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Abstract: The additive hazard regression model plays an important role when the excess risk is the
quantity of interest compared to the relative risks, where the proportional hazard model is better.
This paper discusses parametric regression analysis of survival data using the additive hazards
model with competing risks in the presence of independent right censoring. In this paper, the
baseline hazard function is parameterized using a modified Weibull distribution as a lifetime model.
The model parameters are estimated using maximum likelihood and Bayesian estimation methods.
We also derive the asymptotic confidence interval and the Bayes credible interval of the unknown
parameters. The finite sample behaviour of the proposed estimators is investigated through a Monte
Carlo simulation study. The proposed model is applied to liver transplant data.

Keywords: cause-specific hazard; regression model; additive hazard; modified Weibull distribution;
Bayes estimate; MCMC

1. Introduction

In time-to-event analysis, the survival time, T > 0, represents the duration until
the occurrence of an event and is the variable of interest. The hazard function, h(t), has
received great attention among practitioners to model the risk of occurrence of an event
in the particular interval [t, t + ∆t). Regression models are often used in survival analysis
to investigate the causal relationship between survival outcome and covariates. In the
statistical literature, the well-known proportional hazards (PH) approach [1] has gained
popularity in modelling covariate effects on the survival of the individual. In the PH model,
the effect of the covariates acts multiplicatively on some unknown baseline hazard rate
function. However, there are occasions where a measure of the additive effect of covariates
is preferred over a multiplicative effect [2,3]. Aalen [4] introduced an important alternative
to the PH model that is the additive hazards (AH) regression model which was later studied
by Lin and Ying [5,6]. In the AH model, the hazard with the associated covariates is defined
as the sum of the baseline hazard rate and regression function of the covariates. In a two
sample set-up, the PH model concerns the risks ratio, whereas the AH model addresses the
risks difference.

In survival studies, it is often possible that an individual has a lifetime with p ≥ 2
mutually exclusive types of events or competing risks [7,8]. In the competing risks setting,
the occurrence of one type of event alters the chance of the occurrence of other types of
events. For example, primary biliary cirrhosis (PBC) is a chronic liver disease in which
an individual may receive a transplant and experience death in the waiting queue. In
breast cancer clinical trials, investigators may be interested in observing events such as
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local relapse, auxiliary relapse, remote relapse, second malignancy of any kind, and death.
Frequently used competing risks modelling methods depend on the observed value of
the bivariate random vector (T, C), where T denotes the lifetime (possibly censored) and
C = j, j ∈ 1, 2, . . . , p is the set of possible causes of failure. In this framework, the basic
identifiable quantities are the cause-specific hazard (CSH) function and the cumulative inci-
dence function (CIF). For a comprehensive review and recent developments in competing
risks, one may refer to [7,9–13].

In the literature, there is a considerable amount of work on the parametric modelling
of competing risks data in the presence of covariates. Jeong and Fine [14] considered
the parametric regression analysis for competing risks using the Gompertz distribution
as a baseline model. Anjana and Sankaran [15] proposed the reverse cause-specific PH
model by assuming an inverse Weibull distribution under left censoring. Lee [16] provided
the parametric quantile inference for the CSH function with adjustment of covariates.
Lipowski et al. [17] suggested three parametric distributions for competing risks data.
Rehman and Chandra [18] presented a survival analysis with competing risks using the
parametric PH model under the middle censoring scheme.

Parametric regression modelling of competing risks survival data in the above-mentioned
literature is mainly based on Cox’s PH model [1]. However, researchers have commonly
considered non-parametric and semi-parametric analysis of the AH model in the presence
of competing risks. Shen and Cheng [19] proposed the confidence bands for CIF under the
AH model. Sun et al. [20] considered the AH model for competing risks analysis of the
case-cohort design. Zhang et al. [21] proposed a regression analysis of competing risks data
via a semi-parametric AH model. Li et al. [22] analysed an additive sub-distribution hazard
model for competing risks data.

Semi-parametric and non-parametric methods are distribution-free approaches, and
they are useful in a situation where the distribution function of survival time T is unknown.
If the model is adequately specified, however, parametric methods are more efficient
than semi-parametric methods [9]. Parametric approaches have two major advantages:
predicting future behaviour and the availability of straightforward estimation and infer-
ence methods based on the likelihood theory. In this article, we focus on the parametric
approach for survival analysis based on the AH model instead of semi-parametric and
non-parametric approaches. A parametric AH regression model may be developed by
assuming some known distributional form for the baseline hazard function [23]. To the
best of our knowledge, survival analysis with competing risks based on a parametric AH
regression model has not received much attention, and this is the motivation behind the
development of this article. Therefore, the main objective is to employ a parametric AH
regression model for competing risks survival data. In this article, we study the modified
Weibull distribution (MWD) with one scale and two shape parameters, which is capable
of capturing various shapes of the hazard rate, such as bathtub failure rate, and it also
accommodates many properties of exponential and Weibull distributions [24].

Another aim of this article is to consider both classical and Bayesian methods of
estimation. In traditional statistical inference approaches, parameters are estimated based
on the available data in which the maximum likelihood estimator (MLE) usually provides
the solution. While dealing with lifetime data, it is obvious that some past information may
be available in terms of the past record of the individuals. For example, in medical sciences,
before examining a patient, the investigator may be interested in knowing the history of
the disease. The MLE does not have the flexibility to incorporate prior information in data
analysis. In this context, the Bayesian method of reasoning is well known for incorporating
prior information. Furthermore, Bayesian methods provide more accurate estimation
results than MLE when the sample size is small. In practice, researchers often consider
the gamma prior as an informative prior even if it is not a conjugate prior [25]. However,
other researchers consider Weibull, inverted gamma, and log-normal prior as an alternative
choice of the gamma prior [26,27]. Therefore, in this article, we choose a class of baseline
informative types of prior, namely gamma, Weibull, and log-normal priors for comparison
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purposes. For regression parameters, we assume uniform priors. The Bayes estimates
are obtained based on two different loss functions, viz., squared error (symmetric) and
LINEX (asymmetric) loss functions. Interval estimation is also obtained. Asymptotic and
Bayes credible intervals of unknown parameters are derived in this setting with respect to
classical and Bayesian approaches.

