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Abstract: Designing a controller is typically an iterative process during which engineers must
assess the performance of a design through time-consuming simulations; this becomes even more
burdensome when using a population-based metaheuristic that evaluates every member of the
population. Distributed algorithms can mitigate this issue, but these come with their own challenges.
This is why, in this work, we propose a distributed and asynchronous bio-inspired algorithm to
execute the simulations in parallel, using a multi-population multi-algorithmic approach. Following a
cloud-native pattern, isolated populations interact asynchronously using a distributed message queue,
which avoids idle cycles when waiting for other nodes to synchronize. The proposed algorithm
can mix different metaheuristics, one for each population, first because it is possible and second
because it can help keep total diversity high. To validate the speedup benefit of our proposal, we
optimize the membership functions of a fuzzy controller for the trajectory tracking of a mobile
autonomous robot using distributed versions of genetic algorithms, particle swarm optimization, and
a mixed-metaheuristic configuration. We compare sequential versus distributed implementations
and demonstrate the benefits of mixing the populations with distinct metaheuristics. We also propose
a simple migration strategy that delivers satisfactory results. Moreover, we compare homogeneous
and heterogenous configurations for the populations’ parameters. The results show that even when
we use random heterogeneous parameter configuration in the distributed populations, we obtain an
error similar to that in other work while significantly reducing the execution time.

Keywords: fuzzy control; bio-inspired algorithms; distributed algorithms

1. Introduction

Modern control theory was created in the late 1960s with the development of model-
based control (MBC) and optimal control techniques. MBC uses nonlinear difference (or
differential) equations to describe the behavior of the dynamical system [1]. To apply MBC,
a designer first needs to obtain a mathematical model of the plant and then design the
controller using this model. In the early 70s, intelligent control [2] was developed as an
alternative to traditional model-based control systems; in contrast with MBC, intelligent
control uses human knowledge, operational research, and experimental evidence instead of
a mathematical model to generate control actions. Fuzzy logic control has been one of the
most successful intelligent control techniques from the earlier work of Mamdani [3], to more
recent applications [4]. Another suitable method that is rapidly developing is data-driven
control, which includes a broad family of techniques in which the mathematical model or
the controller design is based entirely on datasets obtained directly from the process we
need to control. Data-driven control includes methods such as reinforcement learning [5];
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iterative learning control (ILC) [6]; and robust control tools such as Petersen’s Lemma [7],
together with neural networks and genetic algorithms [8]. A critical advantage of fuzzy
logic control is that it is implemented using a fuzzy inference system (FIS) that models the
system’s knowledge base using fuzzy rules. Fuzzy rules have a human interpretation and
can also be automatically or manually tuned; this is why we chose fuzzy controllers for
this line of research. As in their model-based counterparts, designers of intelligent control
systems also need to optimize the controllers’ parameters to handle the particularities of
real-world problems. In the case of fuzzy controllers, several entities characterize the com-
ponents of the fuzzy rule-based system. The core components are the fuzzy propositions
constructing the fuzzy rules representing the knowledge of the system. Propositions are, in
turn, constructed using fuzzy variables and fuzzy terms that are defined using MFs.

Optimizing the controllers’ parameters is challenging; on the one hand, we have a
vast search space in the parameter’s domain. On the other, we need to execute one or
more simulations to establish the performance of one configuration. These time-consuming
problems make the manual tuning of parameters impractical [9]. Engineers often use
metaheuristics not only to tune or adjust the parameters of fuzzy controllers but also to
define the entire fuzzy controller structure. Metaheuristics often use techniques inspired
by natural processes. For instance, the operators used by genetic algorithms (GAs) [10]
are inspired by natural evolution. Using a chromosome to represent a candidate solution,
the operators to generate a new population are a random crossover between individuals,
a random mutation applied to the offspring, and a selection operator to decide which
individuals will survive to the next generation. In this case, the crossover and selection
operators impact how the search space is exploited, while the mutation operator influences
the exploration of the search space near a promising solution. Evolutionary algorithms
are not the only nature-inspired metaheuristic used in this area; other nature-inspired
algorithms have been successfully employed in optimizing fuzzy inference systems for
engineering and process control applications. These algorithms include both evolutionary
algorithms (EAs) [11] and swarm intelligence (SI) [12]. Most researchers follow a fuzzy-
evolutionary approach to optimize the parameters of fuzzy controllers [9,13].

In previous work [14], we established that tuning the MFs of fuzzy controllers using
population-based metaheuristics demands the extensive use of computational resources.
This demand stems from establishing the fitness of all candidate solutions, which re-
quires running several simulations [15,16] for each candidate; this is a problem inherent
to population-based algorithms. However, because evolutionary algorithms evaluate can-
didate solutions in isolation; they are a perfect match for their parallel execution. In the
literature, we found only a few studies attempting to distribute fuzzy controllers’ opti-
mization; however, these studies did not consider or take advantage of recent cloud-native
technologies [17–19]. Cloud-native applications are designed as a composition of loosely
coupled microservices, stateless processing nodes that react to events [20] produced by other
microservices, scheduled or triggered by clients. Microservices typically run in isolated
runtime environments called containers, which encapsulate not only the runtime environ-
ment, but also software libraries; binaries; configuration files; and in general, everything
needed for the node to run autonomously. A containerized application is easily operated
on automation platforms capable of taking containerized microservice-based applications
from a local computer to be deployed in a cloud or a disposable infrastructure [21,22]. An
important design principle is the use of an event-driven architecture in which microservices
communicate asynchronously by emitting and reacting to events; this is often realized via
message queues or external messaging services.

Our main contribution in this paper is a proposal of a distributed optimization method
that speeds up the tuning of fuzzy control optimization problems with respect to sequential
versions, without increasing the complexity for the user. This work proposes a multi-
population, distributed optimization method considering current practices in constructing
highly scalable, resilient, and replicable systems. Moreover, the architecture is capable of
executing several bio-inspired algorithms simultaneously. In particular, we apply cloud-
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native principles and techniques [23] to implement a system capable of executing a multi-
worker, multi-population, multi-algorithm optimization framework to speed up the time
needed to execute the evolutionary fuzzy controller design algorithm. To demonstrate the
applicability and speedup provided by the proposed method, we report an experimental
case study of optimizing a fuzzy controller for trajectory tracking. This particular problem
required a considerable execution time in our previous work, and we expect to reduce this
time considerably by applying the proposed method by distributing the work. Furthermore,
this work addresses the problem of setting the parameters for each population; this is an
important factor in multi-populations algorithms because it has been found in other work
to have an impact on the execution time and the optimization results [24,25]. In this work,
we compare two strategies: the homogeneous setting using the same parameters in all
populations and a heterogeneous strategy using distinct parameters for all populations.

