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Abstract: Nowadays, using a rental fleet to transport goods for delivering to customers at a particular
time frame is very important in the services and industry. That is why, in this study, we consider the
heterogeneous fixed fleet open vehicle routing problem with time windows, which is one version
of the vehicle routing problem with time windows. The problem has not attracted attention so
much in the operational research literature than the usual vehicle routing problem. The problem
consists of determining the minimum cost routes for a fleet of a fixed number of vehicles with various
capacities in order to fulfil the demands of the customer population. Moreover, the vehicles start at
the headquarters and terminate at one of the customers. In this study, we introduce a mixed integer
programming model and then integrate an exact algorithm to solve this model. Furthermore, a hybrid
algorithm (HA) based on modified rank-based ant system is developed and then its efficiency is
compared with the exact method and some metaheuristic methods on some standard instances in
literature. The results proved the effectiveness of our proposed HA.

Keywords: open vehicle routing problem; heterogeneous fixed fleet; time windows; mixed integer
linear programming; rank-based ant system

1. Introduction

Growing population and urban expansion have produced some problems which are
attached to our daily life and are essential to solve. In this problem, type, logistics and
supply chain have considerable places because they deal with the created problems from
the starting of the production of a goods till the delivery of it to the customer. In this phase,
which exists in all commodities, the cost of production and the final price of the goods are
so important. Furthermore, the satisfactory price is an important factor of a goods which
has a significant impact on its sale. On the other hand, the lower the production cost of a
goods, the cheaper the company is in the production of goods and delivering services to
customers. Thus, decreasing the production cost is an important factor for more profit [1].

In the vehicle routing problem (VRP), vehicles in the depot must serve some customers
(n) distributed around the depot such that, firstly, the demands of the customers allotted to
each vehicle must not surpass the capacity of the vehicle (Q), and secondly, every customer
is only met by only one vehicle. In addition, all vehicles are similar having finite capacity
and only one type of goods must deliver to the customers [2]. Figure 1, for example, shows
a feasible solution toa VRP instance. In this figure, there are 50 customers and 9 vehicles,
and the capacities of all customers assigned to each vehicle are less than the Q.

This problem performs an important role in the distribution management as well as in
the supply chain such that over the past half century several researchers have addressed it
and its expansion. For example, these expansions include the open VRP (OVRP) [1], the
green VRP (VRPG) [3], the VRP with drones (VRPD) [4], the VRP with the time window
(VRPTW) [5], the VRP with pickup and delivery (VRPPD) [6], the distance constrained
VRP (DVRP) [7].
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Figure 1. A feasible solution for VRP. 
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The specialization of jobs and increasing competition for sales and services have 
caused the time interval of science production and its use in various sciences, especially 
transportation, to be very low. Alternatively, nowadays, some production companies nei-
ther advertise nor transport nor sell their goods but leave it to some dedicated enterprises. 
Thus, outsourcing to dedicated enterprises has become commonplace and they invest 
large amounts on transportation deals for distributing their goods. Therefore, the trans-
portation enterprises bring their vehicles to the depot, load the goods, and deliver them 
to the customers. The vehicles in these matters, known as leased, will no longer come back 
to the depot after performing their duties and end their path at the last customer. This 
problem is known as the OVRP where the Hamiltonian route of each vehicle is open, in 
contrast with VRP, which is closed [8]. 

The OVRP is extensively used in today’s world, for example, the transportation of 
postal goods, the delivery of newspapers to different houses, etc. More applications can 
be found in [9]. This problem also does not have a long-sighted record, in contrast with 
the VRP, and it was presented first in [10]. The authors introduced a first clustering second 
routing technique. Of course, since this problem is highly regarded by investigators and 
several procedures were introduced to solve it, such as general variable neighborhood 
algorithm [11], genetic algorithm [12], and iterated local search [13] and so on. 

In everyday transportation issues, due to variations in the production types or the 
type of delivery to customers across manufacturing firms, these firms close their contracts 
to distribute products with several service companies that have similar vehicles. Alterna-
tively, production companies utilize numerous fleets of vehicles to disseminate their 
products so that they can be delivered to customers at lower costs. Therefore, the hetero-
geneous fleet VRP (HFVRP) has many service and industrial applications that attracted 
the attention of many investigators such as Gendreau et al. [14], Li et al. [15], Li et al. [16], 
Tarantilis et al. [17], and Soman and Patil [18]. In this type of problem, several character-
istics are considered as follows: 

• The fleet is heterogeneous and has various capacities. 
• Limited and certain number of vehicles. 
• Fixed cost to use each vehicle. 
• Non-fixed cost to use any vehicle per distance unit. 

Chu [19], for example, examined the heterogeneous fixed fleet VRP (HFFVRP) in 
2005. In that study, it was considered that in addition to a fixed heterogeneous fleet of 
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The specialization of jobs and increasing competition for sales and services have
caused the time interval of science production and its use in various sciences, especially
transportation, to be very low. Alternatively, nowadays, some production companies
neither advertise nor transport nor sell their goods but leave it to some dedicated enterprises.
Thus, outsourcing to dedicated enterprises has become commonplace and they invest large
amounts on transportation deals for distributing their goods. Therefore, the transportation
enterprises bring their vehicles to the depot, load the goods, and deliver them to the
customers. The vehicles in these matters, known as leased, will no longer come back to the
depot after performing their duties and end their path at the last customer. This problem is
known as the OVRP where the Hamiltonian route of each vehicle is open, in contrast with
VRP, which is closed [8].

The OVRP is extensively used in today’s world, for example, the transportation of
postal goods, the delivery of newspapers to different houses, etc. More applications can
be found in [9]. This problem also does not have a long-sighted record, in contrast with
the VRP, and it was presented first in [10]. The authors introduced a first clustering second
routing technique. Of course, since this problem is highly regarded by investigators and
several procedures were introduced to solve it, such as general variable neighborhood
algorithm [11], genetic algorithm [12], and iterated local search [13] and so on.