The rest of the paper is organised as follows: we propose a parametric cause-specific
AH regression model in Section 2. In Section 3, we estimate the model parameters by using
the MLE. In Section 4, the Bayesian estimation is considered under non-informative priors
with two loss functions. In Section 5, interval estimation is considered. A Monte Carlo
simulation study is carried out to examine the finite sample behaviour of the estimators in
Section 6. In Section 7, the applicability of the proposed model is demonstrated with real
data. Finally, the concluding remarks are given in Section 8.

2. The Proposed Model

In this study, to develop a regression model for competing risks survival data, we
consider the AH regression model given in [5]. In this model, the effect of the covariates
vector x = (x1, x2, . . . , xm)> on the baseline hazard function is additive in nature. This
model for the CSH rate turns out to be the following form:

hj(t|x) = h0j(t) + β>j x, j = 1, 2, . . . , p, (1)

where hj(t|x) represents the CSH rate for given covariates x, h0j(t) denotes the baseline
CSH rate, and β j = (β j1, β j2, . . . , β jm)

> is the m × 1 vector of cause-specific regression
parameters. In the present work, we study the MWD with one scale parameter, a, and two
shape parameters, α and λ, for lifetime variate T with the cumulative distribution function
and the hazard function given as:

F(t) = 1− exp(−atαeλt), t ≥ 0, a > 0, α ≥ 0, λ > 0, (2)

h(t) = a(α + λt)tα−1eλt, t ≥ 0, a > 0, α ≥ 0, λ > 0. (3)

Lai et al. [24] developed the MWD and discussed some of its theoretical properties, for
example, the bathtub behaviour of the hazard rate. Ng [28] estimated the parameters of the
MWD for progressive type-II censored samples. Furthermore, some Bayesian estimations
of MWD parameters were considered in [29,30]. The MWD is assumed here as a baseline
model of the cause-specific AH analysis in (1), due to its flexibility to accommodate various
shapes of the hazard function.

Accordingly, the CSH function, cumulative CSH function, and overall survival func-
tion are obtained as:

hj(t; Θj, x) = aj(αj + λjt)t
αj−1eλjt + β>j x, (4)

Hj(t; Θj, x) = ajt
αj eλjt + β>j xt, (5)

and

S(t; Θ, x) = exp

{
−
(

p

∑
j=1

ajt
αj eλjt + β>j xt

)}
, (6)

where Θ = (Θ1, Θ2, . . . , Θp) and Θj = (aj, αj, λj, β j) are the vectors of cause-specific
parameters. The main aim of this article is to develop estimation methods for the unknown
parameters and cumulative CSH function as the quantity of interest.
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3. Maximum Likelihood Estimation

Following the competing risks framework, let T be the observed lifetime which is
defined by T = min(T∗, D), where T∗ is the failure time and D is the censoring time. For
the given covariate x, T∗ and D are assumed to be independent. Furthermore, we assume
that for each observed failure time, the associated cause of failure was also observed.
Therefore, the censoring indicator is defined as δij = I(Ti = T∗i , Ci = j).

Let (ti, δij, xi), i = 1, 2, . . . , n be the n ∈ N independently and identically distributed
samples of (T, δ, x). Now, we can write the likelihood function for the observed data as:

L(Θ) =
n

∏
i=1

(
p

∏
j=1

hj(ti; Θj, xi)
δij S(ti; Θ, xi)

)
. (7)

The fully parameterized likelihood function based on (4) and (6) is given by:

L(Θ) =
n

∏
i=1

[
p

∏
j=1

(
aj(αj + λjti)t

αj−1
i eλjti + β>j xi

)δij

× exp

{
−
(

p

∑
j=1

ajt
αj
i eλjti + β>j xiti

)}]
.

(8)

The log likelihood function `(Θ) = log L(Θ) is given as:

`(Θ) =
p

∑
j=1

nj

∑
i=1

log
(

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

)
−

n

∑
i=1

(
p

∑
j=1

ajt
αj
i eλjti + β>j xiti

)
.

(9)

In Equation (9), nj denotes the number of failures of type j. To obtain the estimates
of the unknown parameters aj, αj, λj, and β j, we maximize (9) by equating the partial
derivatives of each parameter to zero. The score equations are obtained as:

∂`(Θ)

∂aj
=

nj

∑
i=1

(αj + λjti)t
αj−1
i eλjti

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

−
n

∑
i=1

t
αj
i eλjti = 0, (10)

∂`(Θ)

∂αj
=

nj

∑
i=1

ajt
αj−1
i eλjti + ajαjt

αj−1
i log tie

λjti + ajλjt
αj
i log tie

λjti

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

−
n

∑
i=1

ajt
αj
i log tie

λjti = 0,

(11)

∂`(Θ)

∂λj
=

nj

∑
i=1

ajαjt
αj
i eλjti + ajt

αj
i eλjti + ajλjt

αj+1
i eλjti

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

−
n

∑
i=1

ajt
αj+1
i eλjti = 0,

(12)

∂`(Θ)

∂β j
=

nj

∑
i=1

xi

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

−
n

∑
i=1

xiti = 0. (13)
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The score equations (10)–(13) are not in explicit form and cannot be solved analytically.
Therefore, we use numerical methods to estimate the parameters.

Several methodologies are available for estimating parameters in the literature by
solving score equations or directly maximizing the log-likelihood function. The Newton–
Raphson method is the most frequently used approach for estimation because the deriva-
tives of the scoring equations are simple to calculate. The initial values are critical in
the numerical iterative procedure because of the logarithm function. We use the simplex
method [31] to estimate the parameters through the optim function in R software. The
simplex method is a straightforward method for estimating parameters by maximizing
the likelihood function without having to optimize the function’s derivatives. Once the
parameter estimates are obtained, the function of the parameter estimates can be obtained
using the invariance property of the MLE. Therefore, the MLE of the cumulative CSH
Hj(t; Θj, x) is given by:

Ĥj(t; Θ̂j, x) = âjt
α̂j eλ̂jt + β̂>j xt.