In summary, we solve a fuzzy control problem by using a cloud-native distributed
algorithm with few tunable parameters that has been enhanced with respect to the previous
version by improving the selection procedures. In this paper, we try to prove that it
effectively lowers costs by being able to find the solution in less time, and in which
circumstances this solution can be better than sequential alternatives.

We organize the paper as follows: In Section 2, we present the state-of-the-art of
distributed multi-population-based algorithms. In Section 3, we describe the method
and the experimental setup in Section 4. The results of the experiments are presented in
Section 5, and finally, in Section 6, we discuss the conclusions and future research directions.

2. State of the Art

Most of the lines of research we mentioned above emphasize parallelizing the eval-
uation of candidate solutions because this is the most resource-demanding part of the
optimization algorithm. Alba and Tomassini [26] called this type of implementation global
parallelization because, in this case, the population keeps the same panmictic-like properties
found in a single global population, in which any individual can potentially mate with any
other in the population. Only the fitness evaluation is carried out in parallel, following a
standard primary/subordinate design. On the other hand, we have the multi-population
or island models, in which the original population is partitioned into several demes or
subpopulations that can run an isolated GA algorithm in parallel. Migration is an essential
element of these parallel algorithms because it significantly affects how fast the solution is
found. Migration describes how often and which individuals will be exchanged between
populations. These earlier multi-population methods not only had the advantage of speed-
ing the execution time but also, according to experimental results, added the benefit of
preventing premature convergence to a local optimum by maintaining a higher diversity
throughout the populations [27]. Furthermore, Starkweather et al. [24] concluded that
distributed genetic algorithms are often superior to their single population counterparts,
but this is only sometimes true; they compared different migration techniques and their
relationship with performance.

Other population-based metaheuristics also have multi-population versions. For in-
stance, there are many proposals on multi-swarm optimization methods [25] for the PSO
algorithm; however, because the PSO algorithm is based on position, velocity, and distance
between particles, researchers put more effort into the topology of communication between
swarms. Using multiple populations also allows for establishing different configurations in
each population, changing the parameters affecting exploration and exploitation to balance
the emphasis between both strategies. This subject has also been explored extensively by
researchers in this area. By having multiple populations, there is even the possibility of
having entirely different metaheuristics in each population; recent work showed that this
can also benefit the overall results [28,29]. Another critical factor in multi-population-based
algorithms is the coordination between the nodes executing the algorithms in parallel. Re-
searchers in PGAs have implemented both synchronous and asynchronous parallelization.
An example of synchronous parallelization is the controller/worker model, in which the



Symmetry 2023, 15, 467 4 of 21

controller must wait for all workers to finish before continuing the execution. In contrast,
asynchronous parallelization does not need to wait for other processed to continue working
because work is not synchronized; this improves the scalability and reduces the execution
time. In the literature, many studies compare the two methods, but in terms of speed of ex-
ecution, asynchronous algorithms are the best option. Another advantage of asynchronous
solutions is that they facilitate the communication of autonomous cooperating entities,
as shown in work such as A-Teams [30], in which agents solve problems by modifying a
shared memory without needing to know about each other or a coordination entity.

From early research on PGAs, many studies focused on the implementation details
impacting the system’s performance. In this regard, current work emphasizes the ex-
ploitation of the most recent advances in computer technologies, for instance, the massive
quantities of processing units found in modern GPUs [31]. However, arguably, the most
significant paradigm shift has recently come from the emergence of the cloud platform.
Parallel evolutionary algorithms leverage commercial, and even free, cloud services to de-
ploy implementations [32]. A pioneering proposal was made by Veeramachaneni et al. [33]
with a native cloud genetic programming framework called FlexGP. This system not only
worked on the cloud (using Amazon Elastic Compute Cloud, a virtual machine service) but
also tackled the different challenges in distributed computing in a novel way; in the same
way as in our algorithm, every virtual machine used different algorithm parameters (and
sampled the training data differently); however, they revealed in their paper the challenge
of booting virtual machines on the cloud.

Cloud-native architectures soon evolved to use computing nodes for which the startup
time and the overall cost were more lightweight and used isolated, “containerized”, op-
erating system images; these were initially called by the same name as the company that
proposed them, Docker, but are now an open standard supervised by the Open Computing
Initiative. These container-based architectures are nowadays mainstream [34]; from the
point of view of scientific computing, they enable replicability by not fully defining the
infrastructure in which the experiment can run, thus creating “frozen” workflows that can
be directly reused in new experiments on-premises, in paid infrastructure and even on
your laptop. These methodologies and technologies eventually landed in the evolutionary
computing field via the work published by Salza and Ferrucci [35]. Their main challenge
was reducing overhead, which is achieved via the containerization of the fitness evaluation
tasks; this speeds up the evolutionary algorithm by reducing node startup overhead and
communication overhead, since the virtual network interfaces that the container possesses
are much faster than whole virtual machines; latency is also expected to be lower.

All these attempts just adapt new infrastructure to old computation models; they
could be implemented in a local setup if resources were available. However, cloud-native
architectures go beyond that, offering new programming and communication paradigms;
its full use yields a high-performance architecture that is, at the same time, cheaper since
they use fewer resources. Our KafkEO [36] and EvoSwarm model [37] follow an event-
driven architecture, and instead of having a central node to execute the genetic algorithm,
delegating only the fitness evaluation to subordinate nodes as Salza and Ferrucci do,
workers evolve subpopulations for several generations.

A more recent work by Ivanovic and Simic [38] centers on auto-scaling the number of
microservices, considering the specifics of evolutionary algorithms. Increasing or reducing
the number of workers as needed, for instance, increasing when the population needs to
be evaluated or when a simulation will demand more resources. The aim is to reduce
the overall computational cost. This work uses a primary/subordinate parallel execution
with an event-driven architecture using the Kubernetes orchestration technology. A similar
approach is followed by Dziurzanski et al. [34], also using Kubernetes and an auto-
scaler but implementing an island model using a multi-objective genetic algorithm. Two
real-world smart factory optimization scenarios are used as test cases, and the system
is deployed on a Kubernetes cluster. This work follows a novel approach proposed by
Arellano-Verdejo et al. [39], in which islands evolve, but there is no migration between them.
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When the entropy value of a pair of populations maximizes the diversity of the resulting
island, these populations are merged into one, and the best-fitted individuals survive.