In everyday transportation issues, due to variations in the production types or the type
of delivery to customers across manufacturing firms, these firms close their contracts to
distribute products with several service companies that have similar vehicles. Alternatively,
production companies utilize numerous fleets of vehicles to disseminate their products so
that they can be delivered to customers at lower costs. Therefore, the heterogeneous fleet
VRP (HFVRP) has many service and industrial applications that attracted the attention
of many investigators such as Gendreau et al. [14], Li et al. [15], Li et al. [16], Tarantilis
et al. [17], and Soman and Patil [18]. In this type of problem, several characteristics are
considered as follows:

• The fleet is heterogeneous and has various capacities.
• Limited and certain number of vehicles.
• Fixed cost to use each vehicle.
• Non-fixed cost to use any vehicle per distance unit.

Chu [19], for example, examined the heterogeneous fixed fleet VRP (HFFVRP) in
2005. In that study, it was considered that in addition to a fixed heterogeneous fleet of
units, a number of customers were serviced by rented companies if needed. Moreover, a
mathematical model and an innovative method for selecting customers who should have
been assigned to rented trucks are presented. Moreover, in [20], it states to possibly rent a
collection. In this algorithm, first, customers who have to be serviced by rented trucks are
selected and then the first solution is made and improved by multiple improved heuristic
algorithms. Next, the second solution will be made and re-improved. Among the two
improved solutions, one of them is chosen as the ultimate solution that has less cost. In
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addition, Prins [21] used two proposed algorithms to solve two HFFVRP instances by
determining the fleet size and mix VRP (FSMVRP). In their proposed combined genetic
algorithm, the obtained response is improved after intersection and mutation by using a
local search procedure. Schmida et al. [22] investigated the issue of ready-mixed concrete
distribution. In this problem, the purpose of distribution of concrete made by a fixed
fleet of vehicles was different. This paper used a detailed method that was guided by
the variable large neighborhood search method. The method was tested on 20 instances
of different sizes, which were based on the data of a construction materials distribution
company. The reported results showed the usefulness of the method. Furthermore, Euchi
and Chabchoub [23] addressed the HFFVRP and presented a meta-based algorithm that
combined a tabu search algorithm and adaptive memory to solve this problem. This
method was tested on the instances presented in [24]. In 2011, Brandao [24] examined the
HFFVRP and presented a banned search algorithm for solving the problem. This algorithm
was based on the algorithm presented for FSMVRP, which was tested on the instances
presented in [25] and a new set of instances with their results are compared with other
algorithms.

If the HFFVRP assumes that the vehicles are rented, then the heterogeneous fixed
fleet OVRP (HFFOVRP) arises, which has applications in logistics and transportation
problems [26]. The problem is one of the newest versions of the VRP. This is a practical and
real issue today because with the expertise of jobs, most of their manufacturing companies
no longer market and deliver their goods and leave it to transportation companies. In this
case, the stationary trucks move from their location and go to the store of the producer.
Next, after loading and delivering the goods to the customers, these devices will no longer
return to the warehouse and each of them will finish its movement to the last customer
for the delivering the goods. Alternatively, because of the decline and shortage of proper
productivity, it is well for these companies to utilize vehicles with variant capacities due to
different economic conditions and transportation costs. Therefore, a heterogeneous fleet of
vehicles can be used for transporting goods, in that case the transportation cost could be less.
Furthermore, for many goods, it needs to deliver to customers within a specific period of
time. Therefore, if time windows are applied to problem, the problem becomes HFFOVRP
with time windows (HFFOVRPTW) [27]. This problem arises especially in perishable goods
which must be delivered to customers at a specific time, otherwise the company cannot
make a profit from routing. In this problem, the aim is to find a combination of vehicles to
provide service to customers such that the following conditions are satisfied.

• Every vehicle begins its path from the depot and does not return to it after finishing
the path.

• All customers’ requests are met, and each customer receives the goods within a certain
period of time.

• The amount of request for each customer’s goods is delivered only by one of the
vehicles.

• The amount of customer requests allocated to each vehicle is less than its capacity.
• For each type of vehicle, the number used does not increase the number of predeter-

mined vehicles. Thus, the number of vehicles utilized in a particular problem instance
must be less than the predefined number.

• The time for every vehicle is less than the upper limit time for that vehicle.
• Only available vehicles should be used in customer service.

The HFFOVRPTW combines the OVRPTW and the HFFVRPTW which is proposed
by decreasing restrictions (Figure 2). For instance, if, no matter what the time window,
it is assumed that the vehicles have the same capacity, then it becomes the OVRPTW. Of
course, in the simple case of the OVRPTW, there is no fixed and variable cost for the usage
of the vehicles, for which the fixed cost is equal to zero and the variable cost is equal to one.
On the other hand, if for the HFFOVRPTW, the Hamilton route condition is converted to
Hamilton cycle and time windows are not considered, the HFFVRP will be raised. This
conversion is possible by assuming no expense between each end node to the depot and
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each time window belongs to the real number set. Since the HFFVRP and OVRPTW are
NP-hard [28], the HFFOVRPTW is also NP-hard.
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In our study, firstly, a mixed integer linear programming model (MILPM) is proposed
for our problem, and then a problem instance is solved by an exact approach (AIMMS
software version 12.3) for the model verification. Moreover, the Taguchi algorithm is used
for tuning parameters and a hybrid algorithm (HA) based on rank-based ant system (RBAS)
is developed and applied on some problem instances. Finally, the efficiency of HA is
examined by comparing with the exact method and some metaheuristic algorithms. The
experimental results demonstrate that our proposed HA has performed very well and
produced very high-quality solutions within an acceptable CPU time.

In this study, a MILPM for the HFFOVRP is proposed in Section 2 and in Section 3,
the proposed HA is described. In Section 4, several standard instances are considered
and solved using exact methods, HA, and some metaheuristic methods. Finally, future
conclusions and orientations are presented in Section 5.

