest variation,
according to the results. The lowest variation in the generated outcomes from 10 executions
illustrates the PSGWA’s stability in the replica-placement problem. Because of the narrow
range of change, the proposed solution for the replica-placement problem can produce the
same outcomes in different executions. The number of replicas produced by the algorithms
for each data object is the other performance criterion. The fewer replicas generated, the fewer
servers are required. As illustrated in Figures 22 and 23, PSGWA provides the shortest data
access time with the fewest created copies. The key advantage of the recommended method is
that it only takes a few replicas to reduce the value of TOC. When K = 5, the PSGWA has the
smaller range of changes in the number of replicas than the other algorithms. In fact, PSGWA
is more stable than the other algorithms. After PSGWA, the PSO, GWO, and SFLA show
similar performance in terms of TOC and stability. The GA and ACO algorithms produce a
wider range of outputs than the other algorithms. The ACO does have less stability than the
other algorithms, and it may produce different outcomes in different executions.
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Figures 24 and 25 illustrate the standard deviation (STDV) of the number of replicas
and TOC produced by various algorithms. A lower TOC standard deviation indicates
that the algorithms are more stable. When k = 4, the standard deviation of the number of
produced replicas by the proposed method is 0.707, which is much less than that of the GA,
ACO, and SFLA techniques. In this benchmark, the STDV of the PSO and GWO is lower
than that of the PSGWA. When k = 5, the standard deviation of the number of replicas
produced by the proposed method is 0.710, which is much less than the GA, ACO, SFLA,
and PSO techniques. The standard deviation of the TOC provided by proposed method for
four data objects is 0.0019, which is considerabbly less than the STDV of other algorithms.
İn all benchmarks, the STDV of the GWO is lower than the PSO; indeed, GWO is more
stable than the PSO in the replica-placement algorithm. The proposed PSGWA exploits the
merits of PSO and GWO at the same time. Overall, the statistics show that the PSGWA is
effective as long as GWO is significantly more stable than the other algorithms.
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Similar studies were carried out with four different setups in order to validate and
trust the results. The principal servers of the original data objects are different in each
experiment. Furthermore, the size of data objects varied depending on the arrangement.
Each replica-placement algorithm has been tested under various scenarios (configurations).
Table 7 displays the final experiment setting parameters. Four separate data objects with
varying volumes were stored in selected servers in each configuration. In the configurations,
the primary server of each data object is distinct. Figure 26 depicts the performance of the
algorithms in the stated configurations. The results show that the PSGWA’s performance
in finding the best replica-placement is independent of the size and primary location
of the data objects. The PSGWA has a higher performance than the other algorithms
in all experiments with varying configurations. PSGWA determines the best placement
of the data objects before the tenth iteration in first configuration (Figure 26a). In this
experiment, approximately, the SFLA, PSO, and GWO have similar performances. The
PSGWA yielded a TOC of around 0.665. The second experiment was carried out using a
modified arrangement. Data items were saved in various primary servers in the second
arrangement. Figure 26b depicts the algorithms’ performance in the second configuration;
PSGWA converges to the best solution before the tenth iteration. The PSGWA obtained
a TOC of around 0.682. In the second experiment, the SFLA and GWO have a similar
performance and Pso has a lower performance than the SFLA and GWO. The exploitation
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step of the PSGWA was inplemented by GWO; hence, the proposed method benefits from
the GWO and PSO. Overall, the PSGWA has a higher performance than the GWO and PSO.

Table 7. Four different workload configurations to validate the performance of different algorithms.

Configuration Primary Servers Volume of Data Objects (GB)

Configuration 1 [15, 7, 3, 17, 27] [0.1, 0.15, 0.16, 0.1, 0.2]

Configuration 2 [1, 28, 11, 5, 3] [0.7, 0.15, 0.86, 0.9, 0.7]

Configuration 3 [19, 2, 17, 15, 6] [0.3, 0.25, 0.1, 0.7, 0.25]

Configuration 4 [11, 21, 1, 15, 3] [0.9, 0.15, 0.3, 0.5, 0.60]Symmetry 2023, 15, x FOR PEER REVIEW 26 of 31 
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Figure 26c,d show the performance of the replica-placement algorithms in the last con-
figurations 3 and 4. The suggested PSGWA clearly outperforms the previous algorithms in
terms of performance and efficiency. In the third and fourth experiments, the performance
of the SFLA, GWO, and PSO are like each other. Furthermore, the number of replicas made
by the PSGWA is lower than the number of replicas created by the other algorithms. As a
result, the suggested solution reduces the overall data access time in distributed systems
with fewer data replicas stored on multiple servers. In terms of outcomes, the PSO, GWO,
and SFLA outperform the ACO and GA in terms of performance and efficiency. In this
study, the PSO, GWO, and SFLA had comparable results. The PSO and GWO produced
an average of 7.2 and 8.2 copies, respectively. The PSGWA’s average number of created
replicas is around six. The average number of generated replicas by the SFLA is about
twelve in the conducted experiments. The average TOC decrease by the PSOGWA, PSO,
GWO, and SFLA are 35%, 25%, 28%, and 30%, respectively. The SFLA, in fact, has a larger
TOC reduction than the PSO and GWO. The performance and efficiency of ACO, the other
replica-placement algorithm employed in this investigation, are the lowest.