Instead of relying on message passing, some other proposed cloud native evolutionary
algorithms use a pool-based approach [40]. In pool-based algorithms, isolated algorithms
exchange candidate solutions through a shared pool, where they put and take solutions
asynchronously. Examples of these algorithms are the SofEA [41], and EvoSpace [42]
models. These implementations use the scalable storage services CouchDB and Redis,
respectively. EvoSpace has a cloud-based implementation [43] and another version called
evospace-js [44] using web technologies, the server (controller node) is implemented in
node.js, and the workers run in Docker containers.

In this work, we propose an EvoSwarm-inspired algorithm applied to a simulation-
based controller optimization problem that is both demanding in computational resources
and more representative of a real-world problem. In the next section, we describe the pro-
posed algorithm and implementation details. Table 1 gives a comparison of the key proper-
ties of the present work and related published work on cloud-native optimization methods.

Table 1. Comparison of cloud-native population-based optimization. methods

Method Infrastructure Orchestration Application Multi–Algorithm Parallelization Migration

FlexGP [33] AWS EC2 VMs FlexGP Regression Multi GP Solvers Multiple learners Ensemble
distributed with their own Global in each learning
launch protocol parameters learner

EvoSpace [43] Heroku, Python Script P-Peals Multiple GA Pool-Based Not needed
PiCloud Discrete Opt. workers

evospace-js [44] Containers, Python Script Continuous Multiple GA Pool-Based Not needed
node.js using Docker benchmark workers

API functions

KafkEO [36] Serverless OpenWhisk, Continuous Multiple GA Multi-Population Partition &
functions IBM BlueMix benchmark Islands Kafka Queue Crossover

functions

Salza & Containers, Fleet, Experimental Single GA Global, Not needed
Ferrucci [35] Core OS, Continuous Primary/Sub

RabbitMQ Integration

Dziurzanski Containers Kubernetes, Multi Multiple GA Multi-Population, Island
et al. [34] AWS EKS Custom objective Islands Message Queue Merging

auto-scaler optimization Elastic Workers

EvoSwarm [37] Containers docker-compose Continuous Multi-Algorithm Multi-Population, Partition &
benchmark GA-PSO Message Queue Crossover
functions Islands

Ivanovic & Containers Custom PETA Real-world Single GA Global Not needed
Simic [38] Auto-scaler, applications Primary/Sub,

Kubernetes Elastic Workers

Current Work Containers docker-compose Fuzzy Multi-Algorithm Multi-Population, Buffer-based,
control GA-PSO Message Queue Top-N
optimization Islands

3. Materials and Methods

In the following subsections, we show the distribution model that is the core of this
work. We first cover the main components of an event-driven architecture and then connect
them with the multi-population-based algorithm. We also relate the abstract components
with the particular design decisions of our implementation.
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3.1. Populations and Workers

In this model, instead of having a single population, we have a set P of n populations.
These populations (populationn) have a smaller number of candidate solutions than the
single populations found in traditional sequential evolutionary algorithms; we sometimes
refer to these elements as subpopulations because of the latter. Each population populationi
has a tuple (Xj, P, Sj), where Xj is the current state j of the multiset X of n candidate
solutions xn. At this level, we are only concerned with the population state before and
after a metaheuristic algorithm evolved the population. We ignore the state changes in
each iteration inside the algorithm and keep only the best individual of each iteration as a
statistic. Statistics are stored in an ordered set Sj. For instance, a GA starts with a population
Xj, and after the j execution of the algorithm, the population state would be Xj+1. The
set of parameters P includes the particular metaheuristic m that is to be executed on X
and the parameters needed by that metaheuristic MP. The other configuration parameters
are the population size n and the number of iterations (i.e., generations) to be executed
it. We define execution as running the metaheuristic for a specified number of iterations
m(Xj, MP, it). A single population is executed several times during the lifetime of the
algorithm, and this number is limited by the parameter nc (number of cycles). After each
execution, there is a process of combination in which populations exchange candidate
solutions with each other. We describe this process in detail below in Section 3.3. After
this combination happens, populations can be executed again by their metaheuristic. This
event-driven implementation decouples populations from the worker processes executing
the metaheuristics. A population object is a static structure with the data described earlier
(Xj, P, Sj). A schematic of an execution cycle is shown in Figure 1. In the middle, we have
a set of workers (W) that continuously receive a populationi,jblue(populationi in state j)
to execute a metaheuristic. After this, they send the evolved population populationi,j+1
blue(populationi in a new state j) to the mixing process to continue the cycle. A worker
is an agent running in a single process or thread. The worker pulls population messages
from a queue and executes the specified metaheuristic. After each execution, it sends the
resulting population to the mixer process.

Worker1

Worker2

Workerw

... Mixerpopulation3,1 population2,1 population1,1

population1,2

population2,2population2,3

Figure 1. The multi-population cycle consists of a set of populations P, each in a current state j, and a
set (W) of w workers. Each population (populationi) is received by one of the workers. Then, after
executing a metaheuristic, it sends the evolved population (Xj+1) to the mixer. In turn, the mixer
swaps some candidate solutions between two populations, changing their state again and sending
the resulting populations again to be processed by workers, closing the cycle.

Currently, populations are codified as JSON documents because the JSON format is
easily interchangeable between software components. Most programming languages have
standard libraries to parse the documents into native structures. Workers are deployed as
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Docker containers that include the python code and libraries to execute the algorithms and
receive and send populations codified as JSON documents. We have been using the verbs
receive and send, without specifying the details of how this communication happens. In
the next section, we describe the communication strategy.

3.2. Message Queues

Message queues implement an asynchronous communication pattern between pro-
cesses or threads. Communication is asynchronous because the sender and receiver do not
need to interact with the queue simultaneously. Furthermore, the number of recipients
or senders could grow without any changes to the configuration. Message queuing ser-
vices are a central component in many cloud-based systems because they offer a scalable
solution for inter-process communication. This work uses message queues as a scalable
communication between architecture components. We use two queues:

• input queue. This queue receives populations that need to be sent to workers. When
the algorithm starts, populations in their initial state are sent to this queue. Moreover,
the mixing process sends combined populations to continue with the multi-population
cycle. Workers constantly pull populations from this queue.

• output queue. Workers push the evolved populations to this queue. At the same time,
the mixing process pulls populations from this queue to combine two or more populations.