2. The Proposed MILPM

One of the most important ways to solve a problem is to use its model, which can
express all its data and limitations. Next, using different algorithms, its decision variables
can be checked and obtained [29–33]. As a graph, our problem can be stated as G(V, A),
where V = {0, 1, . . . , n} is the node set and the A = {(i, j) |i, j ∈ V and i 6= j} is the set of
edges connecting the nodes. If G is not complete, each unavailable edges are assigned an
infinite cost. The ‘node 0’ denotes the depot, the remaining n nodes denote the customers
having the same demand qi. It also corresponds cij to each arc in an Euclidean distance,
where cii = 0 and cij = cji, for 0 ≤ i, j ≤ n. Further, a fleet of K various vehicle types is
situated at the depot, such that every kth vehicle has capacity Qk, a fixed cost fk (when the
vehicle is utilized on request) and the cost varies αk. Additionally, the number nk of the
device is existing in the fleet. The variable cost is the distance travelled by a vehicle, such
that the navigation cost for each arc (i,j) by the kth vehicle type is equal to ck

ij = cij × αk.
Therefore, in our problem, there is a symmetric cost matrix K and the product amount that
the kth vehicle brings from node i to j node is given by yk

ij when traveling. Every customer
has to be provided a service within a prefixed time window that is restricted to the quickest
begin time ei and the end service time li. Moreover, if the kth vehicle reaches a customer
after the end service time or if the vehicle goes to a customer before its begin time, it has
to wait an additional waiting time. Similarly, for every kth vehicle type, tk

i is the arrival
time at node i and f k

i is a service time for that node. If the vehicles end their routes at the
maximum permissible travel time r, then the objective is to find the minimum cost routes
for vehicles in which all constraints including travel time, capacity, and time windows are
determined for the vehicles.

Min
K

∑
k=1

fk

n

∑
j=1

xk
0j +

K

∑
k=1

n

∑
i=0

n

∑
j=0

ck
ijx

k
ij (1)
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subjest to,
K

∑
k=1

n

∑
i=0

xk
ij = 1 ∀j = 1, 2, . . . , n (2)

K

∑
k=1

n

∑
j=1

xk
ij ≤ 1 ∀i = 1, 2, . . . , n (3)

0 ≤
n

∑
i=0

xk
ij −

n

∑
i=0

xk
ji ≤1 ∀j = 1, 2, . . . , n, ∀k = 1, 2, . . . , K (4)

n

∑
j=1

xk
0j ≤ nk, ∀k = 1, 2, . . . , K (5)

K

∑
k=1

n

∑
i=0

yk
ij −

K

∑
k=1

n

∑
i=0

yk
ji = qj, ∀j = 1, 2, . . . , n (6)

qjx
k
ij ≤ yk

ij ≤ (Qk − qi)x
k
ij ∀i, j = 0, 1, . . . , n, i 6= j, ∀k = 1, 2, . . . , K (7)

n

∑
j=1

xk
i0 = 0, ∀k = 1, 2, . . . , K (8)

n

∑
i=1

n

∑
j=1,j 6=i

xk
ij(t

k
ij + f k

i + wk
i ) ≤ r f or k ∈ {1, 2, . . . , K} (9)

tk
0 = wk

0 = f k
0 = 0 (10)

n

∑
i=0,i 6=j

xk
ij(t

k
i + tk

ij + f k
i + wk

i ) ≤ tk
j f or j ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , K} (11)

ei ≤ (tk
i + wk

i ) ≤ li f or i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , K} (12)

yk
ij ≥ 0, xk

ij ∈ {0, 1} ∀i, j = 0, 1, . . . , n , ∀k = 1, 2, . . . , K (13)

In this model, the objective function (1) indicates the cost function which is composed
of two terms. Here, the first term indicates the total fixed cost, and the second term indicates
the total variable cost of the vehicles. In this model, if decision variables are not taken into
consideration, which are continuous and are used in restrictions that prevent unauthorized
loading of vehicles, then there are as many variables as the decision to make that after
solving the model, n numbers will have a value of one and the remaining of them will
get zero. Constraint (2) ensures that exactly one vehicle is arrived at each customer, while
relationship (3) points out that at most one vehicle is withdrawn from every customer. The
reason that the restrictions (2) and (3) are considered differently is that exactly one vehicle
is arrived at each customer while the vehicles’ routes can end at any other customer and no
vehicles leave them. In addition, relationship (4) causes any vehicle that enters a customer
to leave if the node is not terminal. For these customers, the difference in (4) is zero, but if
the customers are at the termination of their routes, then the number of incoming vehicles
is one unit higher than the number of outgoing vehicles. Constraint (5) suggests that the
number of kth type vehicles must be maximum nk. Here, the number of vehicles utilized in
every type can be strictly less than nk. Relationship (6) ensures that each customer’s request
is fully met. Alternatively, the needs of each customer must be talked only at one meeting
that will be fulfilled by only one vehicle. The relationship (7) indicates that the capacity
limit for every vehicle is satisfied. Moreover, the relationship (8) causes no path to the depot.
In fact, this limitation, along with (2), (3), and (4) guarantee the openness of the routes.
Constraint (9) shows the restriction about the maximum journey time. Finally, limitations
(10)–(12) apply time windows. Finally, restriction (13) defines the variable ranges.
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3. The Proposed Algorithm

Ant colony optimization (ACO) is an important metaheuristic method [34,35] intro-
duced as a tool for finding solution to the OVRP [8]. This algorithm is a successful example
of intelligent group systems, in which each factor performs a simple action, but doing
this simple action, in general, solves NP-hard combinatorial optimization problems. In
this algorithm, the main task of each artificial ant, such as its natural counterpart, is to
obtain the minimum cost path between a pair of vertices in a graph in which this problem
is properly moped on it. Therefore, the problem is converted to subproblems in which
artificial ants have a duty to choose the next node depending on distance to the next node
and the pheromone.