Figure 27 illustrates the TOC obtained by each replica placement in four different
experiments with different configurations. The proposed PSGWA has remarkably com-
parable results in different experiment configurations. Meanwhile, the other algorithms
generate different results (TOC) regarding the initial locations, and the volume of data
objects varies. Indeed, the performance of the PSGWA is approximately independent of the
data object’s specification. Figure 27 indicates that PSGWA has a linear and predictable
behavior. Less fluctuation reflects the algorithm’s dependability. The linear behavior with a
slope of about zero degrees implies that the proposed PSGWA is successful in this problem.
The best locations of main data objects and the locations of the related replicas determined
by different algorithms is shown in Figures 28–30.

Regarding the features of the problem and the obtained results presented, the meta-
heuristic method is recommended for this problem because there is not the required prior
information of the search space for the gradient-based methods. Also, the gradient-based
optimization methods may be very slow and interactable for the large datasets. However,
for more confidence, an extensive series of experiments should be developed using the
gradient-based methods (as a future study).
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5. Conclusions and Future Work

Rapid data access must be addressed in the design of large distributed systems. In
distributed systems such as the IoT, replica placement is an NP-complete problem. To
reduce the total cost of data operations, the PSGWA technique has been presented as a
discrete multi-swarm algorithm for replica management. Using the MATLAB programming
language, the proposed approach was applied to a standard dataset. The proposed method
is introduced to control and preserve the symmetry of the data access time, in the number
of produced replicas, resulting in stability and reliability. On average, PSGWA reduces



Symmetry 2023, 15, 487 29 of 31

data access time by around 35%; the figures for the PSO, GWO, SFLA, ACO, and GA are
25%, 28%, 30%, 18%, and 21%, respectively. The next challenge is to reduce the number of
replicas generated for data objects to conserve allocation resources. The average number
of data object replicas made by PSGWA, PSO, GWO, SFLA, ACO, and GA is 6, 7.2, 8.2,
12.50, 20, and 14. Indeed, the suggested PSGWA gives the shortest data access time with
the fewest storage spaces. Furthermore, the proposed method has a faster convergence rate
than PSO, SFLA, ACO, and GA. In this case, the PSGWA technique produced results with
less standard deviations than the other algorithm. The suggested technique is more stable
than the other algorithms during multiple executions. In fact, the PSGWA can produce the
same outcomes in multiple runs. As a result, the PSGWA is more dependable and efficient
in the replica-placement problem.

In this study, the system is assumed to be stable overall in this analysis; benchmarking
the proposed method in dynamic systems is suggested as one future study. However, the
operations (requests) are assumed to be a combination of reading and writing (updating)
transactions. The other data transaction was not considered. In the current study’s unstable
state, the algorithm’s execution time to arrive at the best response was not analyzed. The
parallelization of the proposed optimization algorithm is the other concern that can be
viewed as a future effort. The dynamic form of this technology is anticipated to be another
subject of future research because the primary and replica data migrate throughout the
operation for unique reasons in a dynamic setting (dynamic system). Reinforcement learn-
ing can be used to determine the best potential solution of the replica-placement problem.
Reinforcement learning differs from supervised learning in that the training data contains
the solution key, while in reinforcement learning, there is no answer, and the reinforcement
agent determines what to do to find out the optimal solutions. Hence, development of
the reinforcement learning method to sort out the replica-placement problem is one of the
interesting future works. A variety of heuristic methods have also been developed and
used to manage a wide range of optimization problems in computer engineering [19–28].
Hence. The effectiveness of the other discrete heuristic methods can be evaluated in the
replica-placement challenge. Considering the data security in the data replication method
is the other future study.

Author Contributions: Conceptualization, B.A. and S.H.; methodology, B.A.; software, B.A.; valida-
tion, B.A., S.S.S. and S.H.; formal analysis, B.A. and T.A.; investigation, S.H., O.F. and T.A.; resources,
B.A.; data curation, B.A. and S.S.S.; writing—original draft preparation, B.A. and S.S.S.; writing—
review and editing, B.A., S.S.S., S.H., O.F. and T.A.; visualization, S.S.S.; supervision, B.A. and S.H.;
project administration, B.A., S.H. and O.F.; funding acquisition, S.H. and O.F. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors declare that no funds, grants, or other support were received during the
preparation of this manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors have no relevant financial or non-financial conflicts of
interest. All authors contributed to this study. The data related to the current study are available on
Google Drive and can be freely accessed by the following link: https://drive.google.com/drive/
folders/1DpdtwqXiX7_kQSVPvB2QN4AoYxNQKgRu?usp=sharing (accessed on 4 January 2023).

Acknowledgments: This study has been partially conducted under the project ‘Mobility and Training
for Beyond 5G Ecosystems (MOTOR5G)’. The project has received funding from the European Union’s
Horizon 2020 program under the Marie Skłodowska Curie Actions (MSCA) Innovative Training
Network (ITN), having grant agreement No. 861219.

Conflicts of Interest: The authors declare no conflict of interest.

https://drive.google.com/drive/folders/1DpdtwqXiX7_kQSVPvB2QN4AoYxNQKgRu?usp=sharing
https://drive.google.com/drive/folders/1DpdtwqXiX7_kQSVPvB2QN4AoYxNQKgRu?usp=sharing


Symmetry 2023, 15, 487 30 of 31

Abbreviations

Genetic Algorithm GA
Particle Swarm Optimization PSO
Ant Colony Optimization Algorithm ACO
Gray Wolf Optimization Algorithm GWO or GWA
Shuffle Frog Leaping Algorithm SFLA
Particle Swarm based Gray Wolf Optimization Algorithm PSGWA
Total data access operations (read and write) cost TOC
Standard Deviation STDV
Frog Leaping Algorithm FLA
Local Best Individual Pbest
Global Best Individual Gbest
Velocity of Individuali Vi
Position of Individuali Xi
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