Figure 2 shows the operation of a worker. Each worker is in an infinite loop pulling a
message from the input queue; this is a blocking operation. After a population is pulled
from the queue and has valid data, the metaheuristic algorithm specified is executed,
starting from the current state of the population. After the execution is finished, the
resulting population is pushed to the output queue, and the loop continues, pulling
another population.

m
ai

n
w

o
rk

er

Start

YES

Initialize the 
specified 

metaheuristic

NO

 message has data?

input queue

population

push message 
<non-blocking>

output queue

pull message 
<block  until message> 

execute
algorithm

Figure 2. The diagram shows the worker’s infinite loop operation and communication through the
input and output queues. Inside each worker, there is a main method executing an infinite loop,
constantly pulling messages from the input queue and blocking until a message is received. The
message includes the population and the specified metaheuristic to execute. Workers are capable
of executing all metaheuristics available. Once the message is received, the main method calls the
worker object to execute the algorithm. After the algorithm runs, the worker pushes a message to the
output queue; the message includes the resulting population.
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3.3. Mixer

The components mentioned above can be included in a scalable method for running
isolated algorithms. However, it needs to include a vital factor to become a multi-population
model: the recombination or migration between populations to avoid premature conver-
gence because smaller populations tend to converge faster than those more populated [45].
We propose a buffer-based mixer component for the recombination of populations. The
buffer is a priority queue in which elements are ordered according to their fitness and
keeps only the k-best individuals. The mixing algorithm waits until the buffer has at least k
individuals before it starts mixing the populations. Before going into the recombination
component details, we need first to discuss the communication topology that specifies
how the populations communicate. Using a message queue for the temporal storage of
populations establishes an order in which components receive data. Each population could
have two contiguous populations in the queue, one in front and the other behind, as in a
ring topology. Furthermore, since populations are in a queue, there is a temporal ordering,
in which the last populations to arrive will be the last to be recombined. In this case, the
simple strategy of recombining contiguous populations could slow the propagation of the
best solutions along the ring. Depending on the problem, this could be a desirable property,
as this increases the overall diversity, but also, the algorithm could take more time to reach
a desirable solution. After running some preliminary experiments, we followed an elitist
approach, which showed better results. We propose using a buffer with size k to keep the
k-top individuals from all the populations received. Then, each population reaching the
mixer has its k-worst solutions replaced with the k-top in the buffer. The mixing process
has two additional responsibilities:

1. Setup This is a one-time running task consisting of reading the algorithm’s configura-
tion, creating the initial population structures, and pushing the messages to the input
queue.

2. Finishing the algorithm The mixer also keeps track of the number of populations
that have been pulled from the output queue. It stops the algorithm if one of these
two conditions is true: (1) the number of cycles has been reached, or (2) the error of
the best controller found so far meets the desired criteria.

In Figure 3, the swimlanes highlight which component is responsible for executing
elements of the algorithm defined in the past sections. The numbers in yellow squares allow
us to describe the complete algorithm. The mixing process receives a configuration file,
which includes the number of populations, metaheuristics, and their respective parameters
(1). After generating the population messages, it pushes them to the input queue (2).
Worker containers (3) pull the population messages as described in Section 3.1, execute
a metaheuristic, and pushes the resulting population state to the output queue (4). The
mixing process pulls populations from the output queue and follows the process described
in Section 3.3. It stops the execution if conditions are met (5) or proceeds to swap the k-top
individuals in the buffer with the worst k in the current population (6). Finally, it pushes
the resulting population to the input queue to complete the loop.
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Mixer Input Queue Worker Containers Output Queue

input-queue

Create Initial 
Populations

Worker 1

Worker n

output-queue

Mixer

1

2

3

4

5

6

Buffer 
Swap

Finish

Start

Yes

No

Stop?

Figure 3. The proposed architecture diagram shows each process in a swimlane, along with the
message dataflow, message queues, and high-level responsibilities of each component. Numbers in
yellow boxes indicate the order in which actions happen, and the details of each step is explained in
the main text.

3.4. Controller Optimization and Simulations

The optimization of fuzzy controllers requires the components shown in Figure 4.
First, it needs a parameterized fuzzy controller structure, as described in Section 1. In this
work, we chose to optimize the parameters of some MFs of the controller. Designers can
establish the granularity of each fuzzy variable. For instance, for measuring an error, we can
use just three MFs—“HIGH-NEGATIVE”, “LOW”, and “HIGH-POSITIVE”—or increase
the granularity by adding the fuzzy terms—“MEDIUM-NEGATIVE” and “MEDIUM-
POSITIVE”—for a total of five MFs. Designers can decide to leave some fuzzy variables with
fixed parameters, depending on the problem or the design strategy. In this implementation,
the fuzzy-controller module is another parameter of the optimization process; this has
the benefit of using other modules with more granularity or parameters. To simplify the
optimization algorithm, we keep the domain of all parameters on the [0,1] domain and
leave the parameterized controller’s designers the task of normalizing or adjusting the
parameter’s values to their needs. Two more related components are needed to establish
the fitness of the controller’s parameters. We need a dynamic model of the plant or robot to
control and one or more control problem instances to simulate and observe the controller’s
behavior. For instance, in this case, for a path-tracking controller, we need to test the
control using a few paths for the mobile robot to follow. We then measure the average error
of all simulations to establish the fitness of the candidate controller parameters. Again,
designers can change the simulation model and the simulation problems for testing; these
can increase the difficulty or use other variables for evaluating the performance.
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Simulation Problem  Instances

Simulation Model

FIS Controller Creation

Parameters

Fitness

Control Problem

Figure 4. The diagram shows the data flow of the higher-level components required to optimize the
parameters of a fuzzy controller. The input is the collection of parameters representing a candidate
solution, and the output is the fitness or quality measure of the candidate solution. It shows the
FIS controller creation component, which generates a controller instance from the input parameters.
The controller instance is then put to the test on a control problem. A control problem includes a
simulation model that includes the kinematic model and the code needed to execute a simulation.
The controller can be tested on several problem instances. For example, a path-tracking controller can
be tested on different paths. We measure the error as the robot follows the path, and the final output
is the average of these errors.

In the current implementation, each worker has the necessary python libraries for each
component we just described. This component-based design has the flexibility required for
other fuzzy control problems.