Despite the relatively good solutions obtained by ACO for the TSP, this algorithm
did not show much efficiency in the larger sized problem instances compared to other
algorithms. For this reason, much research has been conducted to improve this algorithm
to solve the problem. The RBAS is a revised version of the ACO. In this algorithm, similar
to the ACO algorithm, the decision rule for the k-ant located in node i, which wants to
select one of the nodes from the set of unsealed nodes, is obtained from Formula (14). Here
τij represents the pheromone amount on the edge (i, j), while ηij is the inverse distance
between the two nodes i and j. Of course, both of them have fixed power α and β which is
changeable by the user.

Pk
ij =


τij

αηij
β

∑j∈Ni
τij

αη
ijβ

i f j ∈ Ni

0 i f j /∈ Ni

(14)

The RBAS improved AS by ranking the solutions obtained by ants. The nature of
this method compared to other versions of the ant method is that the pheromone amount
released by ants depends on the rank of ants for obtaining the solution, as showed in (15).

τij(t + 1) = (1− ρ)τij(t) +
σ−1

∑
µ=0

∆τij
µ(t) (15)

ρ : The evaporation rate parameter is in the domain [0, 1]. The evaporation reduces
the pheromone on all edges with the same speed 0 ≤ 1− ρ ≤ 1. Alternatively, at the end
of each repetition of the algorithm, the remaining pheromones on all edges are reduced
by coefficient 1− ρ. This causes the new pheromone footprint to have a moderate weight
between the previous pheromone amount left on the edges and the new pheromone amount
in the current repetition.

τij(t) : The value of the pheromone on the edge (i, j) in repetition t.

∆τij
µ(t) =

{
(σ− µ)· Q

Lµ(t) (i, j) ∈ Sµ

0 (i, j) /∈ Sk
(16)

µ : The variable represents the ranking index, which changes from zero to σ− 1. In
this variable, the best ant takes zero and the descending amount remains until the worst
ant takes the value σ− 1.

Sµ : The edges belong to an ant that has been ranked µ in terms of obtaining the best
solution.

σ : The number of ants ranked and cast on the edges belonging to them is the
pheromone.

Q: Any constant value given by the user.
Lµ(t) : The length of the path obtained by the ant is µ.
Of course, in order to provide a more efficient method for the HFFOVRPTW, some

modifications have been made to this algorithm as follows.
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3.1. Selection Function

As stated in RBAS algorithm, each ant selects the next j node according to Formula
(14), while in the proposed hybrid algorithm (HA) based on RBAS, a new transfer rule is
proposed that focuses on both exploitation and exploration. For example, the movement
from node i to node j, which is not met j ∈ Ni and is carried out by ant k according to the
passing rule in (17).

Pk
ij =


τij

αηij
β(

π−θij
π )δ

∑j∈Ni
τij

αηij
β(

π−θij
π )δ

i f j ∈ Ni

0 i f j /∈ Ni

(17)

Here, to select the first customer for each ant in the HFFOVRPTW, the value of (
π−θij

π )δ

is considered one, while for the remaining clients, the value θij is equal to the angular value
that the edge (0, j) makes with the previous edge in the mentioned path, which is a number
between 0 and 180 degrees. For example, in Figure 3, this angle is shown. In this form,
the corresponding ant is located in node 1 and the previous edge in this path is the edge
filed between the warehouse node (zero node) with node 1. Therefore, the desired angle
is obtained from the intersection of mane (3, 0) with mane (1, 0). It is necessary to pay

attention to the fact that in the formula presented (
π−θij

π )δ, if θij is closer to zero, the more
value will obtain. It should be noted that here δ is a similar to parameters α and β are
determined by the user.
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3.2. Updating Pheromone

The drawback of the RBAS algorithm is that in the processing only the best paths are
processed in the current repetition of the pheromone. Therefore, the algorithm does not pay
attention to the gained experience and does not consider the edges algorithm belonging to
the best solutions ever obtained. Therefore, it is better that the algorithm, in addition to
searching for new solutions, uses experience to create a good balance for using experience
and searching for new solutions. It should be noted that if the algorithm only cares about
experience (the best solutions ever obtained), then because of the random structure that the
algorithm has, it is possible that the amount of the best solution per repetition will be worse
than the previous iterations. Therefore, it is expected that in several limited repetitions, the
best solution will not improve, and in spite of knowing that the solution may not be nice
(particularly in the beginning of the method). However, in several repetitions it might be a
pheromone consecutively. Therefore, in subsequent iterations, the algorithm may improve
the solution quality by searching more, and this extra pheromone on an unsuitable solution
causes the algorithm to lose time to change the search space without achieving a better
solution. Therefore, σ in Formula (15) is an even value is considered and, in each repetition,
the number value σ/2 of the best solutions in the current repetition and σ/2 from the best
values has been obtained, ranked, and pheromone according to this formula.
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3.3. Local Search Algorithms

For more improving of the solution algorithm, the hill climbing (HC) algorithm is
adopted to improve the HA exploitation and applied to the feasible position created. After
finding a new feasible solution, in this step, HC is applied to the solution created for
improvement. In fact, the solution created as the input solution to this algorithm as a
local search is given to increase the exploitation around the solution. This algorithm is
a popular local search algorithm starting with an initial solution X. Next, it iteratively
creates a neighbor solution X’ using a neighborhood structure. In HA, three neighborhoods,
named relocate, exchange, and end-customer interchange, have been used to create a
neighboring solution. Next, if the qualification of X’ is obtained well than X, replace X with
X’. Otherwise, X’ will be deleted and a new iteration will begin. The search will be repeated
until the stopping criterion is met. The hill climbing algorithm is shown in Algorithm 1.

Algorithm 1 Hill Climbing Algorithm

1. //The objective is to obtain a minimum cost
2. input X
3. // This initial solution is obtained by another algorithm
4. repeat
5. Generate a neighborhood for X
6. Select the best solution in the neighborhood and named X*

7. if f(X) < f(X*)
8. Break
9. else
10. X = X*

11. end if
12. until (the stopping criterion is satisfied)
13. return X

HC generates a new position by using the three neighborhood structures, respectively,
applied to the new position:

• Relocate the operator, which transfers a customer from one route to another.
• Exchange operator, which swaps two customers in different routes.
• End customer interchange operator, which swaps two end customers in different

routes.