4. Bayesian Estimation

In frequentist statistical techniques, prior information is not considered when analysing
data. Bayesian inference is intriguing because it incorporates prior or previous information
with observed data. As a result, this article explores the Bayesian analysis of a paramet-
ric cause-specific AH regression model. Prior assumptions are made based on previous
experiences, mathematical convenience, and expert judgments, which can be informative,
non-informative, or weakly informative. If the previous dataset is large enough, infor-
mative priors can be employed. A non-informative prior can be used when only limited
or vague knowledge (a priori) about the parameters is available. This article considers
informative types of priors for baseline parameters, such as the gamma, Weibull, and
log-normal distributions. A uniform, non-informative prior is assumed for the regression
parameters. Furthermore, it is assumed that all the chosen priors are independent.

4.1. Gamma Prior

We assume that the baseline model parameters aj, αj, and λj of the modified Weibull
cause-specific AH model (4) are independent random variables with gamma informative
types of priors. Furthermore, the regression parameters have the prior distributions as
uniform distribution. Their respective marginal prior density functions are given as:

π1j(aj) ∝ a
q1j−1
j e−r1jaj , aj > 0, q1j > 0, r1j > 0,

π1j(αj) ∝ α
q2j−1
j e−r2jαj , αj > 0, q2j > 0, r2j > 0,

π1j(λj) ∝ λ
q3j−1
j e−r3jλj , λj > 0, q3j > 0, r3j > 0,

π1j(β j) ∝
m

∏
l=1

1
(djl − cjl)

, −∞ < cjl < β jl < djl < ∞,

(14)

where r1j, r2j, r3j and q1j, q2j, q3j are the rate and shape hyper-parameters of the baseline
gamma priors of aj, αj, and λj, respectively. The joint prior density function based on the
priors defined in (14) is given by:

π1(Θ) ∝
p

∏
j=1

a
q1j−1
j α

q2j−1
j λ

q3j−1
j

∏m
l=1(djl − cjl)

exp
{
−
(
r1jaj + r2jαj + r3jλj

)}
. (15)

The hyper-parameters are assumed to be known and chosen in such a way as to reflect
the prior belief about the unknown parameters.



Symmetry 2023, 15, 485 6 of 18

4.2. Weibull Prior

We assume that the baseline parameters aj, αj, and λj of the model (4) are independent
random variables with the prior distributions as Weibull distributions. We also assume that
the regression parameters have the prior distributions as uniform distributions. Thus, their
respective prior density functions are given as:

π2j(aj) ∝ a
k1j−1
j e−(θ1jaj)

k1j
, aj > 0, k1j > 0, θ1j > 0,

π2j(αj) ∝ α
k2j−1
j e−(θ2jαj)

k2j
, αj > 0, k2j > 0, θ2j > 0,

π2j(λj) ∝ λ
k3j−1
j e−(θ3jλj)

k3j
, λj > 0, k3j > 0, θ3j > 0,

π2j(β j) ∝
m

∏
l=1

1
(djl − cjl)

, −∞ < cjl < β jl < djl < ∞,

(16)

where k1j, k2j, and k3j are the shape hyper-parameters and θ1j, θ2j, and θ3j are the rate
hyper-parameters of the Weibull baseline priors. Therefore, the joint prior distribution of
aj, αj, λj, and β j, j = 1, 2, . . . , p, based on their prior densities defined in (16), is given by:

π2(Θ) ∝
a

k1j−1
j α

k2j−1
j λ

k3j−1
j

∏m
l=1(djl − cjl)

exp
{
−
(
(θ1jaj)

k1j + (θ2jαj)
k2j + (θ3jλj)

k3j
)}

. (17)

4.3. Log-Normal Prior

In this subsection, we assume the priors for the baseline parameters as the log-normal
distributions. Regression parameters independently follow the uniform distributions. Their
corresponding prior densities functions are given as:

π3j(aj) ∝
1
aj

e
− 1

2

(
log aj−µ1j

σ1j

)2

, aj > 0, σ1j > 0,−∞ < µ1j < ∞

π3j(αj) ∝
1
αj

e
− 1

2

(
log αj−µ2j

σ2j

)2

, αj > 0, σ2j > 0,−∞ < µ2j < ∞

π3j(λj) ∝
1
λj

e
− 1

2

(
log λj−µ3j

σ3j

)2

, λj > 0, σ3j > 0,−∞ < µ3j < ∞

π3j(β j) ∝
m

∏
l=1

1
(djl − cjl)

, −∞ < cjl < β jl < djl < ∞,

(18)

where µ1j, µ2j, µ3j and σ1j, σ2j, σ3j are the hyper-parameters. The joint prior distribution of
aj, αj, λj, and β j, j = 1, 2, . . . , p is the product of their marginal prior densities, given by:

π3(Θ) ∝
1

ajαjλj ∏m
l=1(djl − cjl)

exp

{
− 1

2

((
log aj − µ1j

σ1j

)2

+

(
log αj − µ2j

σ2j

)2

+

(
log λj − µ3j

σ3j

)2)}
.

(19)

4.4. Posterior Analysis

The posterior probability distribution is obtained by combining past information with
the observed sample using likelihood and prior distribution. Therefore, the joint posterior
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density of the random variables aj, αj, λj, and β j, j = 1, 2, . . . , p, given the data, can be
written as:

p(Θ|data) =
L(data|Θ)π(Θ)∫ ∫
· · ·
∫

L(data|Θ)π(Θ)dΘ
, (20)

where p(Θ|data) is the joint posterior density, L(data|Θ) is the likelihood function for
the given observed data as in (8), and π(Θ) is the joint prior density which can be taken
from (15), (17) and (19). Under the joint priors, the joint posterior densities are obtained as:

π1(Θ|data) = K1

p

∏
j=1

[ nj

∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β>j xi

)

× a
q1j−1
j α

q2j−1
j λ

q3j−1
j exp

{
−
(
r1jaj + r2jαj + r3jλj

)}]

× exp

{
−

n

∑
i=1

p

∑
j=1

(
ajt

αj
i eλjti + β>j xiti

)}
,

(21)

π2(Θ|data) = K2

p

∏
j=1

[ nj

∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β>j xi

)
a

k1j−1
j α

k2j−1
j

× λ
k3j−1
j exp

{
−
(
(θ1jaj)

k1j + (θ2jαj)
k2j + (θ3jλj)

k3j
)}]

× exp

{
−

n

∑
i=1

p

∑
j=1

(
ajt

αj
i eλjti + β>j xiti

)}
.