4. Experimental Setup

To validate the algorithm’s speed-up and optimization capabilities, we selected the
computationally demanding task of tuning a path-tracking fuzzy controller for a bicycle-
like mobile robot. Furthermore, in the literature, we have yet to find other researchers who
applied cloud-native patterns for fuzzy systems’ optimization to solve similar problems.
The following sections briefly explain the control problem and the fuzzy controller. The
problem configuration is the same as our previous work [14], in which we compare several
sequential optimization metaheuristics. We use the results of that work as the base of the
comparison in this work.
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4.1. Rear-Wheel Feedback and Kinematic Model

Figure 5 illustrates the kinematic model consisting of two wheels connected by a rigid
link of length l [46,47]. The steering angle of the front wheel is δ, and the rear wheel position
is at xr and yr. The heading θ is the angle between the link and the x axis. The unit tangent
to the path at s(t) is shown in blue t̂. We follow the model with nonholonomic restrictions
described in [48]:

ẋr = vr cos(θ),
ẏr = vr sin(θ),
θ̇ = vr

l tan(δ).
(1)

e

|e|

t?

l

s

Figure 5. Illustration of the feedback variables used for rear-wheel-based control. The transverse
error e is the distance from the rear wheel to the nearest point in the path s(t). When the error is
positive, the wheel is to the right of the path. The wheel is to the left if the error has a negative sign.
θe is the difference between the tangent at the nearest point in the path and the heading θ. The unit
tangent to the path at s(t) is shown in blue t̂. The controller outputs the heading rate ω, the variable
we need to establish the steering angle δ (see Equation (2)).

The output of the controller is the angle δ between the limits of the vehicle
δ ∈ [δmin, δmax] and a desired velocity vr again limited by v ∈ [vmin, vmax]. The head-
ing rate ω is related to the steering angle by

δ = arctan
(

lω
vr

)
, (2)

and we can simplify the heading dynamics to

θ̇ = ω, ω ∈
[vr

l
tan(δmin),

vr

l
tan(δmax)

]
. (3)

The tracking error vector is the difference between the rear-wheel position and the
reference point in the path

d(t) = (xr(t), yr(t))− (xre f (s(t)), yre f (s(t))), (4)

while the transverse error e is the cross product between the unit tangent vector t̂ and the
tracking error vector d

e = dx t̂y − dy t̂x, (5)

with subscripts being the component indices of each vector. The heading error uses the
angle θe between the robot’s heading vector and the tangent vector at s(t):
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θe(t) = θ − arctan2

(
∂xre f (s(t))

∂s
,

∂yre f (s(t))
∂s

)
. (6)

4.2. Parametrizable Membership Functions

This section describes the fuzzy controller we want to optimize. The controller has
two input variables θe and e, and a single output ω. All three variables have the same
granularity using five fuzzy terms: high negative, medium negative, low, medium positive, and
high positive. The sign of the error indicates if the angle is to the left or right of the path. The
parameters of the MFs are shown in Table 2. As we can see, we have the same parameters
with constant values, and others are defined with variables. We use ten parameters to
define the MFs of the controller. We kept the MFs symmetrical around zero; thus, the
middle point of the triangular function for low will be fixed at zero. Additionally, we kept
the extreme values of the trapezoidal MFs constant. To limit the search space and to be able
to compare against our previous results, we also kept the parameters of ω fixed. Using
experimental knowledge from previous work, we defined different ranges for the possible
values of the normalized parameters, which are shown in Table 3. The knowledge base of
the fuzzy controller consists of 25 fuzzy rules and is presented in Table 4.

Table 2. Ten parameter configuration for the fuzzy controller with a granularity of five symmetric
MFs. Parameters for the output variable have constant values.

Variable Linguistic Value MF Parameters

θe high negative µtrap [−50,−5,−b,−b + c]
θe medium negative µtria [−d− e,−d,−d + e]
θe low µtria [−a, 0, a]
θe medium positive µtria [−d− e, d, d + e]
θe high positive µtrap [b− c, b, 5, 50]

error high negative µtrap [−50,−5,−g,−g + h]
error medium negative µtria [−i− j,−i,−i + j]
error low µtria [− f , 0, f ]
error medium positive µtria [−i− j, i, i + j]
error high positive µtrap [g− h, g, 5, 50]

ω high negative µtrap [−50,−5,−1,−0.5]
ω medium negative µtria [−1,−0.5, 0]
ω low µtria [−0.5, 0, 0.5]
ω medium positive µtria [0, 0.5, 1]
ω high positive µtrap [0.5, 1, 5, 50]

Table 3. Ranges defined for each parameter for the 5MF controller.

Parameter Range Parameter Range

a [0,1] f [0, 1]
b [0.5,2] g [0.5, 2]
c [0,2] h [0, 2]
d [0.5,1.5] i [0.5,1.5]
e [0,1] j [0, 1]

Table 4. Proposed fuzzy rules for the basic controller with three membership functions.

Rule 1: If θe is hi_neg and e is hi_neg then ω is hi_pos
Rule 2: If θe is hi_neg and e is med_neg then ω is hi_pos
Rule 3: If θe is hi_neg and e is low then ω is hi_pos
Rule 4: If θe is hi_neg and e is med_pos then ω is med_pos



Symmetry 2023, 15, 467 13 of 21

Table 4. Cont.

Rule 5: If θe is hi_neg and e is hi_pos then ω is low
Rule 6: If θe is med_neg and e is hi_neg then ω is med_pos
Rule 7: If θe is med_neg and e is med_neg then ω is med_pos
Rule 8: If θe is med_neg and e is low then ω is med_pos
Rule 9: If θe is med_neg and e is med_pos then ω is med_pos
Rule 10: If θe is med_neg and e is hi_pos then ω is low
Rule 11: If θe is low and e is hi_neg then ω is hi_pos
Rule 12: If θe is low and e is med_neg then ω is low
Rule 13: If θe is low and e is low then ω is low
Rule 14: If θe is low and e is med_pos then ω is low
Rule 15: If θe is low and e is hi_pos then ω is hi_neg
Rule 16: If θe is med_pos and e is hi_neg then ω is low
Rule 17: If θe is med_pos and e is med_neg then ω is med_neg
Rule 18: If θe is med_pos and e is low then ω is med_neg
Rule 19: If θe is med_pos and e is med_pos then ω is med_neg
Rule 20: If θe is med_pos and e is hi_pos then ω is med_neg
Rule 21: If θe is hi_pos and e is hi_neg then ω is low
Rule 22: If θe is hi_pos and e is med_neg then ω is med_neg
Rule 23: If θe is hi_pos and e is low then ω is hi_neg
Rule 24: If θe is hi_pos and e is med_pos then ω is hi_neg
Rule 25: If θe is hi_pos and e is hi_pos then ω is hi_neg