3.4. Stopping Condition

Since the proposed algorithm is metaheuristic, similar to other metaheuristic algo-
rithms, the conditions for stopping the algorithm must be specified, otherwise the algorithm
will run indefinitely. For HA, the final condition is to perform the main loop in the algo-
rithm according to the number of customers. Alternatively, the algorithm will be completed
until the number of iterations of the main loop reaches the number of customers.

3.5. The Algorithm

The proposed algorithm runs on the HFFOVRPTW is stated as: Let there are n set of
ants where each set has m ants which are placed at the depot initially. Every ant creates
a Hamiltonian path using the state transition rule repeatedly. While creating its path, it
also modifies the pheromone amount of the traversed edges using the global updating
rule. In other words, the moment every ant finished their paths, the amount σ/2 of each
the best known and the current solutions are selected and their pheromones on the edges
are updated using the global updating rule. In our proposed algorithm, ants are managed
to create their open tours using Formula (17), by exploitation and exploration. The rules
for updating pheromones are constructed to provide extra pheromone to edges that are
supposed to be traversed by ants.
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Most literature on the ACO suggests that a probable method to obtain good quality
solutions is to incorporate a local search method for creating initial solutions. In our
proposed algorithm, once a set obtains a solution, the best set’s solution is further rectified
using three local search algorithms. In this, the main point is that a relatively good quality
solution might have a good possibility to lead to a global optimal solution. We first
implement the displacement method to an ant, and then implement the exchange method to
two ants. Finally, the end customer interchange operator is applied for more improvement.
The resultant solution would be accepted if the leading tour would be better than the
former solutions. The algorithm will be stopped when the iteration number is equal to
number of nodes. The pseudocode of our proposed hybrid algorithm for the HFFOVRPTW
is presented in Algorithm 2.

Algorithm 2 Our Proposed Hybrid Algorithm

1. Input all data
2. Initialize all parameters
3. while number of iteration is not equal to nodes
4. for each from n colony
5. for each ant in a colony
6. Set all nodes as unvisited
7. while number of unvisited nodes > 0 do
8. if there is no feasible solution then
9. Go to 3
10. end if
11. Select a depot
12. Compute ant’s probability of going to unvisited nodes satisfied time

window
13. if there is no node to be selected then
14. Go to 8
15. end if
16. Select a node according to the probability
17. if ant (load)+node (load) > ant (capacity) then
18. return to the depot and go to 7
19. else
20. Visit the selected node
21. end if
22. end while
23. end for
24. end for
25. Save the best solution if found
26. Select σ/2 of the best known solutions and σ/2 of the best current solutions
27. Evaporate pheromone trails
28. Update pheromone trails
29. Apply three local search algorithms
30. end while
31. return the best solution

4. Results and Discussion

Our proposed algorithm, HA, was encoded in MATLAB 2016 and all experiments
were implemented on a laptop with core 3 2.6 GHZ and 4 GB RAM running Windows 7
Home Basic Operating system. In this section, the parameters’ tuning is presented, and the
results of the HA are shown.

4.1. Parameters Tuning

Metaheuristic algorithms can obtain very good solutions in a limited time because
they use the concept of random to create solutions. In addition, in order to create this
concept, the algorithm must use many parameters so that there are different ways to find
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optimal solutions. Even to adjust these parameters, algorithms have been proposed that
because in this paper, the solutions are presented at the acceptable time of the target, so
it is tried to use an easier strategy to adjust the parameters in this section. For this goal,
based on the results reported in other articles, the important parameters, including α, β, δ,
σ, Map and ρ, of our proposed algorithm are considered and in Table 1, candidate values
are shown for them. Now, at this stage, the a5 problem is considered as a candidate and
has been tested with different parameters of this table. It should be noted that for each
parameter setting, this problem is tested 10 times and the best results are reported in this
table.

Table 1. Range of parameters of the proposed algorithm.

Parameters Range The Best Value

Alpha (α) 0.1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 1.5
Beta (β) 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 1.5
Delta (δ) 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 4
Sigma (σ) 2, 4, 6, 8, 10, 12, 14, 16, 18 6

Map 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 0.5
Rho (ρ) 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 0.1

Since the algorithm quality is often lower than best known solution (BKS), then the
gaps are positive. Conversely, value zero shows very good functioning of the algorithm for
this parameter and is able to reach BKS.

By comparing the results in Table 1 for alpha, one can conclude that the gap change
diagram is almost ascending based on its values. Alternatively, the higher the amount of
alpha, the lower the solution quality. Thus, 1.5 for this parameter causes the importance of
pheromone information not to have much effect on choosing a new path, especially at the
beginning of the algorithm, which has not yet obtained good solutions to the problem. In
addition, obtaining value 1.5 of beta has led the algorithm to seek more global searches in
the initial iterations and prevent early convergence at a slow rate to increase the pheromone
on the edges. The value of δ is obtained which shows the importance of this parameter
compared to other parameters. Moreover, for the best solutions obtained in the current
iteration and until now, the number of six has been obtained. This, while the neighboring
algorithm searches for the best solutions, prevents early convergence to one of the once
due to the updating of more of the solutions. The minimum amount of pheromone is also
considered here and the value 0.5 is obtained through nine candidates. Finally, the amount
of pheromone evaporation for this problem is 0.1, which reduces the amount of pheromone
on all edges belonging to the problem by 0.1 per replication. It should be noted that high
evaporation values cause the difference between the edges to increase rapidly, and the
algorithm does not have enough time to search globally and to search in the problem space.

4.2. Computational Results

The numerical results are presented using three sets of instances existing in the lit-
erature. In the first set shown in Table 2, seven instances are considered as a1, a2, a3,
a4, a5, a6, and a7. This category of instances includes customer numbers between 10
and 50 with specific demands that are scattered randomly nearby the source. Addition-
ally, the fleet contains 4 to 18 various vehicles along with capacities where the route
length for each vehicle is unrestricted. It should be added that these seven tested in-
stances are made up of Taillard instances. Taillard built these instances depending on
Golden’s biggest instances related to the FSMVRP, along with variable and fixed vehicle
costs. It should be added that all of these instances may be taken from the following
URL: http://mistic.heig-vd.ch/taillard/problemes.dir/vrp.dir/vrp.html (accessed on 8
February 2023).

http://mistic.heig-vd.ch/taillard/problemes.dir/vrp.dir/vrp.html
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Table 2. Characteristics of the first test set.