(22)

π3(Θ|data) = K3

p

∏
j=1

[ nj

∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β>j xi

)

× 1
ajαjλj

exp

{
− 1

2

((
log aj − µ1j

σ1j

)2

+

(
log αj − µ2j

σ2j

)2

+

(
log λj − µ3j

σ3j

)2)}]
exp

{
−

n

∑
i=1

p

∑
j=1

(
ajt

αj
i eλjti + β>j xiti

)}
.

(23)

where K1, K2, and K3 are the normalizing constants or they are the denominator part in the
right-hand side of Equation (20) according to each joint posterior distribution.

It is not possible to compute the integral in the denominator of (20) analytically un-
der each considered prior due to the complex form of the likelihood function. Therefore,
we cannot obtain the posterior density in closed form. Hence, in such a situation, the
Markov Chain Monte Carlo (MCMC) method [32] can be used to approximate the inte-
grals. Popularly used MCMC algorithms are the Gibbs sampling algorithm [33] and the
Metropolis–Hastings (M–H) algorithm [34]. For the implementation of the Gibbs sampling
algorithm, the full conditional distribution of each parameter is required. Therefore, in this
situation, the M–H algorithm is preferable.

4.5. Loss Function

The selection of the loss function is vital in Bayesian analysis. We consider two different
types of loss functions; namely, the squared error (symmetric) and LINEX (asymmetric)
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loss functions for a comprehensive comparison of Bayes estimates. The squared error loss
function (SELF) for a parameter Θj is defined as:

L1(Θj, Θ̂j) = (Θj − Θ̂j)
2.

Then, the Bayes estimate for parameter Θj under SELF can be obtained as the posterior
means and calculated by:

Θ̂
sel f
j =

1
N −M

N

∑
l=M+1

[
Θj
]

Θj=Θ
(l)
j

,

where Θ
(l)
j , l = 1, 2, . . . , N are the MCMC random samples generated from the posterior

distribution of Θj and M is the number of iterations used in the burn-in period.
However, we also consider the LINEX loss function (LLF) as an asymmetric loss

function, which is given by:

L2(Θj, Θ̂j) = eρ(Θ̂j−Θj) − ρ(Θ̂j −Θj)− 1, ρ 6= 0.

Under LLF, the Bayes estimates of parameter Θj can be obtained as follows:

Θ̂
ll f
j = −1

ρ
log

(
1

N −M

N

∑
l=M+1

e
−ρ[Θj]

Θj=Θ
(l)
j

)
,

where ρ is the hyper parameter of the LLF and the magnitude of ρ reflects the degree of
asymmetry. For ρ > 0, the LLF is quite asymmetric about 0 with overestimation being
more serious than underestimation. The vice versa is true for ρ < 0. If ρ is close to zero,
then the estimates under LLF are approximately equal to the estimates obtained under
SELF. Hence, LLF is more applicable in lifetime modelling, for instance, an over-estimation
of the survival function and failure rate function is usually much more serious than an
under-estimation [35].

5. Interval Estimation
5.1. Asymptotic Confidence Interval

On the basis of the asymptotic property of MLE, we obtained the interval estimates
of the unknown parameters in this subsection. The exact distribution of MLEs cannot
be obtained because the MLEs of the unknown parameters are not in closed form. The
sampling distribution of Θ̂ can be approximated by a (2p + (p × m)) variate normal
distribution with a mean, Θ, and a variance-covariance matrix, Σ(Θ), which is nothing but
the inverse of the Fisher information matrix, I(Θ), given by:

I(Θ) = E
[
− ∂2`(Θ)

∂Θ∂Θ>

]
Θ=Θ̂

.

The exact mathematical expressions for the above expectations are difficult to obtain;
therefore, the observed Fisher information matrix IO(Θ) can be used to approximate the
Fisher information matrix, I(Θ), which is obtained by dropping the expectation operator,
E, in I(Θ). The variance of MLEs of the unknown parameters, i.e., var(Θ̂), is the diagonal
elements of the asymptotic variance-covariance matrix, Σ(Θ̂). Thus, for a given confi-
dence level γ, a two-sided 100(1− γ)% asymptotic confidence interval (ACI) for Θ̂ can be
constructed as follows: [

Θ̂− zγ/2

√
var(Θ̂), Θ̂ + zγ/2

√
var(Θ̂)

]
,
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where zγ/2 is the upper γ/2 quantile of the standard normal distribution. Furthermore,
we also computed the two-sided 100(1− γ)% confidence interval for the estimates of the
cumulative CSH Ĥj(t; Θ̂j, x), which is given by:[

Ĥj(t; Θ̂j, x)− zγ/2

√
var(Ĥj(t; Θ̂j, x)), Ĥj(t; Θ̂j, x) + zγ/2

√
var(Ĥj(t; Θ̂j, x))

]
,

where the variance of the cumulative CSH var(Ĥj(t; Θ̂j, x)) is obtained by using the delta
method as follows:

var(Ĥj(t; Θ̂j, x)) = g(Θj)Σ(Θ̂)g(Θj)
>,

and g(Θj) =
∂Hj(t; Θj, x)

∂Θ

∣∣∣∣
Θ=Θ̂

.

5.2. Bayes Credible Interval

In the Bayesian approach, for a γ level of significance, the (1− γ) interval estimate of
a parameter Θ is a credible interval based on given data, which covers the parameter with
(1− γ) level of confidence. The 100(1− γ)% Bayes credible interval (BCI) [ΘL, ΘU ] for Θ is
obtained by setting ΘL equal to the γ/2% quantile and ΘU equal to the (1−γ/2)% quantile
of Θl , l = 1, 2, . . . , N −M. Similarly, the same procedure is also adopted for obtaining the
Bayes credible interval for Hj(t; Θj, x).