4.3. Multi-Population Algorithm Setup

We selected the GA and PSO algorithms for the multi-population-based optimization
in this work. We based our decision on the results of our previous experiments and the
differences in the techniques they use. GA is the canonical representative of an evolutionary
algorithm, with favorable results in combinatorial and discrete optimization. It had the
worst results from the metaheuristics selected in our previous experiment, so we are
selecting this algorithm to represent the lower end of the results. It will be interesting to
see if a multi-population version could improve the results. On the other hand, the PSO
algorithm had the best results. We expected this because this algorithm is better suited for
continuous optimization, as is the case for the current optimization problem. Furthermore,
in previous work, using continuous optimization benchmarks, the combination of both
metaheuristics performed better than any of them in isolation. In the following experiment,
we test if this is the case for the current use case.

When using population-based metaheuristics, designers have the initial burden of
establishing the algorithm’s parameters. As we discussed earlier, bio-inspired metaheuris-
tics have parameters that control the balance between the exploration or exploitation of
the search space [49]. If the algorithm over-exploits, then the risk of premature conver-
gence increases. Moreover, if there is over-exploration, the search will be almost random,
constantly jumping to a different area. A balance between the two strategies is needed
to escape from local minima and to carry out a local search in a promising area. If we
have multiple populations in our algorithm, we could change the parameters of some
populations to favor exploration and others’ exploitation, keeping the two extremes in
balance. A simple way to accomplish the exploration–exploitation balance is by using a
heterogeneous strategy proposed by Gong et al. [50], which randomly sets the parameters
of each population. Although simple, random parametrization obtained promising results
in other multi-population-based algorithms. The other strategy found in the literature is
using a single, well-balanced configuration for each metaheuristic algorithm and repeating
the same configuration in all populations; we call this a homogeneous strategy. In this work,
we compare the results of heterogeneous and homogeneous strategies for multi-population
algorithms.

Table 5 shows the algorithms’ parameters for the sequential versions of the GA and
PSO algorithms. For the GA, we used a tournament selection with three participants
(k = 3). We applied a Gaussian mutation with µ = 0.0 and σ = 0.2, with a probability
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of 0.3. We use a one-point crossover with a probability of 0.7. For the sequential PSO
algorithm, we used a fully connected topology (on each subpopulation), with minimum
and maximum speeds of −0.25 and 0.25, respectively, and C1 = 2 and C2 = 2. In the
sequential case, both algorithms have a single population of 50 candidate solutions and
run for 20 iterations. To compare against the multi-population versions, we need to keep
the number of function evaluations equal. Hence, the comparison is fair, as both versions
perform the same amount of processing. In the sequential version, the number of function
evaluations is 1000. This number is obtained by multiplying the population size by the
number of iterations. Table 6 shows the algorithms’ parameters for the distributed, multi-
population versions of the GA and PSO algorithms. We used the same parameters as the
sequential versions for the homogeneous parametrization. We used the same parameters
for the heterogeneous versions as before, except for the following parameters affecting the
exploration–exploitation balance in the GA and PSO algorithms. The mutation probability
is selected for the GA from the [0.1, 0.5] range and the crossover probability from [0.3, 0.9].
For the PSO algorithm, we also selected the minimum speed between [−0.30,−0.20] and the
maximum from [0.20, 0.30]. Both C1 and C2 are in the [1.0, 2.0] range. For all the distributed
versions, we set the number of populations (islands) to seven, each with a population size
of nine. The population size is kept small because we estimate the total population size by
multiplying the population size by the number of subpopulations; in this case, the total
size is 63. Each worker will execute four iterations (generations) of the algorithm. All
populations will complete four cycles; this means they will pass through the mixer module
four times. As a result, the total number of function evaluations is 1008. About the same as
the sequential, single-population versions.

Table 5. Summary of the parameters for the sequential GA and PSO algorithms compared. The
general parameters section indicates the parameters that are the same for both algorithms.

Algorithm Parameter Value

GA Selection Tournament Selection (k = 3)
Mutation Gaussian (µ = 0.0 and σ = 0.2)
Mutation probability 0.3
Crossover One point (probability = 0.7)

PSO Topology Fully connected
Speed limit Min= −0.25, Max= 0.25
Cognitive and Social C1 = 2, C2 = 2

General Parameters

Population Size 50
Number of Iterations 20
Number of Function Evaluations 1000

We include in the comparison a combined version having four populations running a
PSO algorithm and three populations running a GA. Algorithms in this combined version
use the same parameters as above. This combination aims to test whether the combina-
tion of search strategies gives better results than the other versions. We executed these
combinations using both parametrization strategies.

To compare the optimization algorithms, we tuned the parameters of the fuzzy system,
detailed in Section 4.2. Each candidate solution has ten continuous parameters in the
[0, 1] range. The control problem is to follow the three paths defined as cubic splines with
parameters shown in Table 7, together with the parameters of the simulation. The fitness of
each candidate solution is the average error of the three paths.

We ran 30 algorithm executions for each configuration on a workstation with AMD
Ryzen 9 3900× 12-core CPU with 48 GB RAM running Ubuntu 21.04, and CPython 3.7.5.
The distributed experiments run in containers deployed using a docker-compose script.
The script defines a container for the Redis memory store, responsible for running the
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in-memory queues for the asynchronous interprocess communication. The script includes
a worker definition, and at the start of the deployment, is scaled to seven worker con-
tainers, one for each of the seven populations. After each experiment, we destroyed all
containers, so the next experiment would start with a clean state. The mixing process runs
natively on the host machine. The code and data can be found in the GitHub repository
https://github.com/mariosky/fuzzy-control (accessed on 17 January 2023). We compared
the algorithms using the mean, median, and standard deviation of the RMSE of 30 algo-
rithm executions. Moreover, we measured the execution time (in seconds) for each run of
an algorithm configuration.

Table 6. Summary of parameters for the multi-population versions of the GA and PSO algorithms.
In the top section, we have the case in which all islands have the same parameters (homogeneous
parametrization). In the next section, we have the heterogeneous parametrization, in this case, some
parameters are randomly obtained from a range of values. Finally, the general multi-population
parameters section indicates parameters that are the same for both algorithms.