Instance Number of
Customers

Kind of
Vehicles

Capacity of
Vehicles Fixed Cost Variable Cost Number of Each

Kind of Vehicles

a1 10

1 20 20 1 1
2 30 40 1.1 1
3 40 70 1.3 2
4 70 200 1.7 1

a2 15

1 30 60 1 1
2 60 100 1.1 1
3 80 250 1.5 1
4 150 300 2 1

a3 20

1 20 70 1 1
2 35 120 1.1 2
3 50 200 1.2 2
4 120 250 2 3

a4 25

1 25 50 1 2
2 35 80 1.1 2
3 50 200 1.2 3
4 120 250 1.7 3

a5 30

1 25 35 1 3
2 35 50 1.1 2
3 50 75 1.2 4
4 120 150 1.7 4
2 120 75 1.1 2
3 160 100 1.2 3

a6 35

1 50 60 0.7 1
2 120 75 1 2
3 160 200 1.1 3
2 140 75 1.7 2
3 100 225 2.5 2
4 200 400 2 2

a7 40

1 25 20 1 1
2 35 35 1.1 1
3 40 50 1.2 3
4 70 120 1.7 4
5 100 225 2.5 2
6 200 400 3.2 1

In Figure 4, a 25-node instance for this problem is shown, solved by the exact algorithm
(AIMMS). Looking at the shape, one can see that 4 vehicle types with 7 vehicles are used.
The first kind of vehicles is brought with the black line, while the solution to the issue is
used for the second type vehicles, which are shown with the green line. Moreover, the
red line shows the solutions obtained by type 3 vehicles. In addition, given that there are
only two fourth vehicles, that only one of them has been used in this form. It is noted
that in these instances, similar to as in all available literature, the fixed vehicle cost is not
considered, in the computations, only the variable vehicle cost is used.
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In Table 3, we compared our results by HA with the results by the exact algorithm. In
this table, for each instance, n shows the number of customers while the third and fourth
columns show the results by the exact algorithm (AIMMS) and its computational time,
respectively. Moreover, the worst solution (WS), mean solution (MS), and best solution (BS)
obtained by HA in the ten iterations are shown in the fifth, sixth, and seventh columns.
Finally, the computational time for obtaining the best solution by HA is presented in the
very last column. From this table, one can see HA has performed better than the AIMMS
and is able to acquire good quality solutions. In more detail, our proposed HA has obtained
the same solutions at a much lesser time compared to AIMMS for a1, a2 and a3 instances.
Alternatively, our algorithm found better solutions for instance a4. Finally, for the instances
a5, a6, and a7, the AIMMS could reach a solution, but our HA could achieve a suboptimal
solution in just about 30 s. Generally, it can be said that our algorithm has performed well
that it can obtain solutions of the instances very quickly. For these instances, it is seen that
as the number of customers grows, the computation time differences between these two
algorithms grows rapidly. Therefore, in everyday applications of this problem in industry
and services, a good quality solution can be achieved by our proposed algorithm in an
acceptable time.

Table 3. Comparing the solutions by our HA with exact algorithm (AIMMS).

Instance n
AIMMS HA

Solution Time (s) WS MS BS Time (s)

a1 10 205.32 2.23 205.32 205.32 205.32 0.61
a2 15 299.00 19.72 299.00 299.00 299.00 0.99
a3 20 412.65 94.73 412.65 412.65 412.65 2.12
a4 25 512.11 212.72 489.02 482.38 480.12 4.82
a5 30 587.76 43,353.53 573.92 550.82 524.02 11.82
a6 35 Na - 399.02 386.29 383.12 25.82
a7 40 Na - 650.26 630.19 620.15 33.20

In Table 4, a comparison has been made between the proposed and exact algorithm
from another perspective. The difference between this table and Table 2 is that here is the
run time for the two identical algorithms as shown in the fourth column of the table. It is
noted that in spite of the fact that AIMMS software is one of the best optimization software,
but for the four instances a4, a5, a6, and a7, it failed to achieve a solution at the specified
time. Instead, for the three instances a1, a2, and a3, the proposed HA is cable to obtain
much better solutions than the implemented exact algorithm within short computational
time. Thus, one can conclude that the proposed HA is clearly better than the exact method.
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Table 4. Comparing exact algorithm (AIMMS) and our HA within the same time.

Instance n AIMMS Time (s) HA

a1 10 235.18 0.61 215.12
a2 15 476.33 0.99 315.35
a3 20 498.45 2.12 456.82
a4 25 Na 4.82 591.12
a5 30 Na 11.82 763.82
a6 35 Na 25.82 998.125
a7 40 Na 33.20 673.82

The second dataset is provided by Taillard and consists of 8 problem instances from
a13 to a20 with sizes ranging from 50 to 100 customers. In this medium size instance,
time windows are added to create a new set for testing the proposed algorithm. In order
to assess the usefulness of the HA compared to the classical version for these instances,
results by the proposed HA and the ACO [36] are reported in Table 5. Furthermore, this
is a new version of VRP, and no algorithm has been proposed until now, some classical
meta-heuristics are considered here, and their results are compared with our algorithm.
For any more details about the considered instances, one can click on the link: http:
//mistic.heig-vd.ch/taillard/problemes.dir/vrp.dir/vrp.html (accessed on 8 February
2023).

Table 5. Comparing algorithms for standard HFFOVRPTW problem instances.