6. Simulation Study

We conducted a Monte Carlo simulation study to observe the finite sample behaviour
of the proposed estimators of the unknown parameters and cumulative CSH functions. In
this simulation study, the datasets were generated for various sample sizes such as n = 100,
200, and 400. For each sample size, we have calculated the average estimate (AVE) and the
mean square error (MSE) for point estimates, and the average length (AVL) and coverage
probability (CP) for ACI and BCI of aj, αj, β j, and Hj(t|x) over 500 replications.

For simplicity, we assumed two causes of failure, i.e., j = 1, 2, and one covariate, say x.
The covariate x is generated using a Bernoulli random number for each sample with an
equal probability of success and failure. Without loss of generality, we have arbitrarily taken
the true value of the parameters as a1 = 0.5, α1 = 0.6, λ1 = 0.2, β11 = 0.6, a2 = 0.7, α2 =
0.5, λ2 = 0.2, and β21 = 0.8. We assume that λj is known for mathematical simplicity. The
censored time D is generated from U(0, d), where d is chosen in such a way that on average
20% observations are right censored. The survival time T is generated through an inverse
transformation following the steps given in [36], Chapter 3. For each simulated survival
time, the causes of failure are generated from a Binomial distribution with a probability of
success of h1(t|x)

h1(t|x)+h2(t|x)
for cause 1 and the failure outcome is considered as cause 2. The

estimates of Hj(t|x) for j = 1, 2 are obtained at t = 0.8 with covariates value x = 0.6.
The MLEs âj, α̂j, and β̂ j of unknown parameters of the proposed model (4) do not

have a closed-form solution. The score equations (10)–(13) are a system of multiple non-
linear equations, which can be difficult to solve analytically. Therefore, the MLEs of the
unknown parameters aj, αj, and β j are obtained based on the log-likelihood function given
in Equation (9) through the optim function in R software. In the optim function, to get
the MLE of aj, αj, and β j, we need to supply some initial values, say, a(0)j , α

(0)
j , and β

(0)
j .

Since we do not have any theoretical method to define the initial values in the literature,
we arbitrarily tried multiple sets of initial values from the parametric space in order to
eliminate the impact of initial values [37,38]. We considered the initial values that offered
the maximum likelihood function value and showed the convergence code “0”, indicating
the successful completion of the optimization. The MLE Ĥj(t|x) of the cumulative CSH
function Hj(t|x) was obtained by the invariance property of the MLE. As we mentioned in
Section 4.4, the joint posterior densities based on each considered prior have a complicated
form and it is also difficult to obtain the conditional posterior densities of the unknown
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parameters. Therefore, we employed the MCMC procedure for generating random sam-
ples from joint posterior densities. For this purpose, we used the BUGS software via the
R2OpenBUGS package in R software [39]. The inbuilt BUGS system determines which of
the available MCMC algorithms could be applied to a particular problem. To implement
MCMC algorithms, BUGS only requires the log-likelihood function and the prior distri-
bution of the parameters. On the basis of the properties of posterior densities, the BUGS
system chose the appropriate MCMC algorithms [39].

Furthermore, for computing the hyper-parameters for baseline informative priors, we
utilized the empirical Bayes method by using the MLE. First, we generated 1000 random
samples of size 100. Now, corresponding to each sample, we obtained the average MLE and
the empirical variance of aj and αj and then compared them with the mean and variance of
gamma, Weibull, and log-normal priors of the aj and αj. Calculated hyper-parameters of
gamma, Weibull, and log-normal priors are given in Table 1. The hyper-parameter of LLF
is fixed as ρ = ±1.5 and known as LLF1 and LLF2, respectively. The hyper-parameters cjl
and djl of the regression parameters are assumed to be 0 and 2, respectively.

Table 1. Hyper-parameters of the gamma, Weibull, and log-normal priors for baseline parameters of
the modified Weibull CSAH model.

Priors Hyper-Parameters

Gamma q11 = 11.48, r11 = 21.69, q21 = 25.60, r21 = 39.75, q12 = 2.06, r12 = 3.44,
q22 = 16.69, r22 = 22.09

Weibull k11 = 3.78, θ11 = 1.71, k21 = 5.87, θ21 = 1.44, k12 = 1.46θ12 = 1.51,
k22 = 4.65, θ22 = 1.21

Log-normal µ11 = −0.68, σ11 = 0.08, µ21 = −0.46, σ21 = 0.04, µ12 = −0.71σ12 = 0.39,
µ22 = −0.31, σ22 = 0.06

We generated N =10,000 Markov chains for each parameter, and the first M = 4000
samples were used in the burn-in period for reducing the effect of initial values. Fur-
thermore, for minimizing the effect of the autocorrelation, every second equally spaced
outcome was considered, i.e., thin = 2. By the visualization of the convergence diagnostics
plots, it was observed that the chains converged nicely. Therefore, the last 6000 MCMC
samples were used to obtain Bayes estimates of the unknown parameters and cumulative
CSH functions under both loss functions. The numerical results are presented in Table 2.
The Bayes estimates given in this table are denoted as B-self, B-llf1, and B-llf2, where B
denotes the first letter of the priors considered in Section 4. For example, for gamma, B = G;
for Weibull, B = W; and for log-normal, B = LN. Based on the findings given in these tables,
the following observations were made.

From Table 2, it is very clear that the Bayes estimates are significantly better compared
to the MLE. It is also observed that as the sample size increases, the MSEs decrease for
MLE and Bayes estimates, which verifies the consistency property of all the estimators.
Furthermore, we noticed that the AVLs for ACI and BCIs decreased and CPs maintain
the nominal level (95%). It was also noted that the performance of the log-normal prior
is relatively good when compared to the gamma and Weibull priors. However, in some
cases, the gamma prior also performs well. The performance of MLE gets better as the
sample size increases. Besides that, for large samples, for example, n = 400, in most of
the cases the Bayes estimates dominated. It was also noted that the performance of the
LINEX loss function at ρ = 1.5 was relatively good compared to SELF and LINEX ρ = −1.5
corresponding to each prior.
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Table 2. Simulation results for parameter estimation of the modified Weibull cause-specific AH model
under MLE and Bayes estimates.