Homogeneous Parametrization

Algorithm Parameter Value

GA Selection Tournament Selection (k = 3)
Mutation Gaussian (µ = 0.0 and σ = 0.2)
Mutation probability 0.3
Crossover One point (probability = 0.7)

PSO Topology Fully connected
Speed limit Min= −0.25, Max = 0.25
Cognitive and Social C1 = 2, C2 = 2

Heterogeneous Parametrization

Algorithm Parameter Value or Random Range

GA Selection Tournament Selection (k = 3)
Mutation Gaussian (µ = 0.0 and σ = 0.2)
Mutation probability [0.1, 0.5]
Crossover One point (probability = [0.3, 0.9])

PSO Topology Fully connected
Speed limit Min = [−0.20, −0.30], Max = [0.20, 0.30]
Cognitive and Social C1 = [1.0, 2.0], C2 = [1.0, 2.0]

General Multi-Population Parameters

Population Size 9
Number of Populations 7
Iterations per pull 4
Cycles 4
Number of Function Evaluations 1008

The speedup is an important performance metric because we aim to accelerate the
program execution time. We base our speedup definition on the work of Touati et al. [51]
as follows: Let C be the base algorithm, and C ′ be the proposed alternative. Let X be the
random variable representing the execution time of C, and X = {x1, . . . , xn} be a sample
of n execution times. The proposed alternative C ′ can also be executed m times over the
same optimization problem, and the execution time is similarly represented by Y and
Y = {y1, . . . , yn}. With these two samples, we can define the observed speedup of the
mean execution times as

X
Y

=
∑n

i=1 xi

∑m
j=1 yj

× m
n

. (7)

In this work, the execution time samples consist of 30 observations (n = m). The
results are discussed in the next section.

https://github.com/mariosky/fuzzy-control
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Table 7. Simulation and spline parameters.

Parameter Value

Wheel-base l = 2.5
Steering limit |δ| ≤ π

4
Initial configuration xr(0), yr(0), θ(0) = (0, 0, 0)
Velocity controller configuration Kp = 1, v(0) = 0, a(0) = 0
Target velocity vr =

10
3

Maximum time 50

Path 1 ax = [0, 6, 12, 5, 7.5, 3,−1]
ay = [0, 0, 5, 6.5, 3, 5,−2]

Path 2 ax = [0, 1, 2.5, 5, 7.5, 3,−1]
ay = [0,−4, 6, 6.5, 3, 5,−2]

Path 3 ax = [0, 2, 2.5, 5, 7.5,−3,−1]
ay = [0, 3, 6, 6.5, 5, 5,−2]

5. Results

In this section, we present the results of the experiments, comparing a sequential and
distributed implementation of the controller described in the previous sections, with the
average RMSE of three paths to establish the fitness. First, we show the results regarding
the RMSE obtained by the optimized controllers, and then, we center our attention on the
time it took the experiments to complete.

5.1. RMSE

The RMSE results of several configurations are shown in Table 8. In the first two
columns, we show the results of the sequential algorithms as published in our previous
work [14]. We can see that the PSO algorithm obtained the best results overall, with a
median RMSE of 0.00536160, the second-best result is the distributed heterogeneous version
of the PSO-GA with a median of 0.00610783; this result is very close to the multi-algorithm
version PSO with an RMSE of 0.00628949. After performing a statistical z-test between
the distributed and sequential versions of the same algorithms, we did not find enough
evidence to reject H0 : µseq ≤ µdist with α = 0.05. These results indicate that the results from
the distributed and sequential versions are about the same, and the random parametrization
of the multi-population version could be used, even having marginal benefits over the
homogeneous version, without the need to find appropriate values for the parameters.

Table 8. Results of the execution of 30 runs of the presented algorithms. The controller error is
expressed as the RMSE obtained by the best controller found in each run. The table shows the
results for the sequential (first two columns) and distributed versions of the multi-population-based
algorithms: GA, PSO, and the combined version PSO-GA. The homogeneous versions are on the
left-hand side and heterogeneous versions are on the right. The best result is shown in boldface;
second best is underlined.

Homogeneous Parameters Heterogeneous Parameters

Sequential Distributed

GA PSO GA PSO PSO-GA GA PSO PSO-GA

Average 0.01564106 0.00546486 0.01091576 0.00645341 0.00656220 0.01029059 0.00632935 0.00634867
Std. Dev. 0.03163634 0.00202007 0.00600245 0.00148185 0.00185666 0.00332792 0.00165840 0.00135594
Median 0.00918906 0.00536160 0.00955549 0.00643669 0.00625087 0.01021287 0.00628949 0.00610783

Min 0.00574378 0.00158063 0.00384490 0.00360178 0.00336501 0.00399671 0.00310301 0.00388684
Max 0.18205041 0.01026034 0.03455102 0.01000582 0.01168791 0.01584733 0.00891131 0.00889502
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5.2. Execution Time Speedup

The complexity of the optimization process depends mainly on the cost of each
simulation step. However, the cost depends on a multistep differential solver, the number
of iterations of which changes depending on the initial conditions. Furthermore, there is
also the added cost of obtaining the nearest point to the path in each step, as described
in Section 4.1. On the other hand, the population-based algorithms implemented follow
the same procedure: initialize the population with O(n) complexity, where n is the size of
the population. Then, there is the step of creating or updating a new population; this is
normally O(m ∗ n) +O(m ∗ n ∗ l) with m iterations and l parameters. Since this kind of
metaheuristics does not have a deterministic number of steps to find a satisfactory solution,
it is impossible to compute the computational complexity and, thus, compare algorithms on
this basis. We will need to compare them experimentally. The observed execution times of
sequential and multi-population configurations of the algorithms are shown in Table 9. The
table shows execution times in seconds and the speedup against the sequential alternative
in subscripts. In the case of the PSO-GA combined version, we used the execution time of
the sequential PSO algorithm as the base. In the first two columns, we have the base times
of the sequential GA and PSO versions. We notice that the GA completes the execution in
less time than the PSO algorithm, but as the results in the previous section show, the RMSE
results are worse. On the left side of Table 8, we present the execution times of both the
homogeneous and heterogeneous alternatives. As expected, there is a speedup of around
six times in the distributed PSO versions; this is not the case for the GA, reaching five times
only on the heterogeneous distributed configuration. The PSO-GA heterogeneous variant
gave the best speedup on average; this is an interesting result because it gives better results
than the homogeneous PSO-GA configuration. Figure 6 shows the boxplot of the execution
times: the noticeable differences between the GA (p = 0.000171) and PSO-GA (p = 0.000264),
are confirmed with a z-test (n = 30, α = 0.005, independent samples); this was not the case
for the PSO (p = 0.5104).