Instance n
GA ACO HA

BKS
Solution Time Solution Time Solution Time

a13 50 998.13 101.26 992.76 98.15 990.11 94.32 990.11
a14 50 480.73 102.81 448.25 101.42 448.25 104.11 448.25
a15 50 789.27 99.02 714.67 88.73 709.31 92.22 705.12
a16 50 878.02 102.81 802.95 99.52 791.01 106.31 791.01
a17 75 898.26 152.72 823.56 123.52 815.05 129.11 815.05
a18 75 1698.92 147.92 1635.67 135.78 1601.55 145.04 1601.55
a19 100 1004.82 178.92 938.62 172.77 900.11 189.78 900.11
a20 100 1193.17 182.92 1088.62 178.02 1038.58 179.81 1035.12

Instance n
TS ICA SA

BKS
Solution Time Solution Time Solution Time

a13 50 990.11 99.12 992.62 100.23 993.12 105.22 990.11
a14 50 448.25 102.11 478.27 103.82 478.12 99.23 448.25
a15 50 705.12 88.92 780.32 105.92 780.02 105.22 705.12
a16 50 795.12 110.23 870.23 187.23 869.24 106.92 791.01
a17 75 825.72 145.82 900.12 155.82 889.12 144.23 815.05
a18 75 1601.55 155.82 1655.72 179.23 1614.27 155.92 1601.55
a19 100 905.11 199.12 999.12 199.82 950.12 175.92 900.11
a20 100 1035.12 204.11 1180.27 200.82 1056.82 198.02 1035.12

In Table 5, the first column shows the names of instances while the second column
presents the number of clients of each instance. It is noted that in this table, along with
the solution obtained by each algorithm, its execution time is also shown (in seconds).
Consequently, in the third and fourth columns, the results by genetic algorithm (GA) [37],
the fifth and sixth columns present the results by classical ACO [36], and the seventh and
eighth columns present the solutions obtained by the proposed HA. Alternatively, in the
second row of the table, the amounts of data lost by three other algorithms are shown. In
this row, the third and fourth columns show the results by tabu search (TS) [38], the fifth
and sixth columns show the results by the imperialist competitive algorithm (ICA) [39]
and finally the seventh and eighth columns present the results by simulated annealing

http://mistic.heig-vd.ch/taillard/problemes.dir/vrp.dir/vrp.html
http://mistic.heig-vd.ch/taillard/problemes.dir/vrp.dir/vrp.html
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(SA) [40]. Moreover, in the end column of each row, the best solutions (BKS) found by the
above-mentioned algorithms are presented. This column leads to compare the efficiency of
each algorithm compared to the best result obtained. In order to make a good comparison
between these algorithms, the gap obtained for each instance is shown by each algorithm in
Figure 5 (Formula (18)). In this formula, c(s*) is the best obtained solution by the considered
algorithm and BKS is the best obtained solution by all algorithms.

Gap =
c(s∗)− BKS

BKS
× 100 (18)
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In addition, in order to acquire the accurate results for comparing these algorithms,
the average gap for all instances is shown in Figure 6. It is seen from this figure that our
proposed HA is cable to find very good mean solutions compared to other algorithms.
Moreover, TS algorithm could obtain better solutions compared to the other four algorithms
and with an average of 0.3 in the second rank of algorithms. The ACO algorithm could
not find better solution than the two algorithms, but it has obtained better solutions with
an average of 1.97 than the GA, ICA, and SA algorithms. Finally, these three algorithms
have almost equal efficiency to solve these problem instances and have an average of 5.6
for SA, 8.3 for ICA, and 9.27 for the GA algorithm. By looking at the results obtained by all
algorithms, it is found that the closest solutions are by TS and HA algorithms. Comparing
these two algorithms, based on the obtained results, it is found that for two instances a15
and a20, the TS algorithm could find better solutions, while for three instances a16, a17, and
a19, our proposed HA has provided better quality solutions. Moreover, for the remaining
two instances, these two algorithms have obtained the same solutions. From both points of
view, our proposed HA could find the best solutions among these algorithms.
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In Table 6, large size instances for the HFFOVRPTW have been created randomly. In
these instances, which have a number of nodes from 110 to 400 nodes, the depot is placed
at the coordinate center, and the customers are located inside a square with the center of
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the depot and 200 sides. In Table 6, the third column shows the kind of vehicles (KV), the
fourth column shows capacity of the vehicles (CV), the fifth column presents the fixed cost
(FC), and the sixth column shows the variable cost (VC). In addition, the same algorithms
presented in the previous table are listed here and the reported computational times are
for the best solutions. On the other hand, in the end column, the best solution obtained by
which algorithm is presented, thereby best solutions (BKS) of this column have been used
for calculating the gap. Therefore, the numbers obtained in this table for all algorithms are
a gap compared to the BKS.

Table 6. Comparing algorithms for large sized HFFOVRPTW problem instances.