Cause 1 Cause 2

n Method a1 α1 β11 H1 a2 α2 β21 H2

True value 0.5 0.6 0.6 0.8012 0.7 0.5 0.8 1.1187

100 MLE AVE 0.5350 0.6494 0.6175 0.8388 0.7567 0.5450 0.7582 1.1492
MSE 0.0234 0.0231 0.1642 0.0315 0.0373 0.0075 0.2376 0.0492

ACI AVL 0.5672 0.4880 1.5375 0.7412 0.6583 0.3303 1.7849 1.0228
CP 0.9520 0.9500 0.9480 0.9560 0.9340 0.9760 0.9300 0.9620

G-self AVE 0.5180 0.6381 0.7453 0.8847 0.7464 0.5848 0.8935 1.1967
MSE 0.0050 0.0053 0.1063 0.0281 0.0231 0.0108 0.1135 0.0404

G-llf1 AVE 0.5107 0.6326 0.6621 0.8650 0.7304 0.5804 0.7883 1.1711
MSE 0.0047 0.0048 0.0758 0.0239 0.0206 0.0100 0.0934 0.0354

G-llf2 AVE 0.5256 0.6438 0.8381 0.9055 0.7633 0.5892 1.0044 1.2233
MSE 0.0056 0.0059 0.1532 0.0333 0.0264 0.0117 0.1515 0.0469

G-BCI AVL 0.3864 0.3366 1.2934 0.6311 0.5713 0.2978 1.4296 0.7206
CP 0.9980 0.9880 0.9660 0.9580 0.9360 0.8800 0.9680 0.9360

W-self AVE 0.5281 0.6465 0.7368 0.8899 0.7495 0.5824 0.8896 1.1982
MSE 0.0057 0.0057 0.1038 0.0291 0.0237 0.0115 0.1114 0.0404

W-llf1 AVE 0.5206 0.6412 0.6534 0.8703 0.7332 0.5775 0.7843 1.1727
MSE 0.0053 0.0052 0.0745 0.0247 0.0212 0.0106 0.0921 0.0354

W-llf2 AVE 0.5357 0.6518 0.8304 0.9107 0.7667 0.5875 1.0008 1.2248
MSE 0.0063 0.0063 0.1499 0.0346 0.0271 0.0125 0.1488 0.0470

W-BCI AVL 0.3901 0.3277 1.2960 0.6309 0.5757 0.3174 1.4310 0.7211
CP 0.9900 0.9840 0.9640 0.9520 0.9380 0.8900 0.9780 0.9380

LN-self AVE 0.5137 0.6360 0.7476 0.8817 0.7346 0.5841 0.9036 1.1896
MSE 0.0044 0.0053 0.1064 0.0274 0.0218 0.0103 0.1150 0.0389

LN-llf1 AVE 0.5068 0.6303 0.6650 0.8622 0.7189 0.5800 0.7981 1.1643
MSE 0.0043 0.0047 0.0760 0.0234 0.0197 0.0095 0.0932 0.0343

LN-llf2 AVE 0.5210 0.6418 0.8397 0.9023 0.7513 0.5883 1.0141 1.2160
MSE 0.0049 0.0060 0.1532 0.0324 0.0247 0.0111 0.1547 0.0450

LN-BCI AVL 0.3764 0.3384 1.2921 0.6272 0.5664 0.2888 1.4281 0.7169
CP 0.9940 0.9920 0.9640 0.9580 0.9480 0.8800 0.9700 0.9400

200 MLE AVE 0.5198 0.6268 0.5800 0.8084 0.7327 0.5363 0.7980 1.1454
MSE 0.0112 0.0070 0.0922 0.0166 0.0151 0.0042 0.1146 0.0238

ACI AVL 0.3883 0.3256 1.0495 0.4873 0.4477 0.2291 1.2418 0.6946
CP 0.9400 0.9740 0.9160 0.9260 0.9460 0.9520 0.9240 0.9680

G-self AVE 0.5131 0.6300 0.6498 0.8348 0.7317 0.5595 0.8780 1.1786
MSE 0.0049 0.0036 0.0659 0.0150 0.0120 0.0058 0.0937 0.0240

G-llf1 AVE 0.5084 0.6265 0.6034 0.8246 0.7231 0.5571 0.8110 1.1646
MSE 0.0046 0.0033 0.0576 0.0139 0.0112 0.0055 0.0820 0.0218

G-llf2 AVE 0.5180 0.6337 0.7002 0.8454 0.7406 0.5618 0.9481 1.1931
MSE 0.0051 0.0039 0.0796 0.0164 0.0130 0.0061 0.1136 0.0266

G-BCI AVL 0.3106 0.2690 0.9754 0.4557 0.4197 0.2172 1.1653 0.5353
CP 0.9760 0.9820 0.9520 0.9420 0.9440 0.8580 0.9440 0.9180

W-self AVE 0.5231 0.6394 0.6409 0.8396 0.7325 0.5566 0.8763 1.1790
MSE 0.0056 0.0043 0.0651 0.0153 0.0123 0.0059 0.0939 0.0241

W-llf1 AVE 0.5182 0.6358 0.5943 0.8293 0.7239 0.5540 0.8091 1.1649
MSE 0.0053 0.0040 0.0575 0.0141 0.0114 0.0056 0.0824 0.0219

W-llf2 AVE 0.5281 0.6429 0.6917 0.8502 0.7415 0.5591 0.9466 1.1935
MSE 0.0059 0.0046 0.0780 0.0168 0.0133 0.0062 0.1137 0.0268

W-BCI AVL 0.3163 0.2687 0.9771 0.4566 0.4214 0.2266 1.1667 0.5357
CP 0.9640 0.9660 0.9500 0.9340 0.9400 0.8720 0.9420 0.9220
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Table 2. Cont.