Table 9. Results from 30 observations of the execution time for each of the presented algorithms.
blueThe table shows execution times in seconds and the speedup against the sequential alternative
in subscripts. The table shows the results for the sequential (first two columns) and distributed
versions of the multi-population-based algorithms: GA, PSO, and the combined version PSO-GA.
The homogeneous versions are on the left side and heterogeneous versions on the right.

Homogeneous Parameters Heterogeneous Parameters

Sequential Distributed

GA PSO GA PSO PSO-GA GA PSO PSO-GA

Average 1999.34 2851.61 421.674.74 415.646.86 431.526.60 395.755.05 415.796.84 409.906.95
Std. Dev. 82.44 278.73 28.54 23.47 22.60 26.54 20.47 24.85
Median 1990.46 2770.62 417.844.72 412.686.71 432.366.40 392.805.06 414.666.66 408.486.79

Min 1876.40 2457.98 364.65 365.81 394.61 340.65 374.83 372.20
Max 2253.71 3822.01 526.76 467.47 478.80 461.46 461.96 465.27

These results confirm that a multi-population-based strategy offers a convenient
speedup while keeping the results very similar to their sequential counterparts. More-
over, the combined algorithm offers better execution times, combining the continuous
optimization capabilities of a PSO algorithm with the faster GA metaheuristic. Moreover,
the randomized configuration parameters heterogeneous strategy gave better execution
times when using the PSO-GA variant.

Finally, these experiments also exemplify the type of fuzzy controller optimizations
we can perform and the speedup performance we can achieve with an implementation
following an event-based architectural pattern. Another advantage of this pattern is that
other researchers can replicate the experiments using a standard Docker deployment under
the same software conditions. The containerized implementation could even be executed in
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a cloud environment from the same code base and Docker scripts, allowing the scalability
options of more powerful virtual machines.

GA_HO GA_HE PSO_HO PSO_HE PSO−GA_HO PSO−GA_HE

350

400

450

500

Algorithms

T
im

e 
(s

ec
.)

Figure 6. Boxplot of the execution time in seconds for 30 runs of the distributed versions of the
multi-population-based algorithms: GA, PSO, and the combined version PSO-GA. The homogeneous
versions are on the left side (with black outlines and the _HO suffix) and the heterogeneous versions
are on the right (with orange outlines and the suffix _HE).

5.3. Discussion

From these experiments, we gather some insights into the problem and the algorithmic
framework we have created to solve it. The sequential PSO algorithm is consistently
beating all the other combinations from the algorithmic performance perspective, as seen in
Table 8. However, the combined, heterogeneous, distributed PSO-GA offers the second-best
performance, and also the lowest worst-case result. This means that if we are looking for
a framework that in a single shot offers the best guarantee to succeed, the PSO-GA is
probably the best, offering a worst-case result that is better than the median in many other
cases (for instance, anyone that involves only a genetic algorithm).

Although the evolutionary algorithm is worse than the PSO in every setup, com-
bining them is consistently better than any of them; combining the different exploita-
tion/exploration capabilities of both seems to balance their shortcomings in that area.
Looking at Table 9, however, reveals that this last combination obtains a very good median
and average time to solution, with a 75% speedup over the sequential algorithm.

This leads us to conclude that the algorithm proposed in this paper is the best alter-
native if you want to obtain consistently good solutions in a very short amount of time,
proving the value of the cloud-native design as well as the choices made in the population
combination operators.

6. Conclusions

This paper presented a distributed, multi-population-based algorithm for fuzzy con-
troller optimization. The implementation follows an event-based, cloud-native architectural
pattern suitable for workstation or cloud platform deployment. We used industry-standard,
open-source development tools and libraries, with Docker and docker-compose for con-
tainer deployment and the Python language to develop a simulation and fuzzy controller
environment. The code can be modified to add more control problems or metaheuristics.
The algorithm is based on message queues for the asynchronous exchange of messages
encoding populations of candidate solutions. The mixer component adds a buffer-based
strategy for exchanging promising candidate solutions between populations. We propose
the use of Docker containers as workers for the isolated execution of metaheuristics, similar
to the island model. In this paper, we compared two multi-population versions using PSO,
GA, and a combination of the two metaheuristics. As a case study, we used the proposed
algorithm to optimize the parameters of the MFs of a fuzzy controller. The controller is
applied to the autonomous path tracking using rear-wheel feedback. We optimized the
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controller using simulations to validate each candidate’s configuration; this was carried
out by following three distinct paths and measuring the average RMSE.

We have performed an empirical evaluation of two multi-population configuration
techniques. One configuration is based on a homogeneous configuration, using a set
of parameters found experimentally. We also evaluated a heterogeneous configuration
obtained by randomly initializing the parameters of each subpopulation. We found that the
configuration strategy we chose significantly influences the execution time in some cases.
We conclude that using the heterogeneous strategy on the combined PSO-GA improves
the execution time. The results also show no statistical difference between the sequential
and multi-population-based implementation of the algorithm, while there is a proportional
speedup on the multi-population implementation. The distributed PSO version achieved
better speedup than the distributed GA alternative, which could be explained because the
GA has a lower execution time.

Having a multi-population algorithm opens many lines for further exploration. One
possibility is to give each subpopulation different problem configurations, for instance,
different simulation problems. Some populations could have paths with more difficulty or
a shorter distance, while others have less complicated problems. Another option is using a
multi-objective control problem, using other performance metrics, and having populations
optimizing distinct objective functions. On the implementation side, a complete study of
the speedup must include a different number of worker containers to see if the speedup
scales with the number of workers/populations.

There are also different areas of application of this algorithm; in principle, metaheuris-
tics such as the one proposed in this paper can be applied to any monomodal optimization
problem where the fitness function can be formulated analytically. In this paper, we have
proved that it can successfully be applied to fuzzy-based systems, since it can evolve them
successfully and in a reasonable amount of time. This fact opens the possibility of applying
it to relatively complicated problems to bring down the time required to obtain a solution
by (roughly) an order of magnitude or, in a cloud environment, to reduce its cost; this
will make this kind of system affordable to small and medium-sized enterprises who will
be able to leverage it to add value to their portfolio. Since fuzzy controllers are used
extensively on the Internet of Things [52], this could be an excellent area of application.
This is left, however, as future work.
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