Instance n KV CV FC VC
GA ACO TS HA ICA SA BKS

bySol Time Sol Time Sol Time Sol Time Sol Time Sol Time

a21 110 4 20–70 20–70 1–1.8 4.32 170 3.62 172 2.43 201 0.00 187 4.12 172 5.74 175 HA
a22 120 4 20–70 20–70 1–1.8 3.54 168 3.99 171 1.34 200 0.00 176 3.12 173 4.73 176 HA
a23 130 4 20–70 20–70 1–1.8 5.23 175 5.12 176 3.73 212 0.00 189 5.65 174 2.38 180 HA
a24 140 4 20–70 20–70 1–1.8 2.99 164 2.12 165 2.83 199 0.00 192 2.83 168 5.93 170 HA
a25 150 4 20–70 20–70 1–1.8 5.23 184 1.27 167 0.00 212 1.82 195 5.93 169 5.29 173 TS
a26 160 4 20–70 20–70 1–1.8 3.93 187 4.83 178 3.27 231 0.00 192 4.12 166 3.28 175 HA
a27 170 4 20–70 20–70 1–1.8 5.90 192 4.83 179 1.74 212 0.00 189 5.82 165 5.90 180 HA
a28 180 4 20–70 20–70 1–1.8 4.93 188 3.99 180 1.82 211 0.00 189 4.83 187 4.83 181 HA
a29 190 4 20–70 20–70 1–1.8 6.03 186 5.82 181 0.95 204 0.00 192 5.59 183 5.15 189 HA
a30 200 4 20–70 20–70 1–1.8 5.82 178 5.12 187 1.12 223 0.00 194 4.83 189 4.12 201 HA
a31 210 4 20–100 20–70 1–1.8 7.12 179 6.03 189 0.00 245 2.81 198 6.83 183 5.30 204 TS
a32 220 4 20–100 20–70 1–1.8 7.29 197 6.84 200 0.00 253 0.00 212 6.12 179 5.83 199 TS
a33 230 4 20–100 20–70 1–1.8 6.82 186 6.12 201 1.72 248 0.00 232 5.23 198 5.89 215 HA
a34 240 4 20–100 20–70 1–1.8 6.85 200 4.72 190 1.82 234 0.00 223 5.73 200 5.34 225 HA
a35 250 4 20–100 20–70 1–1.8 7.93 198 5.83 199 1.39 212 0.00 243 5.84 198 5.84 256 HA
a36 260 4 20–100 20–70 1–1.8 5.19 234 3.27 212 1.22 245 0.00 236 4.75 197 4.12 267 HA
a37 270 4 20–100 20–70 1–1.8 4.82 212 3.93 202 0.94 265 0.00 238 3.96 169 3.49 256 HA
a38 280 4 20–100 20–70 1–1.8 9.82 189 4.83 200 0.00 243 0.48 251 7.84 198 6.82 218 TS
a39 290 4 20–100 20–70 1–1.8 3.72 206 2.82 213 2.48 213 0.00 242 3.67 189 3.12 267 HA
a40 300 4 20–100 30–80 1–2 5.84 213 4.83 243 1.22 256 0.00 265 5.34 168 4.90 273 HA
a41 310 5 30–90 30–80 1–2 7.60 243 5.93 212 3.82 256 0.00 276 5.73 201 5.12 289 HA
a42 320 5 30–90 30–80 1–2 8.93 265 5.04 254 1.92 255 0.00 254 6.83 222 5.73 256 HA
a43 330 5 30–90 30–80 1–2 7.69 234 5.94 254 0.37 267 0.00 286 6.73 213 5.93 235 HA
a44 340 5 30–90 30–80 1–2 7.99 265 5.39 245 0.00 289 1.82 265 6.39 186 6.65 287 TS
a45 350 5 30–90 30–80 1–2 8.93 213 4.39 223 0.27 267 0.00 287 7.39 198 6.93 273 HA
a46 360 5 30–90 30–80 1–2 8.84 254 4.80 243 0.00 287 0.28 296 8.12 231 7.03 277 TS
a47 370 5 30–90 30–80 1–2 8.12 243 4.83 241 1.92 298 0.00 281 6.72 254 5.06 298 HA
a48 380 5 30–90 30–80 1–2 9.12 245 4.93 246 0.00 278 1.72 283 7.84 245 7.83 273 TS
a49 390 5 30–90 30–80 1–2 8.26 249 5.94 256 1.92 298 0.00 285 6.38 256 5.93 299 HA
a50 400 5 30–90 30–80 1–2 9.63 278 5.93 267 0.12 289 0.00 287 7.93 243 7.95 263 HA

By observing the results reported in Table 6, and especially the last column, one can
say that the best solutions are obtained by only TS and our proposed HA among all six
algorithms. More precisely, the TS algorithm could obtain the best solutions for six out
of 30 instances, while our proposed HA could obtain the best solutions for the remaining
24 instances. On the other hand, although the time of implementation of each algorithm for
each instance is different, these differences are not so large and can be ignored compared
to the total run time. These results, together with the results presented in previous tables,
show that our HA is efficient to solve the instances and could find the best solutions for
them.

In order to statistically comparison the quality of these six algorithms, one-way analy-
sis of variance (ANOVA) is used in which the hypothesis H0 is that the average solutions
of these algorithms are equal with α = 0.05. The results obtained in Tables 7 and 8 and
Figure 7 show that the average solutions obtained for these algorithms are not equal and
the hypothesis H0 is rejected. In other words, there is a significant difference in the quality
of these methods. In other words, our proposed HA has a high-quality solutions for solving
this group of problems and can obtain the best solutions compared to other five algorithms
according to Figure 6.
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Table 7. Analysis of variance (ANOVA).

Source DF Adj SS Adj MS F-Value p-Value

Algorithms 5 995.4 199.071 109.17 0.000

Error 174 317.3 1.823

Total 179 1312.6

Table 8. Means and standard deviations for the compared algorithms.

Algorithms n Mean StDev 95% CI

ACO 30 4.768 1.243 (4.282, 5.255)

GA 30 6.614 1.950 (6.128, 7.101)

HA 30 0.298 0.722 (−0.189, 0.784)

ICA 30 5.740 1.420 (5.254, 6.227)

SA 30 5.405 1.313 (4.919, 5.892)

TS 30 1.345 1.154 (0.859, 1.832)
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5. Conclusions and Future Works

This paper presents MILP model for the HFFOVRPTW as one of new problems in
transportation. Next, several problem instances were solved by the exact algorithm. In
addition, four small, medium, and large sized standard instances are solved, and then the
results by our proposed hybrid algorithm (HA) are compared against the exact method
and five other algorithms. The results showed that our proposed HA could achieve
better solutions than the exact method within a very short CPU time. Therefore, it is
recommended to apply the proposed HA instead of exact algorithms for small-sized
instances. Furthermore, the solutions by our proposed HA were compared with other
metaheuristic algorithms for medium-sized and large-sized instances and showed that
most of the best solutions were obtained by our algorithm. The use of tabu search and
simulated annealing are suggested to improve the intensification of the HA to solve the
problem. Other real limitations can also be considered in this problem, such as the pickup
and delivery of items or the use of balance for the problem. The new problems could be
modeled as well as could be solved that would be considered in upcoming research. In
addition, this problem can be studied by other meta-heuristic algorithms, for example, tabu
search, genetic algorithms, etc.
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