Cause 1 Cause 2

n Method a1 α1 β11 H1 a2 α2 β21 H2

LN-self AVE 0.5093 0.6271 0.6535 0.8330 0.7249 0.5595 0.8857 1.1753
MSE 0.0044 0.0034 0.0657 0.0150 0.0115 0.0056 0.0949 0.0235

LN-llf1 AVE 0.5047 0.6236 0.6072 0.8228 0.7164 0.5572 0.8187 1.1612
MSE 0.0042 0.0032 0.0571 0.0139 0.0108 0.0053 0.0823 0.0214

LN-llf2 AVE 0.5140 0.6307 0.7039 0.8437 0.7336 0.5617 0.9558 1.1897
MSE 0.0046 0.0037 0.0796 0.0164 0.0124 0.0059 0.1158 0.0260

LN-BCI AVL 0.3048 0.2682 0.9753 0.4568 0.4164 0.2130 1.1664 0.5352
CP 0.9800 0.9840 0.9520 0.9420 0.9520 0.8600 0.9380 0.9220

400 MLE AVE 0.5179 0.6215 0.5873 0.8106 0.7327 0.5364 0.7751 1.1346
MSE 0.0071 0.0036 0.0436 0.0074 0.0090 0.0028 0.0705 0.0126

ACI AVL 0.2738 0.2262 0.7423 0.3420 0.3166 0.1615 0.8729 0.4866
CP 0.9180 0.9640 0.9260 0.9480 0.9320 0.8880 0.8920 0.9640

G-self AVE 0.5146 0.6243 0.6265 0.8258 0.7300 0.5470 0.8309 1.1567
MSE 0.0037 0.0025 0.0329 0.0071 0.0072 0.0034 0.0589 0.0123

G-llf1 AVE 0.5117 0.6222 0.6009 0.8205 0.7254 0.5458 0.7942 1.1493
MSE 0.0035 0.0024 0.0309 0.0067 0.0068 0.0032 0.0556 0.0115

G-llf2 AVE 0.5176 0.6263 0.6532 0.8312 0.7347 0.5482 0.8689 1.1641
MSE 0.0038 0.0026 0.0365 0.0075 0.0076 0.0035 0.0651 0.0132

G-BCI AVL 0.2434 0.2044 0.7277 0.3286 0.3057 0.1568 0.8685 0.3875
CP 0.9620 0.9760 0.9520 0.9540 0.9340 0.8280 0.9180 0.9400

W-self AVE 0.5229 0.6322 0.6184 0.8294 0.7305 0.5452 0.8291 1.1565
MSE 0.0041 0.0030 0.0328 0.0073 0.0074 0.0033 0.0587 0.0122

W-llf1 AVE 0.5199 0.6301 0.5925 0.8241 0.7259 0.5440 0.7921 1.1491
MSE 0.0040 0.0029 0.0311 0.0069 0.0070 0.0032 0.0556 0.0115

W-llf2 AVE 0.5260 0.6343 0.6454 0.8349 0.7352 0.5465 0.8673 1.1640
MSE 0.0043 0.0032 0.0361 0.0078 0.0078 0.0034 0.0648 0.0131

W-BCI AVL 0.2471 0.2068 0.7316 0.3304 0.3069 0.1603 0.8729 0.3884
CP 0.9500 0.9600 0.9580 0.9580 0.9300 0.8380 0.9260 0.9380

LN-self AVE 0.5116 0.6223 0.6296 0.8244 0.7264 0.5471 0.8354 1.1551
MSE 0.0034 0.0024 0.0327 0.0070 0.0070 0.0033 0.0591 0.0122

LN-llf1 AVE 0.5087 0.6203 0.6040 0.8191 0.7219 0.5459 0.7984 1.1477
MSE 0.0033 0.0023 0.0305 0.0066 0.0066 0.0032 0.0553 0.0115

LN-llf2 AVE 0.5145 0.6244 0.6562 0.8298 0.7310 0.5483 0.8736 1.1626
MSE 0.0036 0.0025 0.0364 0.0074 0.0074 0.0034 0.0657 0.0131

LN-BCI AVL 0.2407 0.2038 0.7275 0.3293 0.3045 0.1549 0.8732 0.3876
CP 0.9700 0.9780 0.9560 0.9560 0.9340 0.8340 0.9280 0.9420

7. Illustrative Application

In this section, we used real data from a Mayo Clinic trial of primary biliary cirrhosis
(PBC) of the liver conducted between 1974 and 1984 to demonstrate the applicability of the
proposed model. This dataset is available in the survival package of R software. During
these ten years, 312 patients were randomly assigned to receive D-penicillamine or placebo
treatment from a total of 424 patients. Furthermore, the remaining 112 patients did not
participate in the clinical trial but agreed to have their basic measurements taken and
observed for survival. Six of those patients were not followed-up shortly after diagnosis,
so these patients were removed from the study, resulting in n = 418 patients.

Among the n = 418 patients, 161 patients died, another 25 patients received a liver
transplant, and 232 patients were not followed-up. Therefore, the competing risks model
becomes reasonable for two competing outcome variables: liver transplant and death. The
survival time is measured in days for all individuals. However, there are several covariates
in the original data, such as treatment, sex, age, etc. For the analysis purpose, treatment is
considered as a covariate. The baseline fitting summary of the data for death is reported
in Table 3 and Figure 1. For more information on PBC data, one could refer to Therneau
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and Grambsch [40] and the application of competing risks on PBC data is available in the
analysis of competing risks [41].

Table 3. Baseline parameter estimate and goodness of fit statistics for death.

Model MLE Log-Likelihood AIC BIC

MWD a = 0.0639, α = 0.9986, λ = 0.0197 −580.870 1167.74 1179.85
Weibull Shape = 1.24, Scale = 12.67, −584.0561 1172.11 1180.18
Log-normal Meanlog = 2.341, Sdlog = 1.546 −585.9771 1175.95 1184.03
Burr XII a = 28.53 α = 1.135, λ = 2.814 −581.64 1169.28 1181.39

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Empirical and theoretical CDFs

Time (Years)

C
D

F

MWD
Weibull
log−normal
Burr XII

Figure 1. Fitted and empirical CDF plots of death for PBC data.

To transform survival time in terms of years, we divided it by 365, which yielded a
median survival time 4.74 years. We also assumed that 106 patients who did not participate
in the trial received the D-penicillamine treatment. Furthermore, we applied the proposed
estimation methods to obtain the estimates of the unknown parameters and cumulative
CSH functions. To choose unknown parameters for priors, we first tried several parameters
and then chose the best one in terms of the convergence performance and computing
time. Based on the results of this preliminary analysis, we decided to use the following
parameters: q1j = q2j = q3j = 1.5, r1j = r2j = r3j = 2.2 (gamma prior); k1j = k2j = k3j =
2, θ1j = θ2j = θ3j = 0.71 (Weibull prior); µ1j = µ2j = µ3j = 0.1, σ1j = σ2j = σ3j = 1
(log-normal prior); and c1j = 0, d1j = 1 (uniform prior). The results of the estimates of the
unknown parameters are presented in Table 4. We estimated the cumulative CSH functions
using (5) based on the proposed estimators which are presented in Figures 2 and 3.
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Table 4. ML and Bayes parameter estimates of the modified Weibull CSAH model for transplant and
death for the PBC data.

Transplant Death

Method a1 α1 λ1 β11 a2 α2 λ2 β21

MLE 0.0117 0.3038 0.1394 0.0026 0.0407 0.2946 0.2174 0.0286
MLE.SE 0.0054 0.9331 0.1965 0.0077 0.0101 0.0947 0.0353 0.0096
G-self 0.0062 0.9640 0.0852 0.0042 0.0600 0.8965 0.0443 0.0118
G-llf1 0.0062 0.8806 0.0827 0.0042 0.0599 0.8867 0.0439 0.0117
G-llf2 0.0062 1.0445 0.0878 0.0042 0.0601 0.9061 0.0447 0.0118
G.SE 0.0031 0.3312 0.0581 0.0030 0.0109 0.1136 0.0234 0.0079

W-self 0.0062 0.9681 0.0878 0.0040 0.0597 0.8828 0.0485 0.0118
W-llf1 0.0062 0.9057 0.0859 0.0040 0.0597 0.8737 0.0481 0.0117
W-llf2 0.0062 1.0295 0.0898 0.0040 0.0598 0.8919 0.0488 0.0118
W.SE 0.0030 0.2876 0.0510 0.0029 0.0109 0.1100 0.0219 0.0080

LN-self 0.0110 0.6324 0.1081 0.0036 0.0617 0.8262 0.0597 0.0118
LN-llf1 0.0110 0.5906 0.1066 0.0036 0.0616 0.8184 0.0594 0.0117
LN-llf2 0.0110 0.6756 0.1096 0.0036 0.0618 0.8339 0.0600 0.0118
LN.SE 0.0041 0.2384 0.0449 0.0027 0.0108 0.1018 0.0205 0.0080

SE: Standard error.

These plots indicate that the cumulative CSH rate for transplant patients is small
compared to the same for the patients who experienced death. Figure 2 shows that the
value of the cumulative CSH function due to transplant is small for the patients who
received the placebo treatment. Similarly, the same is observed for the cumulative CSH
rate due to death, see Figure 3. Moreover, the likelihood ratio test procedure was also
used to test the significance of the treatment effect on transplant and death separately. The
hypotheses of interest are H0 : β11 = 0 against H1 : β11 6= 0 and H0 : β21 = 0 against
H1 : β21 6= 0. We calculated the likelihood ratio test statistics and corresponding p-values
to be 5.44× 10−06 and 1.02× 10−03. Hence, both the null hypothesis are rejected. This
indicates that treatment had a significant effect on transplant and death.
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Figure 2. Estimated cumulative CSH for transplant based on the Bayes estimates for informative
priors and MLE based on the PBC data.
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Figure 3. Estimated cumulative CSH for death based on the Bayes estimates for informative priors
and MLE based on the PBC data.

To test the overall goodness of fit of the model (1) to the PBC data in competing risks
framework, we used the Cox–Snell residual plot [42]. The Cox–Snell residual is defined as:

ri = Ĥ(ti|xi), i = 1, 2, . . . , n, (24)

where Ĥ(t|x) is the estimator of cumulative CSH rate H(t|x) = ∑2
j=1 Hj(t|x) and j = 1, 2

based on MLE for transplant and death, respectively. If the model holds, then these residuals
should be a sample from a unit exponential distribution. Therefore, the hazard plot of
residuals versus the Nelson–Aalen estimator of the cumulative hazard of the residuals will
be a straight line with a slope equal to one. The residual plot of Figure 4 demonstrates a
reasonable fit of the model (1). Readers are referred to Figures 12.6–12.9 of the book [42] for
a reasonable fit.
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Figure 4. Plot of the Cox–Snell residual versus its estimates of cumulative hazard rate.
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8. Conclusions

In this article, we propose a parametric cause-specific AH regression analysis, where
the baseline CSH functions follow the MWD. The proposed AH model is a good alternative
to the Cox PH model, and it is useful when excess risk is of concern. The estimation of
the unknown parameters and cumulative CSH function is dealt with by ML and Bayes
estimates. In addition to Bayes estimation, we propose three types of informative priors
for baseline parameters, and uniform priors are considered for regression parameters. The
simulation results show that the Bayes estimates based on each considered priors under
the SELF and LLF dominate over MLE for a small sample size. Furthermore, across the
priors, the choice of baseline log-normal priors gives better results with a smaller MSE and
AVL. Moreover, selecting different priors and loss functions shows their applicability in the
simulation study. We demonstrate the model utility with the PBC data. These data fit well
with the model, and the covariate significantly affects transplant and death.

The proposed work can be extended for different censoring schemes such as interval,
current status, and middle censoring schemes [7,9,18,42]. Furthermore, the situation of
masking in competing risks analysis is widespread [43,44]. Therefore, the analysis of
masked competing risks data using the proposed model seems to be an interesting attempt.

Determining the appropriate form of the prior is often difficult, historically affecting
the widespread use of the Bayesian paradigm. According to [45], there is no hard and fast
rule for selecting the best possible prior distribution to formulate the Bayes estimator. In
this study, we considered an informative prior for the unknown parameters. However, a
noninformative prior can be used when only limited or vague knowledge (a priori) about
the parameters is available. The rationale for using noninformative prior distributions
is often said to be to let the data speak for themselves so that inferences are unaffected by
external information to the current data. Hence, all resulting inferences were completely
objective rather than subjective. A commonly used noninformative prior in Bayesian
analysis is Jeffrey’s prior [46]. However, the half-t [47] distribution as a noninformative
prior is also gaining attention of researchers. The proposed study can be extended for the
noninformative priors which would be reported elsewhere.
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